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ABSTRACT 
Until recently, the best performing copying garbage collectors used 
a generational policy which repeatedly collects the very youngest 
objects, copies any survivors to an older space, and then infre- 
quently collects the older space. A previous study that used garbage- 
collection simulation pointed to potential improvements by using 
an Older-First copying garbage collection algorithm. The Older- 
First algorithm sweeps a fixed-sized window through the heap from 
older to younger objects, and avoids copying the very youngest ob- 
jects which have not yet had sufficient time to die. We describe and 
examine here an implementation of the Older-First algorithm in the 
Jikes RVM for Java~ This investigation shows that Older-First can 
perform as well as the simulation results suggested, and greatly im- 
proves total program performance when compared to using a fixed- 
size nursery generational collector. We further compare Older-First 
to a flexible-size nursery generational collector in which the nurs- 
ery occupies all of the heap that does not contain older objects. In 
these comparisons, the flexible-nursery collector is occasionally the 
better of the two, but on average the Older-First collector performs 
the best. 

1. INTRODUCTION 
Garbage collection for object-oriented programming languages 

automates memory management and thus relieves programmers of 
a source of errors and the burden of explicit memory management. 
Since most objects die quickly [15], generational copying collec- 
tors divide the heap into generations [3, 9, 15]. They collect the 
youngest objects frequently, and copy survivors into progressively 
older generations. When the heap fills, they collect the older gen- 
eration together with the younger generation. 

Generational collectors prematurely copy the very youngest ob- 
jects because every object needs some time to die. The Older-First 
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copying garbage collector [14] exploits this observation by avoid- 
ing collecting the youngest objects. It organizes the heap in order 
of object age and collects a fixed-size window that slides through 
the heap from older to younger objects. When the heap is full, 
Older-First collects the window, compacts the survivors (logically) 
in place, returns any free space to the nursery, and then positions 
the window for the next collection over objects just younger than 
those that survived. If it bumps into the allocation point, it resets 
the window to the oldest end of the heap. 

Previous work describes a range of implementation possibilities 
for the Older-First collector (OF) [13, 14]. It also presents garbage 
collection simulation results that show OF performs much better 
than a fixed-size nursery generational collector. In this work, we 
describe an implementation of OF for Java in IBM's Jikes RVM, a 
well performing system [1, 2]. We present a variety of execution re- 
sults that (1) validate our simulation model, (2) compare execution 
times and copying ratios of OF and generational collectors, and (3) 
explore pause times (the range of times for one collection) and the 
total collection time tradeoff. 

These results show that Older-First delivers on its promise and 
outperforms a tuned fixed-size nursery generational collector by on 
average 5-25% for 10 Java programs on a wide range of heap sizes. 
We further show that these improvements are mostly due to reduced 
copying costs. 

In our experiments [4] the flexible-nursery collection introduced 
by Appel [3] consistently performs better than a fixed-size nursery 
collector. Our results show that OF sometimes (in 7 of the 10 pro- 
grams studied) does better than this generational collector as well, 
and further, OF almost always beats both generational collectors on 
maximum pause time, since the generational collectors must some- 
times collect the whole heap, which OF never does. 

We proceed in Section 2 with an overview of OF and design 
decisions we made in the implementation as part of our Garbage 
Collector Toolkit for the IBM Jikes RVM for Java. In Section 3, 
we give the details of the experimental setting and Section 4 gives 
a comparative performance evaluation of the collector with respect 
to throughput, and in Section 4.3 with respect to garbage collection 
pause times. 

2. DESIGN AND IMPLEMENTATION OF 

THE OLDER-FIRST COLLECTOR 
The Older-First collector organizes the heap by object age [14]. 

It collects a fixed-size window that slides through the heap from 
older to younger objects. When the heap is full, OF collects the 
window, makes any free space available for future allocation, and 
then positions the window for the next collection over objects just 
younger than those that survived. If it bumps into the allocation 
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Figure 1: Design of the Older-First Collector 

point, it resets the window to the oldest end of the heap. 

This scheme is illustrated in Figure 1, which shows the allocation 
region A and the copy region C, each of which can be considered as 
queues of window-size groups of objects. OF allocates to the back 
of region A. Whenever all usable memory is consumed, OF collects 

a window from the front of region A, copying survivors to the back 
of region C. If all usable space is consumed and A is empty, then 

OF 'flips' the roles of the two regions, collects the first window in 

the new region A, and copies its survivors to the back of the new, 
now empty, region C. OF then continues to ailoeate to the back of  
the new region A. 

