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Abstract
A growing world population and a growing number of applications for vegetable oils are generating an increasing
demand for these oils, causing serious environmental problems. A sustainable lipid production is then fundamental to
address these problems. Oleaginous yeasts are a promising solution for sustainable lipid production, but, with the current
knowledge and technology, they are still not a serious alternative in the market. In this review, the potential of these
yeasts is highlighted and a discussion is made mainly focused on the economics of the oleaginous yeast oil production
and identification of the key points to be improved to achieve lower production costs and higher income. Three main
stages of the production process, where costs are higher, were identified. To render economically feasible the production
of oils using oleaginous yeasts, a reduction in production costs must occur in all stages, lipid yields and productivities
must be improved, and production must be targeted to high-value product applications.
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Introduction

The global demand for vegetable oils has been growing every
year and is expected to keep growing not only because of the
population growth that raises the need of vegetable oils for
food applications but also because of the growing number of
applications for the vegetable oils, like its application for
biofuels, food additives, biopolymers, and pharmaceutical
and cosmetic industries. Its use for the production of biodiesel
is the application that has promoted the biggest increase on the
demand for vegetable oil due to the search for cleaner fuels to
reduce greenhouse gas emissions to fight global warming, but
that raised many concerns related with the sustainable use of
food crops (Anuar and Zuhairi 2016). Like biodiesel, also
several of the other applications of the vegetable oils have

environmental concerns associated, as there is a growing de-
mand for greener bio-based alternatives to petrochemicals and
others. This increasing demand creates a lot of pressure for
expanding crops fields, promoting bigger destruction of for-
ests and raising the water usage, creating serious environmen-
tal problems. In this way, what is supposed to be an environ-
mental positive solution like biodiesel and green bio-based
products can be a big problem unless we find sustainable ways
to produce vegetable or vegetable-like oils. Furthermore, ac-
cording to the United Nations, the world population is expect-
ed to reach 8.6 billion in 2030 and 9.8 billion in 2050, which
raises big concerns about food and water resources. To over-
come that problem, a raw material production that requires
smaller amount of land and water to obtain high productivities
must be developed. Oleaginous microorganisms (OM), which
can produce oils similar to vegetable oils, have been presented
as a possible solution since they have higher growth rate and
oil productivity, are easier to cultivate, and use less land and
water (Gerbens-Leenes et al. 2009; Yang et al. 2011). Many
studies have been conducted with microalgae, yeasts, molds,
and bacteria to access their potential. Oleaginous yeasts (OY)
are one of the most promising OM for the production of oils
similar to vegetable oils (Qin et al. 2017), since they can
accumulate up to more than 70% lipids in their composition
(Ratledge 1991) and exhibit several advantages for lipid pro-
duction over other sources. Those advantages are related to
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their rapid growth, the requirement for smaller areas for their
cultivation, and the fact of being much less affected by climat-
ic conditions than other production systems (Ageitos et al.
2011). Oleaginous yeasts were intensively studied in
Germany duringWorldWar I and II due to the need on finding
ways for internal food, feed, and fuel production (Sitepu et al.
2014). Those studies were of major importance to the research
in this area, showing the potential of these yeasts for lipid
production. After the SecondWorldWar, the researches in this
area have diminished. In the last decades, due to the growing
interest in biodiesel, oleaginous yeasts got again the attention
of the researchers in order to find a sustainable way of pro-
ducing vegetable oil equivalents for biodiesel and other appli-
cations. However, its industrial production is still not feasible
because it is not cost-competitive with the current technology
(Probst et al. 2017) (Whiffin et al. 2016), although there are
studies pointing to cost-competitiveness in particular cases
(Park et al. 2017) (Ricardo et al. 2017).

In this paper, the main research that has been done aiming
to increase productivity and decrease production costs of oils
with OY is reviewed, the potential of the most promising OY
is highlighted, and the main hurdles to overcome to turn OY
oil production to be cost-competitive are discussed together
with the potential applications of these oils. It is a more prac-
tical review in this area, more focused on the economics of
lipid production and on the identification of the main points to
improve towards a competitive vegetable oil equivalent pro-
duction. Furthermore, since different authors present the re-
sults in different units, or just show the results in lipid percent-
age and lipid yield, in this review, we present the best results
obtained to date in terms of lipid productivity and lipid coef-
ficient, which are the units that give a real idea of its potential
to become cost-competitive. That way, we can better relate the
recent developments to the real impact in the economics of
oleaginous microorganism oil production.

Potential of the main oleaginous yeasts

From the more than 600 yeast species known, fewer than 30
are known to accumulate more than 20% of their biomass as
intracellular lipids (Sargeant et al. 2014). Yeasts that are able
to accumulate more than 20% are designated as oleaginous
yeasts. Most of the more promising yeasts are from the genera
Yarrowia, Candida, Rhodotorula, Rhodosporidium,
Cryptococcus, Trichosporon, and Lipomyces (Ageitos et al.
2011). From those genera, the most studied species for lipid
production have been Yarrowia lipolytica, Rhodotorula
glutinis, Rhodosporidium toruloides, Cryptococcus curvatus,
and Lipomyces starkeyi, although high productivities have
been obtained with other species also, l ike with
Trichosporon fermentans (Zhu et al. 2008; Huang et al.
2009, 2012, 2014).

Oleaginous yeast lipid profile

The oils produced by the main oleaginous yeasts have a lipid
profile similar to that of some vegetable oils (Table 1). Fatty
acid profiles have been shown to be quite consistent within a
species if grown under consistent conditions but can change
depending on the culture conditions and the time of cultiva-
tion, inducing the obtainment of different lipid profiles for the
same yeast in different studies (Sitepu et al. 2013). OY lipid
profile is characterized by a predominance of oleic acid but
can be changed not only by manipulating culture conditions
but also by using selective inhibitors or genetically manipu-
lating the yeasts in order to obtain lipid profiles for the desired
application (Sargeant et al. 2014).

Carbon sources, productivity, cultivation methods,
and lipid yields

Oleaginous yeasts are able to utilize a wide range of carbon
sources and were successfully cultivated using low-cost car-
bon sources in different media mainly composed by wastes
and/or wastewaters. High productivities and lipid yields were
obtained using different low-cost carbon sources and simple
cultivation methods. For a better understanding of the order of
magnitude of the productivities that can be achieved with
oleaginous yeasts, it can be pointed out that the productivity
obtained by Ricardo et al. (2017) (0.44 g/L/h) using sugarcane
juice as carbon source for the cultivation of the yeast
Rhodosporidium toruloides to produce microbial oil for bio-
diesel production resulted in a biodiesel yield (L/ha of land)
6.3 times bigger than the yield of standard biodiesel from
soybean oil (microbial biodiesel 4172 L/ha of cultivated sug-
arcane; soy biodiesel 661 L/ha of cultivated soybean).
Productivities as high as 1.6 g/L/h were achieved using
Lipomyces starkeyi (Lin et al. 2011), and lipid yields reaching
up to 0.29 g of lipid per gram of carbon substrate using
Rhodosporidium toruloides (Fei e t a l . 2016) or
Cryptococcus curvatus (Ykema et al. 1988) were already ob-
tained and can further be improved considering that theoreti-
cal lipid yields can reach 0.35 gl/gs and cultivation methods
can be improved. Since oleaginous yeasts can obtain high
productivities using wastes, wastewaters, or lignocellulosic
hydrolysates, there is no competition with food production
and there is no need to destroy more forests to grow more
crop fields. Also, with the ability of using such a wide range
of different carbon sources, the simple cultivation methods,
and the fact that there is no need for light to grow them allow
for their cultivation anywhere in the world.

Like previously mentioned, the yeasts Rhodotorula
glutinis, Yarrowia lipolytica, Rhodosporidium toruloides,
Cryptococcus curvatus, and Lipomyces starkeyi were the
most studied, and, with each one, different carbon
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sources were tested and different productivities and lipid
yields were obtained.

With Rhodotorula glutinis (Table 2), the highest productiv-
ity obtained was 1.028 g/L/h using glucose as carbon source
and a fed-batch cultivation method (Pan et al. 1986). Good
productivities were also obtained using cheap carbon sources,
like molasses (0.24 g/L/h) (Alvarez et al. 1992) or
undetoxified corncob hydrolysate (0.168 g/L/h) (Liu et al.
2015). The highest lipid yield obtained with Rhodotorula
glutinis was 0.182 gl/gs, still significantly lower than the the-
oretical maximum (Johnson et al. 1995).

With the yeast Yarrowia lipolytica (Table 3), the highest
productivity obtained was 1.2 g/L/h using glucose as carbon
source and a fed-batch cultivation method (Qiao et al. 2017).
Good productivities were obtained using cheap carbon
sources, like acetic acid (0.8 g/L/h) (Xu et al. 2017) or glycerol
with volatile fatty acids (0.330 g/L/h) (Fontanille et al. 2012).
The highest lipid yield obtained with Yarrowia lipolytica was
0.27 gl/gs (Qiao et al. 2017).

Using Rhodosporidium toruloides (Table 4), the highest
productivity was obtained by a fed-batch cultivation method
utilizing glucose as carbon source. Also, good productivities

Table 1 Relative mass percentage of the main fatty acids present in some seed oils and single-cell oils

C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 References

Rapeseed oil 3 – 1 64 22 8 Fassinou et al. (2010)

Soya oil 12 – 3 23 55 6 Fassinou et al. (2010)

Sunflower oil 6.40 0.01 2.90 17.70 72.90 – Fassinou et al. (2010)

Jatropha oil 14.70 0.65 6.75 40.05 36.60 0.15 Fassinou et al. (2010)

Cocoa butter 23.31 0.95 24.51 28.74 3.93 – El-Saied et al. (1981)

Palm oil 43.03 0.19 4.31 39.47 10.82 0.29 Fassinou et al. (2010)

Cryptococcus curvatus 18 – 16 50 16 – Meesters et al. (1996)

Yarrowia lipolytica 15 2 11 47 21 3 Papanikolaou and Aggelis (2002)

Rhodosporidium toruloides 20 1 15 47 13 3 Li et al. (2007))

Rhodosporidium toruloides 68-264 12 0.4 20.9 54.2 5.6 1 Sitepu et al. (2013)

Cryptococcus victoriae 10-939 21 5.5 20.5 42.5 6.6 0.8 Sitepu et al. (2013)

Lipomyces starkeyi 37 4 6 49 1 – Zhao et al. (2008)

Rhodotorula glutinis 23.80 5.90 2.00 54.80 10.70 1.70 Vieira et al. (2014)

Table 2 Productivities for Rhodotorula glutinis using different media and different cultivation methods

Yeasts Medium Cultivation method Productivity
(g/L/h)a

References

Rhodotorula glutinis Glycerol + yeast extract Fed-batch 0.030 Karamerou et al. (2016)

Rhodotorula glutinis Potato wastewater + glycerol Batch in flask 0.031 Kot et al. (2017)

Rhodotorula glutinis P. euramevicana leaves hydrolysates + yeast
extract + peptone

Airlift Bioreactor 0.066 Dai et al. (2007))

Rhodotorula glutinis Crude glycerol + thin stillage Fed-batch 0.066 Yen et al. (2012))

Rhodotorula glutinis Monosodium glutamate wastewater + glucose Fed-batch 0.070 Xue et al. (2008)

Rhodotorula glutinis Crude glycerol + (NH4)2SO4 + Tween 20 Fed-batch 0.084 Saenge et al. (2011)

Rhodotorula glutinis Hydrolyzed pineapple pulp residue + (NH4)2SO4 Batch in flask 0.100 Tinoi and Rakariyatham (2016)

Rhodotorula glutinis Molasses + glucose Fed-Batch 0.120 Johnson et al. (1995)

Rhodotorula glutinis Undetoxified corncob hydrolysate + (NH4)2SO4 Fed-Batch 0.168 Liu et al. (2015)

Rhodotorula glutinis Molasses + (NH4)2SO4 + (NH4)2HPO4 Continuous 0.240 Alvarez et al. (1992)

Rhodotorula glutinis Sucrose; (NH4)2SO4; MgCl2 × 6H2O; CaCl2 × 2H2O;
MgSO4 × 7H2O; myo-inositol; KH2PO4; K2HPO4;
trace elements solution and vitamin solution

Fed-batch 0.795 Lorenz et al. (2017)

Rhodotorula glutinis Glucose; KH2P04; Na2HPO4; (NH4)2SO4; MgSO4.7H20;
CaCl2.2H20; yeast extract

Fed-batch 1.028 Pan et al. (1986)

a Calculated based on references
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were obtained using cheap carbon sources, like sugarcane
juice (0.44 g/L/h) (Ricardo et al. 2017) or corn stove hydroly-
sate (0.4 g/L/h) (Fei et al. 2016). The highest lipid yield ob-
tained with Rhodosporidium toruloides was 0.29 gl/gs reveal-
ing high capability to use lignocellulosic hydrolysates as car-
bon source (Fei et al. 2016).