As illustrated in the figure, the heap is organized from left to 

right, older to younger objects. The Older-First collector must re- 

member pointers from any uncollected regions to the collected re- 
gion, and during a collection assume that pointers into the collected 

region refer to live objects. OF need not remember all pointers be- 
tween regions; it needs to remember a pointer between two regions 

only if it will independently collect the target before the source. A 

generational collector with two generations has just one such region 
boundary, but OF has many boundaries and thus its write barrier 

remembers more pointers. 

Previous work discusses the design and several implementation 

strategies for OF [13, 14]. We make a few modifications to this de- 
sign for our implementation. Most of these changes are necessary 

because the collector uses a 32-bit environment in Jikes RVM in- 

stead of the envisaged large address space, which would enable op- 
timizations that reduce pointer maintenance costs. The original de- 

sign had several other mechanisms to reduce pointer maintenance 
costs, and this implementation introduces a further enhancement 

to reduce the number of remembered pointers. The remainder of 

this section presents the high-level design of the Older-First algo- 
rithm implementation and discusses how this implementation devi- 

ates from the initial OF design. 

2.1 Blocks and Frames 
Jikes RVM currently supports only 32 bits of address space, 

which prevents us from using an address-ordered heap in which the 

write barrier can quickly compare virtual addresses to determine 
if it needs to remember a pointer. We instead simulate a larger ad- 

dress space by organizing objects within frames,  which are mapped 
(by software) into a larger, logical, age-ordered address space. A 
frame is a contiguous aligned chunk of virtual address space of size 
2 F, where F is set at system build time and was 26 for this work, 
giving up to 64 frames of 64 Mb each. (In practice we actually use 
a few less than 16 frames because of virtual address space restric- 
tions imposed by the operating system, etc.) We call the high order 
bits of a frame's address the f rame number. 

A frame is the largest amount of contiguous space in which ob- 
jects reside, and the frame size thus determines the maximum ob- 
ject size. A frame is also the minimum unit of collection, so in 
general we do not fill frames completely. For example, in the OF 

collector, the window size determines how much space we allocate 
within a frame. 

The collector represents ages by associating a time-of-death (TOD) 
with each frame, using an array indexed by frame number. We use 

TOD because TOD values do not change as time passes, whereas 
ages do. The TOD corresponds to the frame's position in the larger 

logical address space, and allows us to apply an age-order write bar- 
rier that is analogous to (but not as efficient as) the address-order 
write barrier possible in a larger virtual address space in which the 

frames would be placed in virtual address space in age order. 

As the program executes, first one hands frames out to the A re- 
gion, filling each one with a windowfull of  objects. When the heap 
is full, one starts handing frames out to the C region, filling them 

with survivors from collecting the oldest frames of the A region. 
After copying survivors from a collected frame, the frame becomes 
available to handout to either the A or C region. The actual order of 

the frames in virtual memory does not matter: the TOD table gives 
the necessary logical ordering both for collection and for the write 
barrier. 

Space within frames is allocated in aligned chunks of size 2 B 

that we call blocks. For this study, B = 17, giving a block size of 

128K. A block can be no smaller than a virtual memory page and 
no larger than a frame. We perform space accounting (i.e., enforce 
maximum heap size) in terms of  blocks, and we map and unmap 
virtual memory dynamically to allocate space to frames dynami- 

cally and to recover the space at the end of each collection. Within 

a frame, allocation proceeds sequentially. When the next object 
allocation would cross a block boundary, we attempt to obtain an 
additional block for the frame (assuming the frame is not full). This 
will trigger collection if the block budget is exhausted. 

2.2 Managing TOD Values 
As we allocate frames to the A and C regions, the frames obtain 

increasing TOD values, drawing from one sequence' for the A re- 

gion and a higher numbered sequence for the C region. Now if the 
survival rate from the A region collections is low (say 1%), then the 

A region will consume TOD values much more rapidly than the C 

region grows (100 times as fast for 1% survival), which means that 
the A region TOD values can collide with the C region values. 

In an actual large address space implementation, one would need 
to do something, and since we are trying to emulate the large ad- 

dress space case, what we do even in this implementation is collect 

the remaining frames of the A region all at once, and "flip" regions 
just as we do in the case of a window reset. In fact, we call this 

ease a hard window reset ("hard" because it is forced; we also call 
normal .window resets "soft"). 