For Cryptococcus curvatus (Table 5), the highest produc-
tivity was obtained using whey permeate as carbon source
(0.995 g/L/h) (Ykema et al. 1988), an even better productivity
than the ones obtained using glucose. The cultivation method
used was batch partial recycling. Also, with glycerol, better
productivities (0.59 g/L/h) (Meesters et al. 1996) than with
glucose (0.47 g/L/h) were obtained (Zhang et al. 2011). This
yeast is the most versatile in terms of the utilization of differ-
ent carbon sources, with good productivities being obtained

with different carbon sources. The highest lipid yield obtained
with Cryptococcus curvatus was 0.29 gl/gs, revealing high
capability to use lactose as carbon source (Ykema et al. 1988).

With Lipomyces starkeyi (Table 6), the highest productivity
obtained was 1.6 g/L/h, the highest of all the five yeasts con-
sidered, using glucose as carbon source and a two-stage fer-
mentation cultivation method (Lin et al. 2011). Good produc-
tivities were obtained using cheap carbon sources, like hydro-
lyzed flour-based industrial waste streams (0.4 g/L/h)
(Tsakona et al. 2014) or cellobiose and xylose (0.125 g/L/h)
(Gong et al. 2012). The highest lipid yield obtained with
Lipomyces starkeyi was 0.236 gl/gs (Anschau et al. 2014).

High productivities can be achieved with all these yeasts,
using different low-cost carbon sources. This ability is really
important since it allows in each region of the world, to use the

Table 3 Productivities obtained by Yarrowia lipolytica using different media and different cultivation methods

Yeasts Medium Cultivation method Productivity
(g/L/h)b

References

Yarrowia lipolytica Lard + yeast extract + Arabic gum + potassium
phosphate buffer

Batch in flask 0.055 Lopes et al. (2018)

Yarrowia lipolytica Glycerol + YNB+ (NH4)2SO4 Batch in flask 0.066 Dobrowolski et al. (2016)

Yarrowia lipolytica Sugarcane bagasse hydrolysate + peptone Batch in flask 0.073 Tsigie et al. (2011)

Yarrowia lipolytica Glycerol + minimal medium + olive oil Batch in flask 0.102 Magdouli et al. (2017)

Yarrowia lipolytica Crude glycerol; KH2PO4; Na2HPO4; MgCl2.6H2O;
CaCl2; FeCl3.6H2O; ZnSO4.7H2O; MnSO4.H2O;
MgSO4.7H2O; (NH4)2SO4; yeast extract

Continuous 0.120 Papanikolaou and Aggelis (2002)

Yarrowia lipolytica Crude glycerol + NH4OH Fed-batch 0.199 Sara et al. (2016)

Yarrowia lipolytica Glycerol + volatile fatty acids + (NH4)2SO4 Fed-batch 0.330 Fontanille et al. (2012)

Yarrowia lipolytica Acetic acid + ammonium sulfate + sodium
acetate + yeast extract + YNB+ acetate

Semi-continuous
fermentation system

0.8 Xu et al. (2017)

Yarrowia lipolyticab Glucose +YNB + (NH4)2SO4 Fed-batch 1.2 Qiao et al. (2017)

a Engineered strain
b Calculated based on references

Table 4 Productivities obtained by Rhodosporidium toruloides using different media and different cultivation methods

Yeasts Medium Cultivation
method

Productivity
(g/L/h)a

References

Rhodosporidium toruloides Bioethanol wastewater + glucose Batch in flask 0.020 Zhou et al. (2013)

Rhodosporidium toruloides Distillery wastewater + domestic wastewater Batch in flask 0.049 Ling et al. (2013)

Rhodosporidium toruloides Distillery wastewater + domestic
wastewater + spent seed culture

Batch in flask 0.057 Ling et al. (2017)

Rhodosporidium toruloides Crude glycerol + 2-(N-morpholino) ethanesulfonic Batch in flask 0.102 Yang et al. (2014a)

Rhodosporidium toruloides Crude glycerol + solid-state fermentation autolysate Batch 0.132 Uçkun Kiran et al. (2013)

Rhodosporidium toruloides Glucose + yeast extract + NaNO3 +MgSO4 Fed-batch 0.260 Saran et al. (2017)

Rhodosporidium toruloides Jerusalem artichoke extracts Fed-batch 0.380 Zhao et al. (2010)

Rhodosporidium toruloides Corn stove hydrolysate + YNB Fed-batch 0.4 Fei et al. (2016)

Rhodosporidium toruloides Sugarcane juice + urea Fed-batch 0.440 Ricardo et al. (2017)

Rhodosporidium toruloides Glucose + peptone + yeast extract Fed-batch 0.540 Li et al. (2007)

a Calculated based on references
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most abundant and cheap local carbon source, using for that
the most suitable oleaginous yeast. To choose the most suit-
able yeast for a certain carbon source, it is also important to
know the lipid yields that can be obtained. Different lipid
yields were obtained by the oleaginous yeasts using different
carbon sources (Table 7). It is important to highlight that, in
some cases, lipid yields were close to the theoretical maxi-
mum, using low-cost carbon sources.

Production costs

Only a few studies are available about the economics of yeast
oil production, and the results obtained differed significantly
according to the different scenarios considered. In some stud-
ies, with the current technology, yeast oil production is still
considered non cost-competitive, due to the high production
costs, making it more expensive than vegetable oils (Koutinas
et al. 2014) (Ratledge and Cohen 2008). Koutinas made a
techno-economic evaluation of microbial oil (MO) production
and subsequent production of biodiesel, using the yeast
Rhodosporidium toruloides (Koutinas et al. 2014). They have
evaluated four different flowsheets, one for the production of
yeast cells, other for the oil extraction and purification, and 2
more for the biodiesel produced either by direct or indirect
transesterification of MO. The experimental results obtained
by Li were used for the development of the process flow
diagram (Li et al. 2007). A productivity of 0.54 g/L/h and an
overall glucose to microbial mass and MO conversion yields
of 0.35 and 0.23 g/g, respectively, were considered in this
study. The fermentation was carried out in fed-batch mode
and had two stages, one for microbial growth and the other
for MO accumulation. The results were obtained based on an
annual production capacity of 10,000 t of microbial oil.
Considering the cost of glucose as being zero, an estimated
production cost of purified microbial oil of $3.4/kg was ob-
tained. Considering a glucose price of $400/t, the price would
rise to an estimated cost of $5.5/kg oil. Note also that, in this
study, yeast extract was used as nitrogen source, at a cost of
$800/t accounting for 16.46% of the raw material costs while
glucose accounts for 79.28% if considered at a price of $400/t.
Besides the evident influence of the feedstock price in the
production cost, Koutinas concluded that the main costs are
the capital investment and electricity consumption associated
with the operation of classical fermenters (Koutinas et al.
2014). The total fixed capital investment for a 10,000 t MO
production plant like this was estimated to be M$ 71.5, com-
ing more than half of the value from the fermenters.