When there is a "flip", we establish the starting TOD value of  the 

new C region a certain amount higher than the starting TOD value 
of the (new) A region. We call that amount the zone size, and one 

can specify on the command line as a multiple of the maximum 
heap size (itself a command line parameter). For our runs we ad- 

justed the zone size so that hard resets did not occur (so in fact we 
did not implement the hard reset ease since we did not need to). 

Another exceptional case is having so many window resets, hard 
or soft, that the TOD values themselves overflow. One way to han- 
dle this in a large address space implementation is to copy the entire 
heap to the other end of the address space, which we call a zone re- 

set. As  with hard resets, we chose the zone size so that that zone 
resets did not occur in our runs. We note that for long running 
programs, it may be impossible to avoid zone resets. 
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2.3 Write Barrier 
Our implementation limits the number of remembered pointers 

while maintaining the simplicity of the OF write-barrier test. The 
OF write-barrier test needs to remember a pointer between two 
blocks only if it will collect the target block before the source block. 
This occurs only if the TOD value of the target block's frame is less 
than the TOD value of the source block's frame. Hence, it never 

needs to remember intra-frame pointers. 
Our write barrier is complicated by the fact that we could not 

use a pure address-ordered write barrier, but had to use the logical 

ordering of frames (age). Making each flame hold a single collec- 
tion window, we ensure that collections advance frame-by-frame. 
Therefore our write barrier can exclusive-ur the source object's and 
target object's addresses to determine if they are in the same frame. 
(OF collects objects within the same frame at the same time and 
need not remember intra-frame pointers.) If the objects are from 
different frames, the barrier looks up the frames' ages in a table and 
uses the original age-based pointer filtering technique (OF always 
collects older objects before younger ones). Although more expen- 
sive than a pure address-ordered test, the implemented write barrier 

significantly limits the number both of expensive table lookups and 
of remembered pointers. 

In the event, the following are the PowerPC [10] instruction se- 
quences that the two barriers are compiled to. Figure 2 shows the 

code of the address-order write barrier, used in the generational 
collectors. Figure 3 shows the write barrier with age lookup in the 
frame table, used in the OF collector. 

;; clear low-order 28 bits of pointer source: 
rlwinm Rtemp, Rsource, 0x0, 0x0, 0x3 

;; compare with pointer target: 

cmp crl, Rtarget, Rtemp 

;; if comparison is favorable, skip remembering: 
bge 1 label:do-not-remember-pointer 

;;fall-through: remember pointer 

Figure 2: Address-order write barrier 

;;cdcu~mframenurabe~forsou~eandmrget: 
rlwinm Rtempl, Rsource, 0x6, 0xla, 

extsb Rtempl, Rtempl 

rlwinm Rtemp2, Rtarget, 0x6, 0xla, 

extsb Rtemp2, Rtemp2 

;;intraframepoi~e~test: 

cmp crl, Rtempl, Rtemp2 

beq 1 label:do-not-remember-pointer 

;;heap bounda~ test: 
cmpi crl, Rtemp2, 0xf 

blt 1 label:do-not-remember-pointer 

;;~adbaseofTOD array: 
lwz Rtemp3, a-static-offset(JTOC) 

;;~okupageofsourceandmrge~ 

sli Rtempl, Rtempl, 0x2 

lwzx Rtempl, Rtemp3, Rtempl 

sli Rtemp2, Rtemp2, 0x2 

lwzx Rtemp2, Rtemp3, Rtemp2 

;;agecomparisontest: 
cmp crl, Rtempl, Rtemp2 

ble 1 label:do-not-remember-pointer 
;;fall-~rough:rememberpom~r 

Figure 3: Write barrier with age lookup 
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3. EXPERIMENTAL METHOD 
In this section, we describe the collectors, implementation envi- 

ronrnent, hardware platform, test programs, configuration parame- 
ters, and metrics we use to evaluate our work. 

3.1 C o l l e c t o r  f a m i l i e s  

In these experiments, the baseline is a two-generation collector 
with variable nursery size [3]. We refer to this collector as the Appel 
collector. It devotes all free space to the nursery. When the nursery 
is full, it copies surviving objects to the older generation, and then 
reduces the nursery size by this volume. It repeats this process 
until the older generation occupies the entire heap, at which point 
it performs a full heap collection, returning all free space to the 
nursery. We have found this to be the best performing generational 
collector [4]. 

Normalized to this collector, we compare two families of col- 
lectors with fixed window size--the traditional two generational 
fixed-size nursery collectors and the Older-First collectors. In a 
nursery of size k, the two generational fixed-size nursery collector 
sizes the nursery at k bytes, and collects every k bytes of allocation. 
It promotes surviving objects into the older generation, and when 
the heap is full, it collects the entire heap. We refer to this collector 
as the generational orfixed-generational collector. 

We also include the non-generational semi-space collector which 
demonstrates that all of the collectors perform better than collecting 
the entire heap. 

3.2 E x p e r i m e n t a l  e n v i r o n m e n t  

We use and measure collectors in the Jikes RVM release 2.0.3 [2] 
(formerly Jalapefio), built and running with the optimizing com- 
piler turned on. Jikes RVM has no interpreter, and all Java byte- 
code is translated to native PowerPC code before execution. The 
virtual machine is itself written in Java, and it translates its owfi 
bytecodes to native code [1]. This translation could be done at run- 
time, but to avoid obscuring the behavior of benchmark programs, 
the classes of the virtual machine are precompiled during the build 
stage of Jikes RVM. However, the measured execution includes the 
compilation of the application methods to native code. 

Our version of Jikes RVM includes the recently developed and 
publicly available version of the UMass GC Toolkit. We believe 
the collector implementations to be well-tuned. The write barrier 
used in the Appel and fixed-generational collectors is an address- 

order write barrier with fast common case code [14, 5]. The write 
barrier used in the Older-First collector is somewhat less efficient, 
as discussed in the preceding section, t 

The hardware platform is a Macintosh PowerMac G4 with a sin- 
gle 733 MHz PowerPC 7450 processor, 32 KB L1 data and instruc- 
tion caches, 256 KB unified L2 cache, and 640 MB of memory, run- 
ning Yellow Dog Linux 2.1 (Linux kernel 2.4.10). The machine is 
placed in single-user mode and disconnected from the network for 
the duration of the experiment. 

tThese results can still be improved, for the compiler does not fully 
optimize the write barrier code. Upon inspecting the compiled re- 
sult, around the actual barrier code (Figure 3) we find some un- 
needed instructions and at least one extra branch. We expect that a 
fully optimized barrier would provide an additional I-2% time sav- 
ings, but, without significant reengineering of the optimizing com- 
piler we cannot replace the compiled barrier with fully optimized 
code to verify this savings. On the other hand, we are currently 
developing a 64-bit version of Jikes RVM which will permit using 
the address-order write barrier for the Older-First collector as well. 
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3.3 Test programs 
We use all 8 programs from SPECjvm98 [11, 8] without any 

modification. Using SPEC JBB [12] posed a challenge: in its orig- 
inal form, it is a throughput-based self-calibrating program. We 
modified the code so that it performs a fixed amount of work. To 
avoid confusion, this benchmark is named pseudojbb. In a similar 
fashion, pseudojBFTEmark was derived from the javaBYTEmark 
code. A summary of benchmark programs used is in Table 1. 

Since the Appel collector serves as reference for performance 
measurements, we use it to determine the minimum heap size needed 
to run each benchmark (namely, we stipulate that under no circum- 
stance will the memory manager request more memory from the 
operating system than a given amount--instead, the memory man- 
agerfails if it cannot satisfy all requests within that amount of mem- 
ory). In many cases, other collectors need somewhat larger heaps 
to operate and thus data points for very small heaps will be absent. 
In the results below, we report heap sizes relative to this minimum 

heap size. 

3.4 Configuration parameters 
We vary the heap size between the minimum feasible size and 

3.25 times that amount. This range reveals the space-time tradeoff 
which is de rigueur in garbage collection. In small heaps, the col- 
lector runs more frequently and in larger heaps, less. In very large 
heaps that are sparsely populated with live objects, paging results. 
Note that even the largest benchmark configurations operate in less 
than a third of available physical memory on the experimental plat- 
form, therefore we entirely avoid paging activity in these experi- 
ments. We cover the range 1-3.25 with 17 heap sizes, spaced more 

densely towards the low end. 
For both generational and Older-First collector families, we vary 

the window size between 5% and 60% of maximum permissible 
size, which is roughly half the heap size. (Within this range, we 
find the best-performing window sizes for each family. With larger 
window sizes, both families quickly degenerate into the semi-space 

collector.) We use 9 window sizes in this range. 