Other economical study was made in New Zealand using
the yeast Cryptococcus curvatum and lactose coming from
cheese and butter creameries as carbon source to obtain cocoa
butter equivalent (CBE) (Ratledge and Cohen 2008). High
yields and conversion ratios of lactose to oil were achieved,Ta
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quality of the oil was entirely satisfactory as a CBE, and
manufacturing cost of the yeast oil was calculated as US$
800–1000/t based on using 200,000 m3 of whey/year. This
cost did not include plant depreciation, interest on capital in-
vestment, or manufacturing overheads. A calculated likely
selling price of US$ 2000–2500/t was obtained, which would
make it cost-competitive if a reduction in the price of cocoa
butter had not occurred. At the time the study started, the cost
of cocoa butter was about US$ 5000/t, but short time after the
price dropped 40%,making the production insufficiently prof-
itable to justify further development of the process (Ratledge
and Cohen 2008). This study ends up by pointing this process
not to be cost-competitive if the cost of cocoa butter keeps
low. Anyway, it must be noted that the trend after 2000was for
the prices to increase due to the prevalence of harmful insects
and viruses and the general failure of the cultivation tech-
niques of the cocoa plant, being even considered the risk of
their disappearing (Papanikolaou and Aggelis 2011).

Park assessed the economics of microbial lipids for
biodiesel production using volatile fatty acids (VFAs) de-
rived from organic waste as carbon source and a multi-
stage continuous high cell density culture (MSCHCDC)

process (Park et al. 2014). They made a simulation study
assuming a lipid yield of 0.3 g/g VFAs, cell mass yield of
0.5 g/g glucose or wood hydrolysates, and employing
process variables including lipid contents from 10 to
90% of cell mass, bioreactor productivity of 0.5–48 g/L/
h, and plant capacity of 20,000–1,000,000 metric ton
(MT)/year. They estimated, for a 100,000 MT/year pro-
duction capacity, a production cost of US$ 1.048/kg lipid,
considering carbon source costs of US$ 0.2/kg for wood
hydrolysates and US$ 0.15/kg for VFAs; nitrogen source
(NH3) US$ 0.2/kg; water US$ 0.305/MT (904,166 MT
per year); n-Hexane US$ 1.5/kg; bioreactor productivity
of 9 g/L/h; 100,000 MT/year production capacity; and
75% lipid content in cell mass. For a more realistic pro-
ductivity of 1.5 g/L/h, close to the maximum productivity
obtained with oleaginous yeasts (1.6 g/L/h obtained by
Lin et al. in a two-stage fermentation process with
Lipomyces starkeyi (Lin et al. 2011)), the production cost
was estimated to be US$ 1.422/kg lipid. In this study, the
variables having the highest impact on microbial lipid
production costs were the cost of VFAs and lipid yield,
followed by lipid productivity, lipid content, and

Table 7 Lipid yields obtained by
the oleaginous yeasts using
different carbon sources

Yeasts Carbon source YL/S (gl/gs) References

Rhodotorula glutinis Glycerol 0.101 Karamerou et al. (2016)

Corncob hydrolysate 0.159 Liu et al. (2015)

Sucrose 0.180 Lorenz et al. (2017)

Glucose 0.182 Johnson et al. (1995)

Yarrowia lipolytica Glycerol 0.140 Sara et al. (2016)

Acetic acid 0.160 Xu et al. (2017)

Glucose 0.270 Qiao et al. (2017)

Rhodosporidium toruloides Glycerol 0.220 Yang et al. (2014a)

Glucose 0.260 Li et al. (2007)

Acetic acid 0.277 Huang et al. (2016)

Corn stove hydrolysate 0.290 Fei et al. (2016)

Cryptococcus curvatus Corn stove hydrolysates 0.159 Gong et al. (2014)

Acetic acid 0.172 Liu et al. (2017)

Volatile fatty acids 0.187 Liu et al. (2017)

Glycerol 0.220 Ryu et al. (2013)

Cardboard hydrolysates 0.224 Zhou et al. (2017)

Glucose 0.246 Zhang et al. (2011)

Whey permeate 0.290 Ykema et al. (1988)

Lipomyces starkeyi Glycerol 0.150 Wang et al. (2014)

Sweet potato starch 0.160 Wild et al. (2010)

Glucose 0.180 Gong et al. (2012)

Xylose 0.180 Gong et al. (2012)

Cellobiose 0.200 Gong et al. (2012)

Hemicellulose hydrolysate 0.236 Anschau et al. (2014)

YL/S, lipid yield gL/gS (conversion yield of lipid formed per carbon substrate consumed)
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fermenter cost. The carbon source (wood hydrolysates +
VFAs) and the utilities were the main contributors for the
final production cost representing 60.45 and 21.44% of
the production costs, respectively. The total fixed capital
investment for a 100,000 t microbial lipid production
plant was estimated to be M$ 52.9. The main contributor
for the equipment cost is the fermentation process equip-
ment that represents 41% of the total equipment cost,
followed by the medium preparation equipment (26.6%),
cell mass washing and recovery (17.9%), and lipid extrac-
tion (14.5%). In this study, despite being a 10 times big-
ger capacity plant than the one referred in Koutinas et al.
(2014), total fixed capital investment is lower, mainly be-
cause of the lower price of the fermentation process
equipment. Plant capacity has also a big influence in the
final production cost, since the smallest plant assessed in
this study, with a capacity of 20,000 MT/year, resulted in
a production cost of US$ 1.705/kg and the largest
assessed plant size of 1,000,000 MT per year resulted in
a production cost of only US$ 0.876/kg. The bigger the
plant capacity, the more diluted will be the capital invest-
ment cost influence in the production cost.