3.5 Metrics 
The first performance metric is the mark/cons ratio. For copy- 

ing garbage collectors such as the ones we consider here, this ratio 
is the total amount of data copied by the collector divided by the 
total amount of data freshly allocated by the program (last column 
of Table 1). If the expense of copying data is the predominant ex- 
pense of garbage collection, and that cost is nearly proportional to 
the amount copied, the mark/cons ratio ought to be a good indicator 
of performance. Perhaps this expense solely determined collection 
costs early in the history of garbage collection work. In general, 

systematic differences arise between collector families because of 
copying costs and other costs, such as pointer tracking [14]. Nev- 
ertheless, the mark/cons ratio provides a clue into the copying cost, 
and remains the only direct metric derivable in simulation. 

Counting the amount of data allocated imposes a significant over- 
head on each object allocation, and similarly for the amount of data 
copied. Therefore, we perform separate statistics-gathering experi- 

mental runs to obtain mark/cons ratios. 
We use the total execution time of the program as the ultimate 

metric of garbage collection performance. Each reported time is the 
minimum over three measured runs for a given configuration. Total 
execution time includes costs incurred both at garbage collection 
time and within the mutator, including the cache locality effects of 
object motion and of write-barrier actions. Unfortunately, the total 
execution time does not provide an insight into the contribution of 
these various effects. We do report garbage collection times, and 

include a few results for write-barrier effects. 
Garbage collection time is the sum of all collector induced pause 

times, which we measure in elapsed time using the Jikes RVM in- 
terface to the PowerPC Linux system clock, with an effective mil- 
lisecond resolution. Note that the reported garbage collection time 
does not capture thefu//cost of memory management, since most 
allocation and write barrier actions take place during the execution 
of the mutator program, and not during garbage collection pauses. 
These actions are extremely short and interleaved with application 
code as a result of instruction scheduling and out-of-order execu- 
tion; therefore it is not feasible to measure their cost directly. 

4. RESULTS 
Because the experimental results cover a large configuration space, 

we begin by considering in detail a single benchmark, and then 
present total time, mark/cons, and pause-time results for all bench- 
marks. We choose pseudojbb as our detailed study because it allo- 

cates the most and has the largest live data size in our set. 

4.1 Results for benchmark pseudojbb 
Figure 4 shows the mark/cons ratios obtained in statistics-gathering 

runs, with a graph for the generational collector, and a graph for the 
Older-First collector. Heap size (horizontal) is drawn to a logarith- 
mic scale to provide details at smaller sizes close to the minimum 
feasible. Mark/cons ratios (vertical) are normalized with respect to 
the mark/cons ratio of the Appel collector at each given heap size. 

For the fixed-generational collector, the relative mark/cons ratio 
is almost always above 1. Thus, the Appel collector copies signif- 
icantly less and utilizes the heap better than a fixed-generational 
collector, for all choices of nursery size on a range of heap sizes. 
This result agrees with the goals of the Appel collector [3], but is 
only now appearing in the literature [4]. Figure 4(b) shows that the 
mark/cons ratio of the Older-First collector is both lower than the 
generational collector and usually lower than Appel. These results 
confirm our earlier simulation-based study comparing OF with the 
fixed-generational collector [14]. 

Looking more closely at the sizes of the collected region (nursery 
in the case of the generational collector, window size for OF), we 
note that there is considerable variation in which region size gives 
the lowest mark/cons ratio, as the heap size is varied, and also that 
efficient sizes tend to be small, but not too small. Many configura- 
tions of the generational collector operate well with nursery sizes 
from 5 to 15% of the heap size, but fall with large sizes. OF is more 
robust with respect to this parameter; it operates well with window 

sizes between 5 and 40% of the heap. 
Figure 5 shows the garbage collection times for different garbage 

collectors, again for pseudojbb. Although there is variation in the 

fine detail, garbage collection times have the same behavior as 
the mark/cons ratios: the fixed-generational collector generally ex- 
hibits higher garbage collection times than Appel, and OF generally 
further lowers times, with relative differences diminishing towards 
larger heap sizes. 

Figure 6 shows the total execution times for pseudojbb. Recall 
that total execution time comprises the time spent in garbage col- 
lection (previous figure), mutator or useful work time, and write- 
barrier time (incurred within the mutator but not measured sepa- 
rately). Comparison of Figure 5(a) and Figure 6(a) shows that the 
fixed-generational collector has a higher total execution time than 
the Appel collector, but the relative difference is not as pronounced 
as for garbage collection time alone. This dilution of differences is 
expected, because garbage collection time is considerably less than 
mutator time, especially for larger heaps, as shown in Figure 7 for 

the Appel collector. 
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Program 
SPEC .201_compress 
SPEC _202_jess 
SPEC _205.raytrace 
SPEC .209_db 
SP EC _213_javac 
SP E C .2 2 2_rapegaudio 
SPEC _228.mtrt 
SPEC .228_jack 
pseudojbb 
ps eudoj B FTEmark 

Description 
Compresses and decompresses 20MB of data using the Lempel-Ziv method. 
Expert shell system usinl; NASA CLIPS. 
Raytraces a scene into a memory buffer. 
Performs series of database functions on a memory resident database. 
Sun's JDK 1.0.4 compiler. 
MPEG audio decoder 
Graphics ray tracer 
Generates a parser for Java programs. 
Fixed-work version of tl:e SPEC JBB benchmark 
Fixed-work version of tte JavaBYTEmark benchmark 

MH 

19 
12 
15 
22 
28 
10 
21 
14 
59 
12 

AL 
215 
508 
252 
192 
639 
153 
2.55 
534 
667 
211 

Table 1: Benchmark programs used in the experiment. MH Is the minimum heap size needed to run the program using the Appel 

collector, and AL is the total amount of data allocated by the program. Both are expressed in megabytes. 
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collector): pseudojbb. 

Comparison of Figure 5(b) and Figure 6(b) shows that the range 
of heap sizes at which the total execution time of the Older-First 
collector is below that of the Appel collector (1-1.5) is reduced 
with respect to the corresponding range for garbage collection times 
alone (1-2.5). This result is explained by an unequal contribution 
of write-barrier times: OF must record more pointer stores than 
generational collectors, and its write barrier implementation is not 

as efficient. 
To demonstrate these differences, we take as a casestudy the ex- 

ecution ofpseudojbb in a heap of size 74 (relative heap size ~1.25), 
comparing the Appel collector and the OF collector with window 
size 10%. Total execution times are 42.035s (OF) and 45.155s (Ap- 
pel), giving the ratio 0.93 (as in Figure 6(b)). Garbage collection 
times are 5.148s (OF) and 9.378s (Appel), giving the ratio 0.55 (as 
in Figure 5(b)). Mark/cons ratios are 0.173 (OF) and 0.334 (Appel), 
giving the ratio 0.52 (as in Figure 4(b)). Now we look at pointer- 
maintenance costs. In each case, 98.2 million write barriers (code 
in Figure 3 or fig:write-barrier-address-order) were executed. The 
number of interesting pointers, which must be remembered, is 6.24 
million for OF, but only 2.59 million for the Appel collector, giv- 
ing a ratio of 2.41. A further difference arises at garbage collection 
time, when remembered pointers with target in the collected region 
are processed. In OF, a total of 10.32 million remembered pointers 
are processed, but only 2.59 million for the Appel collector, giving 
a ratio of 3.99. A further difference is in the number of garbage 
collections; OF performs 97 collections, the Appel collector 85. 
Although a larger number of collections may be good for reduc- 
ing pause time (Section 4.3), it increases the execution time, since 
stacks must be scanned more often. Here is the tradeoff we have 
made. The flexible choice of garbage collection region as in OF has 
resulted in having to record approximately 2.5 times more pointers 
at write barriers, and to process approximately 4 times more point- 
ers at garbage collection time; 14% more time is spent in stack 
scanning and other GC startup overhead. In spite of these measured 
factors, and the disadvantage of a slower write barrier "fast path" 

which we could not directly measure, the total execution time for 
OF is 7% lower, thanks to a halving of the mark/cons ratio. In other 
program runs (db) we noticed that OF achieved improvements that 
we could not explain entirely as a tradeoff between copying and 
pointer-maintenance costs, and that are most likely a consequence 
of improved cache performance. A detailed study of comparative 
cache behavior of these garbage collection algorithms in a Java vir- 
tual machine is called for but beyond the scope of the present paper. 

4 . 2  T o t a l  Time and Mark/Cons Results for A l l  

B e n c h m a r k s  

We now present total execution time data for all 10 benchmarks. 