In a more recent study, Park used volatile fatty acids, ob-
tained via anaerobic digestion of rice straw hydrolysates, as
carbon source, for microbial lipid production byCryptococcus
curvatus, and the estimated production cost was US$ 1.15/L
lipid (1.35/kg lipid) considering a carbon source cost of US$
0.15/kg (Park et al. 2017). The cost could be as low as US$
0.30/L (0.35/kg) if the cost of the carbon source is considered
equal to zero. In both cases, nitrogen source was considered as
having cost zero and the lipid yield was 0.15 g/g. In South
Korea, the overall cost of food waste was estimated to be US$
− 0.60/kg VFAs by a local government subsidy. In this study,
the overall lipid costs for operational expenses other than the
feedstock, including utilities, labor, waste treatment, and fa-
cility costs, were assumed to be US$ 0.354/kg, based on the
previously mentioned study of Park et al. (2014).

Fei assessed the effect of volatile fatty acids as a sole
carbon source on lipid accumulation by Cryptococcus
albidus for biodiesel production and made a preliminary
cost analysis of the production of lipids (Fei et al. 2011b).
A lipid yield of 0.15 g/g of VFAs, a plant production capac-
ity of 1,000,000 ton of lipid per year and a variation of VFAs
cost between US$ − 20 per ton and US$ 100 per ton was
considered in that analysis. In those conditions, the produc-
tion cost of the lipids would range between US$ 0.16 and
1.055/kg of lipids. In this analysis, although the capital in-
vestment cost, that is one of the main contributors to the
final cost according to Koutinas et al. (2014), was not con-
sidered, the obtained values are very promising.

Ryu et al. (2013) used the samemethod as Fei et al. (2011b)
to assess the production cost of lipids obtained with
Cryptococcus curvatus cultivated on spent yeast from brewery

industries and glycerol. They calculated that the lipid produc-
tion cost would be US$ 0.292/kg, coming a large part of the
cost from the cost of separation of the spent yeast from
fermented wastewaters. Like in the study of Fei et al.
(2011b), they did not consider the capital investment cost.

Ricardo et al. developed in Brazil a successful pilot-
scale process for biodiesel production from microbial oil
produced by Rhodosporidium toruloides DEBB 5533
(Ricardo et al. 2017) using sugarcane juice as carbon
source and urea as nitrogen source. In their study, they
were able to reach a lipid productivity of 0.44 g/L/h in a
bioreactor of 1000 L working volume in fed-batch mode.
They made a preliminary economic analysis that was based
in the costs of the medium and energy involved in each
step of the biooil and biodiesel production. They demon-
strated microbial biodiesel production economically com-
petitive (US$ 0.76/L) when compared to the vegetable bio-
diesel (US$ 0.81/L). The price of the carbon source was
US$ 0.14/kg and the nitrogen source US$ 0.265/kg. This is
a very particular case where the microbial oil obtained is
used for biodiesel production in a country where the cost of
sugarcane juice is very low. It should also be taken in
consideration that in the economic analysis it was assumed
that part of the electricity would be provided from an alco-
hol factory, which generates electricity from the sugarcane
bagasse burn. Furthermore, in this preliminary economic
analysis, only the costs of the medium and energy involved
were considered and, for instance, the capital investment
cost was not taken in consideration. Anyway, it remains a
very promising result.

These studies allow for the identification of the production
stages that have a bigger influence in the final production cost
of lipids using OY. Despite that these studies were mademost-
ly in different scenarios, the stages of production where the
production costs are higher are the same. We can divide the
production process in three main stages in decreasing order of
magnitude (Fig. 1): medium preparation, fermentation pro-
cess, and downstream processing. Medium preparation is the
most costly stage, mainly because of the carbon and nitrogen
source costs; the fermentation process is the secondmost cost-
ly stage mainly because of the investment cost and energy
needed; and the downstream processing is the less costly de-
spite of still having significant cost associated to the cell mass
washing and recovery and to lipid extraction.

Main points of improvement to lower
production cost and increase incomes

Many studies have been done with the goal of reducing the
production costs. In this section, the main aspects to be con-
sidered for cost reduction will be discussed and solutions for
process improvement will be identified in each of the stages
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mentioned before (medium preparation, fermentation process
and downstream processing).

Medium preparation

As medium preparation is the most costly stage, most of the
studies have dealt with this aspect. The main costs in this stage
come from the carbon source, the nitrogen source, the sterili-
zation of the medium, and water usage, if a traditional fermen-
tation is going to be carried out.

The main contributor to the final cost is by far the carbon
source. Glucose is considered an effective carbon source in the
fermentation processes, but if glucose is used as carbon source
($500/t in 2010), it can represent as much as 80% of the total
medium cost, contributing to over 60% of the total production
costs in a typical fermentation process (Fei et al. 2011a). In
lipid production by oleaginous yeasts, it needed a much higher
amount of carbon source than nitrogen source, since high
carbon-to-nitrogen (C/N) ratios are favorable to trigger high
lipid accumulation and when nitrogen is limiting for the pro-
duction of biomass, the carbon source can be converted to
storage lipid (Ratledge 2002). That is why most of the studies
are about finding low-cost carbon sources that can be used as
good substitutes of glucose. To be a good substitute, it has to
be cheap, abundant, and allow good productivities. Wastes
and wastewaters are strong candidates to be used as carbon
source since they are abundant and have no cost or represent
even negative cost. Oleaginous yeasts can utilize a wide vari-
ety of different carbon sources, which allows to explore the
possibility of using many different low-cost carbon sources.

Wastewaters

Oleaginous yeasts can be used with the dual purpose of
treating wastewater and producing microbial lipids.
Wastewaters can be at the same time carbon and water sources
for the oleaginous yeasts besides providing several other nu-
trients. A few authors tested wastewaters of different kinds.
Xue assessed the potential of using diluted monosodium glu-
tamate wastewater as a cheap fermentation broth for
Rhodotorula glutinis (Xue et al. 2006). Although, in the initial
experiments, a low productivity was obtained, a new study
(Xue et al. 2008) was made where diluted monosodium glu-
tamate wastewater was supplemented with glucose to increase
the C/N ratio. In this case, although glucose is used, the utili-
zation of monosodium glutamate wastewater could contribute