For each benchmark, we summarize generational collector data into 
a single plot line, using the best possible nursery size for each heap 
size. Similarly, we present the best OF window size for each heap 
size. Automatically or adaptively choosing these region sizes is a 
very challenging problem that we do not explore here. Figures 8-- 
10 present these two results together with the semi-space collector, 
and normalize them with respect to the total execution time of the 

Appel collector. 
Performance results, namely total execution times, are surpris- 

ingly favorable to the Older-First collector. An earlier study based 
on fully accurate garbage collection traces and faithful simulation 
[14] found that the Older-First collector's mark/cons ratio was oc- 
casionally as low as one-tenth that of the fixed-ganerational collec- 
tor using the best configuration of each. In such cases, the study 
predicted, according to an estimate of the write-barrier costs, that 
total memory management costs could be a factor of two to three 
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lower with OF. That study made no prediction about total execu- 
tion times, but from these estimates and from Figure 7 we could 
extrapolate a reduction of between 2.5% (for larger heap sizes) and 
20% (for small heap sizes). However, among the set of SmaUtalk 
and Java program traces used in the earlier simulation study, only 
a few showed such dramatic reductions in the mark/cons ratio with 
OF; for many programs, it found no significant improvement of 
mark/cons ratios and estimated there could be only marginal im- 
provement in total collection cost. 

In the present live measurements, we observe more consistent 
reductions in the mark/cons ratio (Figures 11-13) with the Older- 
First collector compared to the generational collector, although not 
dramatically lower as in the earlier study. These improvements in 
the mark/cons ratio, however, translate into measurable reductions 
of total execution time (Figures 8--10). Of note is that on several 
benchmarks, the mark/cons ratio of Older-First is lower even than 
that of the Appel collector which is tuned to minimize copying. In 
7 out of 10 benchmarks (compress, jess, raytrace,db, jack, pseudo- 
jBYTEmark, pseudojbb), the total execution time with the Older- 
First collector is ultimately lower than with the Appel collector for 
a wide range of heap sizes. 

4.3 Measurements of Pause Times 
The design goal of OF is to improve throughput by reducing the 

mark/cons ratio, however OF achieves low mark/cons ratios with 
small window sizes. Since the amount of data copied at each col- 
lection is bounded by the window size, previous work predicted 
[14] that lower pause times would be an additional benefit when 
using OF as compared to the generational collectors which occa- 
sionally collect the entire heap. Similar reasoning applies to using 
a fixed-generational collector as compared with Appel, or a semi- 
space collector. We measure pause times for OE fixed, and Appel 
in the Jikes RVM collector and we analyze them using the recently 
developed method of mutator utilization [4, 7]. 

Reporting the duration of each garbage collection pause in a gen- 
eral timing run introduces a slight overhead. Whereas the time re- 
ported for each pause is accurate, over the execution of the entire 

program this reporting increases the total time. To avoid this prob- 
lem, separate pause-timing runs were performed, whereas the tim- 
ing runs described in the preceding section only reported the time 
once, at the end of execution. 

We first focus on maximum pause times and present an aggregate 
picture of all program runs (for all heap sizes and collector config- 
urations) in Figure 14. Each scatter point corresponds to a single 
program run, and the marks distinguish the runs of generational, 
OF, Appel, and the semi-space collector. The horizontal coordinate 
gives the longest pause time incurred in the run, and the vertical 

gives the mutator utilization averaged over the entire run, i.e., the 
fraction of total execution time spent outside the garbage collector. 

The semi-space collector points form a vertical band about 3 

wide on the logarithmic scale, which is expected given that the 
span of heap sizes is 3.25. The shortest maximum pause times 
come from the generational collector when the heap is so large that 
it never performs a full heap collection. Most generational collec- 
tor runs incur some long pauses when it collects the nursery to- 
gether with the older generation. The Appel collector has some of 
the highest mutator utilization scores, but it too has high maximum 
pause times for major collections. The Older-First collector points 
are clustered in the favorable region of high mutator utilization and 
low maximum pause times, but there are also a number of runs with 
very long pause times. 