to reduce the amount of glucose and water needed for micro-
bial lipid production. Despite a considerable increase in the
productivity, the value obtained was still far from the produc-
tivities for other media. Bioethanol wastewater was also
assessed for its potential as a cheap fermentation broth, with
glucose being also used as supplement to increase the produc-
tivity (Zhou et al. 2013). Similar results were obtained as the
ones previously reported for the use of monosodium gluta-
mate wastewater. In both cases, further studies should be done
to increase productivity and find a cheaper supplement than
glucose. Better productivities, although still not very high,
were obtained with a mixture of distillery wastewater and
domestic wastewater without sterilization, using the yeast
Rhodosporidium toruloides (Ling et al. 2013). In this case,
besides using a low-cost carbon source, they also eliminated
the sterilization step. In another study, it was tested with suc-
cess the possibility to reuse the spent seed culture medium of
Rhodosporidium toruloides, and that allowed for a reduction
of around 30% in the medium cost (Ling et al. 2017). Several
other wastewaters like olive oil mill wastewaters (Yousuf et al.
2010) and potato wastewaters supplemented with glycerol
(Kot et al. 2017) were tested, but low productivities were
obtained. Only few wastewaters were tested until now.
Many other agro-industrial wastewaters can still be assessed,
and the supplementation with other cheap carbon sources can
possibly increase the productivities and lipid yields since with
some yeasts the productivities and lipid yields were even
higher when using cheap carbon sources than using glucose,
like as was mentioned in the BCarbon sources, productivity,
cultivation methods, and lipid yields^ section.

Wastes

Glycerol is one of the most tested low-cost carbon
sources. Increasing biodiesel production generates high
amounts of glycerol as a byproduct, raising its availability
to the point of outpacing the market demand for glycerol
(Yang et al. 2012). Furthermore, the raw glycerol derived
from biodiesel production to be used in the oleochemical
industries needs to undergo a costly and energy-
consuming purification process, making it unappealing
for those industries (Yen et al. 2012). Due to this, it be-
comes a potentially very cheap carbon source to be used
in microbial lipid production. High yields and productiv-
ities were obtained using glycerol as carbon source for the
yeasts Rhodosporidium toruloides (Yang et al. 2014a) and

Fig. 1 The three main stages of the production process contributing for the final production cost, in decreasing cost order
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Cryptococcus curvatus (Ryu et al. 2013), respectively,
making this cheap carbon source a promising feedstock.
Furthermore, if the lipids produced are to be used for
instance to produce biodiesel, the resulting glycerol can
be recycled to produce more lipids.

Volatile fatty acids that can be obtained through syngas
fermentation, lignocellulosic biomass degradation, and or-
ganic waste anaerobic digestion can also be an abundant
low-cost or even negative cost carbon source. High pro-
ductivities can be obtained using volatile fatty acids.
Productivities of 0.28 and 0.33 g/L/h were obtained using
glycerol plus volatile fatty acids and glycerol plus acetic
acid, respectively (Fontanille et al. 2012). Fontanille et al.
(2012) developed a two-stage fed-batch strategy where
the yeast Yarrowia lipolytica was initially grown using
glycerol, and, in a second stage, acetic acid or volatile
fatty acids were added as carbon source for lipid accumu-
lation. In this process, two low-cost carbon sources, like
glycerol and volatile fatty acids, are used with success.
Xu obtained a productivity of 0.8 g/L/h using diluted
acetic acid as carbon source for the oleaginous yeast
Yarrowia lipolytica in a semi-continuous system (Xu
et al. 2017). The bioprocess developed by Xu managed
not only to obtain high productivities but also to solve the
main issue related with the dilute nature of the volatile
fatty acids obtained by the processes mentioned previous-
ly, being able to sustain high-density cell culture using
acetic acid at a concentration of only 3%.

Whey permeate coming as a byproduct from cheese and
butter creameries can also be used as cheap and abundant
carbon source, since it has about 45 g/L of lactose as the main
carbon source. Ykema obtained a productivity of 0.995 g/L/h
and a lipid yield of 0.29 g/g using whey permeate as growth
medium for Cryptococcus curvatus being the best productiv-
ities and lipid yields obtained using low-cost carbon sources
(Ykema et al. 1988).

Flour-rich waste streams are also a promising abundant,
cheap carbon source. Tsakona successfully utilized flour-rich
waste and byproduct streams generated by bakery, confection-
ery, and wheat milling plants as the sole rawmaterials for lipid
production by Lipomyces starkeyi achieving a productivity of
0.4 g/L/h (Tsakona et al. 2014).

Lignocellulosic hydrolysates have been widely studied as
cheap carbon source for fermentation processes. Some oleag-
inous yeasts have the ability to utilize pentoses as well as
hexoses and can assimilate glucose and xylose simultaneously
(Hu et al. 2011), making this carbon source really promising.
High lipid yields and productivities were obtained with the
main sugars present in lignocellulosic hydrolysates. Gong ob-
tained similar lipid yields by Lipomyces starkeyi using glu-
cose, xylose, and cellobiose (0.18 g/g; 0. 18 g/g; 0 .2g/g) and a
lipid productivity of 0.125 g/L/h using simultaneously xylose
and cellobiose (Gong et al. 2012). Also, with Lipomyces

starkeyi and using hemicellulose hydrolysate, Anschau ob-
tained a lipid yield of 0.236 g/g and a productivity of
0.111 g/L/h (Anschau et al. 2014). Fei, utilizing the yeast
Rhodosporidium toruloides and using corn stove hydrolysate,
was able to obtain a productivity of 0.4 g/L/h and a lipid yield
of 0.29 g/g (Fei et al. 2016).

Some of the wastes and wastewaters already have ni-
trogen source besides the carbon source, in some cases in
high quantities, making it needed to add extra carbon
sources to raise the C/N ratio. One good example is the
study of Ryo Byung-Gon where they use spent yeast from
brewery industry as nutrient source for Cryptococcus
curvatus (Ryu et al. 2013). In order to raise the C/N ratio,
they used glycerol and were able to achieve lipid yields of
0.22 g/g and productivities of 0.152 g/L/h. In the cases
the nitrogen source is not present in enough quantity, corn
steep liquor and domestic animal feces or urine can be
used as cheap nitrogen sources (Park et al. 2014).

One way to avoid spending energy for sterilization is to
find oleaginous yeasts able to outrun the competition when
growing in non-sterile media. Yeasts, able to keep high pro-
ductivities at low pH or at extreme temperatures or even ca-
pable to produce antimicrobial compounds, are good candi-
dates for that. That is exactly what Santamauro found in the
yeast Metschnikowia pulcherrima (Santamauro et al. 2014).
This yeast has the ability to grow at low temperature and pH
and to produce natural antimicrobial compounds. This yeast
was not classified as oleaginous, but, in their study, they were
able to obtain high yields at low temperature, low pH, and
using several different non-sterilized mediums with low-cost
carbon sources and no yeast extract.