A survey of maximum pause times does not capture the pause be- 
havior of a collector completely. For interactive (or real-time) use 
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Figure 13: Mark/cons ratio, for best configuration (conqnued). 

it is important for the mutator to be able to make progress within 
any given period, and therefore it is important that garbage collec- 

tion pauses do not occur in clusters. To quantify this progress, we 
examine all time intervals within a program execution. We say that 
minimum mutator utilization or MMU for interval length w is m if 
for all intervals of length equal to or greater than w, the mutator 
utilization in the interval is at least m. z 

MMU plots are shown in Figures 15-17 for all 10 benchmarks, 
at the same relative heap size for each, twice the minimum heap 
size. For the fixed-generational collector, we show a representative 
well-performing nursery size of 15%, and a window of the same 

size for OF. 
For six of the 10 benchmarks, compress, jess, and raytrace, mpe- 

gaudio, pseudojB YTEmark, and pseudojbb, the Older-First collec- 
tor achieves both a higher average mutator utilization (y-intercept) 
and a lower maximum pause (x-intereapt) than the Appel collector, 
and its MMU curve is everywhere above the Appel collector curve. 
For pseudojbb, there is a fivefold reduction in maximum pause 
time. In addition, for mtrt, the Older-First collector has higher mu- 
tater utilization and a lower maximum pause, but for a mid-range 
of pauses the Appel collector has greater MMU. Forjavac there is 
little difference among collectors with respect to maximum pause 
time, and the Older-First collector comes close to Appel with re- 
spect to average mutator utilization; however, its MMU curve in 
between the exlremes is markedly lower than the Appel collector 
curve. For db, the Appel collector is the best both in terms of 
throughput and responsiveness. Finally, jack is an aberration with 
the semi-space collector having the smallest maximum pause time; 
we must investigate this further. 

Note that none of the collectors we discuss provide any kind of 
real-time guarantee. Therefore, these results are only indicative of 
actual behavior, insofar as the benchmarks are representative of true 
workloads. 
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F i g u r e  14: Mutator utilization vs.  m a x i m u m  p a u s e  time, all 

program runs. 

5. SUMMARY 
We present a first implementation of the Older-First collector, in- 

side a Java virtual machine. We evaluate it against its natural com- 
petitor, the fixed-size nursery generational collector, as well as the 
Appel variable-size nursery generational collector. In the domain 

of throughput metrics, we find that the Older-First collector yields 
lower mark/cons ratios than the fixed-size nursery generational col- 
lector and is also lower than the Appel collector for a range of im- 
portant, relatively small, heap sizes, across the SPECjvm bench- 
mark suite. Moreover, this result is Irue of total program execution 
times, though the improvement over the Appcl collector is never 
more than 30%. In the domain of pause-time metrics, we found 

that for many benchmarks, though not all, the Older-First collec- 
tor achieves significantly lower maximum pause times than gener- 
ational collectors. 

We believe better implementations of OF are possible. For in- 
stance, profile-driven pretenuring provides immediate improvements 
to this basic collector organization [6]. We hope eventually to build 
OF in a 64-bit environment, in which OF will have the same fast 
write barrier as the generational collectors. The question of adap- 
tive turfing of window size and other heap configurations remains 
open, as well as generalizations of the Older-First window motion 

policy. 

2This formulation is exactly as in [4]. It is slightly different from 
[7] in that MMU curves are necessarily monotone increasing. 
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Figure 15: MMU. 

1 

0.8 

0.6 

0.4 

0.2 

D 

0.8 

0.6 

0.4 

0.2 

1 

0.8 

0.6 

0.4 

0.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
1000~ 

Gerl ........ 
SemlSpace . . . . . . . . . . .  

SPEC 2 1 3 J a v a c  

, - + : L ' J "  . . . . . . . . . . .  

0 . . . . . . .  I , ' " J  , , , . . . .  

100000 l e + 0 6  1 e+07  1e+08 

Granularity (microseconds) (log) 

SPEC 222 mpegaudio 

I . . . . .  - - -i . . . . . . . .  l . . . . . . .  
f _ . - - - - - - - - - - - .  

' Gen :-:::::: . f ' . /  

; / / /  
/ 

0 . i  . . . .  i i , , . . . .  

10OO00 1 e+O6 1e+07 1e+08 

Granularity (microseconds) (log) 

SPEC ~Z27 mtrt 

. . . . . . . .  . . . . . . . . .  i . . . . . . . .  

r 
/ . ../__.il...J-"- i -  

f J  . / 
I 

100O0O 1 e+O6 1e+07 I e+O8 

Granulaflty (microseconds) (log) 

SPEC 228_Jack 

Qen ........ 
SemiSpace . . . . . . . . . . .  

/....._.,i'il ..... 
f' / 

/ / / 

• ./. ...... 
le+06 I e+07 1e+08 

Granularity (microseconds) (log) 

Figure 16: MMU (continued). 
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