Further studies should be done to explore other carbon
sources and to improve the productivities and lipid yields
utilizing the cheap, abundant carbon sources available. A
higher lipid yield would imply the use of less carbon source
per unit of lipids produced, lowering in that way the produc-
tion cost if there is a cost associated to the carbon source used.
To improve the productivities and lipid yields, work should
focus mainly in improving the fermentation process for better
utilization of the low-cost carbon sources, explore the ability
of some oleaginous yeasts to grow, and keep high productiv-
ities without needing to use sterile conditions and screening
for other oleaginous yeast capable of achieving higher produc-
tivities and lipid yields with low-cost carbon sources or genet-
ically engineering more robust yeasts for lipid production.

Fermentation process

As mentioned before, the fermentation process is where all
the conditions must be optimized in order to obtain the
highest lipid yields and productivities. To achieve that,
there are different cultivation methods that can be used that
require different kinds of fermenters that have different
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costs. Besides that, optimum temperature, aeration, and pH
must be maintained for optimum production. The main
costs of the fermentation process are related with the ener-
gy spent with the aeration and keeping the ideal tempera-
ture and with the size and type of fermenter used (fermen-
ter cost). To minimize the influence of these costs, lipid
productivity and lipid yield obtained in the process should
be as high as possible. Fermenter costs are strongly depen-
dent on the lipid productivity (Ykema et al. 1988); so,
higher productivities would allow to use smaller fermen-
ters to obtain the same quantities of lipids and consequent-
ly lower fermenter cost and the energy spent. Also, the
cultivation method has big influence in the lipid yields
and productivities. Ykema compared four different cultiva-
tion methods (batch, fed-batch, continuous, and partial
recycling culture) for lipid production with Cryptococcus
curvatus and concluded that the highest lipid productivities
will be achieved in a mode of operation that enables the
cultivation at high cell densities (Ykema et al. 1988).
According to Ykema, the highest productivities can be
achieved using partial recycling culture of the biomass,
followed by fed-batch, continuous, and batch method.
Batch mode is mainly used in lab-scale studies using flasks
for screening for new oleaginous yeasts, to assess the po-
tential of the oleaginous yeasts and determine the optimum
cultivation conditions. Considering that, it is possible to
raise the productivities of many of the studies referenced
in Tables 2, 3, 4, 5, and 6. Until now, the highest produc-
tivities by Rhodotorula glutinis, Yarrowia lipolytica,
Rhodosporidium toruloides, and Lipomyces starkeyi were
achieved using fed-batch cultivation methods. The highest
lipid productivity obtained until now was with Lipomyces
starkeyi as reported by Lin that used a two-stage fermen-
tation method, where, in the first stage, cells were cultivat-
ed in a nutrient-rich medium for cell growth and, in the
second stage, to promote lipid accumulation, cells were
resuspended in a glucose solution, and, when the glucose
was exhausted, more glucose was supplemented for more
lipid accumulation (Lin et al. 2011).

Although, methods like continuous cultivation have
been tested with several oleaginous yeasts, methods like
partial recycling culture that allowed for the highest pro-
ductivity were tested with Cryptococcus curvatus, only.
Therefore, although fed-batch is recognized as a great
method for high cell density cultivation, other methods
should be tested and developed to further improve the
lipid productivities of the various oleaginous yeasts.

Several of the oleaginous yeasts are obligate aerobes,
depending on oxygen for its energy metabolism and cel-
lular component synthesis. For those, the aeration has a
big influence in the lipid productivities obtained, since
good levels of dissolved oxygen are required for higher
cell growth (Yong-Hong et al. 2006) (Choi et al. 1982).

At high cell density, culture viscosity is higher and mass
transfer is harder, reducing oxygen availability. Pan was
able to obtain much higher biomass concentrations of
Rhodotorula glutinis and higher overall lipid productiv-
ities in a fed-batch process, using aeration with oxygen-
enriched air instead of air (Pan et al. 1986). However, the
effects of oxygen limitation appear to differ widely among
lipogenic yeasts since for some of the yeasts the oxygen
limitation seems to result in lower lipid productivities de-
spite of the higher cell growth (Calvey et al. 2016).
Higher aeration rates may improve lipid productivity of
some yeasts, but it has a cost since it implies to spend a
higher amount of energy. In order to reduce the aeration
requirements, different aeration rates can be used promot-
ing a lower aeration in the lipid accumulation stage, and
another option is to select yeasts that require lower aera-
tion rates. Contributions to reduce the aeration require-
ments were mentioned in co-culture studies of oleaginous
yeasts with microalgae due to the release of oxygen to the
medium by the microalgae (Xue et al. 2010; Cheirsilp
et al. 2012). Xue, when assessing the lipid production of
mix cultivation of Spirulina platensis and Rhodotorula
glutinis, registered a rapid increase in dissolved oxygen
from 7.45 to 120.5% in 5 h when Spirulina platensis was
added to the culture (Xue et al. 2010).

Aeration not only influences the lipid productivity but also
the lipid profile of some yeasts. Davies studied the effect of
low oxygen uptake rate on the fatty acid profile of the oleag-
inous yeast Cryptococcus curvatus and observed that it was
possible to decrease the unsaturated fatty acids percentage in
the lipid profile by limiting the oxygen uptake rate of the
culture (Davies et al. 1990). To decrease unsaturated fatty
acids is a way to obtain cocoa butter equivalent (Hassan
et al. 1994) or palm oil equivalent (Sargeant et al. 2014), but
doing that by limiting the oxygen uptake rate can lower the
lipid yields and productivities (Davies et al. 1990).

Temperature is another factor affecting lipid yield and
productivity. In large-scale production, yeasts should be
robust to withstand process disturbances, like temperature
and pH variations, without affecting much the productiv-
ity, and the ability to keep good productivities at high
temperatures would be advantageous to decrease the
amount of cooling needed for cultivation (Lamers et al.
2016). A selection of robust yeasts and yeasts tolerant to
high temperatures would be favorable for large-scale
production and to reduce the energy spent in the
fermentation process. Amaretti et al. (2010) and Viñarta
et al. (2016) assessed the potential of several yeasts iso-
lated from cold environments like Antarctica. The results
they obtained were promising in terms of lipid yields and
productivities, and the yeasts were robust being able to
grow at a wide range of temperatures, but not at high
temperatures. More screening should be done to find
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robust yeasts able to achieve high lipid yields and produc-
tivities at high temperatures.

Downstream processing

In the downstream processing, the main costs are associat-
ed with the energy spent in the process of recovery of the
lipids due to the fact that the lipids are stored inside the
cells. The traditional processes involve the cell mass wash-
ing and recovery and the lipid extraction where solvents
are used. High density cell cultivations are also advanta-
geous in this stage since it contributes to reduce the energy
needed in processes like centrifugation due to the less wa-
ter that needs to be separated from the cells (Ling et al.
2013). The lipid extraction process is an energy-intensive
process involving high amounts of toxic solvents that re-
quires cell disruption for an effective extraction (Yu et al.
2015). The process of recovering the lipids would become
much more simple and cheap if the lipids were excreted to
the medium. This could possibly be achieved through ge-
netic engineering or exploring the natural ability of secret-
ing the lipids to the medium that some yeasts have under
certain conditions (Huang et al. 2018). Many cell disrup-
tion methods are available and can be divided in mechan-
ical and non-mechanical methods. Their efficiencies can be
different depending on the microorganism used, and the
lipid applications should also be taken in consideration
when choosing the extraction method. For instance, when
the lipids are for food industry, toxic chemicals should be
avo ided so tha t a wise cho ice shou ld be done
(Ochsenreither et al. 2016). Lipid recovery from wet ole-
aginous microbial biomass has been highly investigated
since it would contribute to a significant reduction of the
energy spent in dewatering the cell biomass, but the tech-
nologies developed until now are far from being ready to
be commercialized (Dong et al. 2016).

To help to improve the economics of yeast lipid pro-
duction, another solution could be the recovery of high-
value products that some yeasts produce simultaneously
with lipids, like enzymes, beta-carotene and astaxanthin.
Several studies have been made about the co-production
of lipids and carotenoids with promising results (Kot et al.
2017; Saenge et al. 2011). Carotenoids are high-value
products, with a continuously growing global market ex-
pected to reach about US$1.4 billion in 2018 (Mata-
Gómez et al. 2018); and its recovery alongside with the
lipids production is appealing. The possibility of explor-
ing other high-value products from oleaginous yeast
should be further assessed to improve the economics of
yeast lipid production.

In Fig. 2, the main points of improvement to lower
production costs in the three main stages of the produc-
tion process are presented.

Potential applications for oleaginous yeast
oils

The studies on the production of lipids from oleaginous
yeasts have been done mainly with the goal of using those
lipids for biodiesel production. Their lipid profile similar
to vegetable oils makes them suitable for biodiesel pro-
duction, although different lipid profiles can be found in
different oleaginous yeasts. The lipid profile of each yeast
also depends on the culture conditions, making it possible
to direct their lipid profile to lipid profiles more favorable
to other applications. Metabolic engineering of the yeasts
could also be used for tailoring the lipid profile to the
desired products (Dey and Maiti 2013).

Biodiesel

In the last decades, the global biodiesel production started
raising mainly due to the European Union (EU) Renewable
Energy Directive (RED) that requires 10% of all transport
fuels to be delivered from renewable sources by 2020 in every
Member State being more than 85% of the RED transport
target expected to come from biofuels (Biodiesel is the main
biofuel in the EU transport sector, with a 78.2% share of total
consumption, by energy, according to Eurostat 2013). This
demand started raising many concerns related with the sus-
tainability of its production, mainly the biodiesel of first gen-
eration, obtained using food crops (Anuar and Zuhairi 2016).
EU specified a minimum set of sustainability criteria for
biofuels and bioliquids, with a threshold of 35% savings of
GHG emissions with respect to the fossil fuels they replace.
The use of specific land-use categories, such as primary forest,
highly biodiverse grassland, wetlands, and peatlands, is ex-
plicitly excluded due to its lack of sustainability. Oleaginous
yeasts have a favorable lipid profile for the production of
biodiesel, due to their high percentage of oleic acid, and they
are a potential solution for all the sustainability issues related
with first-generation biodiesel production. This is why so
many studies have been done with oleaginous yeasts with
the goal of producing lipids for biodiesel. Biodiesel produc-
tion is expected to contract slightly by 2020 according to the
trajectories presented by the Member States in their National
Renewable Action Plans (Marelli et al. 2015), but if oleagi-
nous yeast oils become a sustainable solution for biodiesel
production, then the demand can raise again.

Food industry

There are many applications for vegetable oils in the food
industry. Not only the vegetable oils are sold for cooking
purposes, but they are also part of many food products.
Oleaginous yeast oils could get into the market as sustain-
able vegetable oil equivalents since their lipid profile is
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similar to vegetable oils. Palm oil is one of the most used
oils in the food industry, and it is produced in tropical
regions where it contributes to a 1.5% annual rate of de-
forestation of tropical rainforests (Sargeant et al. 2014). Its
lipid profile is high in saturated fatty acids, making it nec-
essary to raise the percentage of saturated fatty acids in the
oleaginous yeasts oil to obtain a lipid profile more similar
to palm oil in order to be possible to be used as palm oil
equivalent. The palm oil selling price is low, making it
challenging to find a substitute cost competitive, but, by
finding it, it would be of high environmental interest. It
could be financially more interesting to develop oil yeast
equivalents to high-value fats like cocoa butter. Like palm
oil, cocoa butter lipid profile is also high in saturated fatty
acids making it is also necessary to tailor the fatty acid
profile of the oleaginous yeasts. Tailoring the lipid profile
of the oleaginous yeasts to produce higher amounts of es-
sential fatty acids for nutrition could be also advantageous.

Biopolymers

Polymers are mostly derived from petrochemicals, which
raises environmental concerns. Public awareness of those
environmental issues is raising the search for greener bio-
based alternatives. Biopolymers obtained from vegetable
oils can become a good alternative to petrochemicals if
sustainable vegetable oils are used. Oleaginous yeast oils

can be a sustainable alternative to vegetable oils also for
biopolymer production. Furthermore, the composition of
vegetable oils can vary significantly, affecting the quality
of the polymer production (Zhang et al. 2017), which is
not the case for the production of oil from OY.

Many polymers can be obtained using vegetable oils,
mainly polyurethane, polyester, polyether, and polyolefin.
Polyurethanes are synthesized by reacting polyols with
petroleum-derived multi-isocyanate, both of which could
be derived from triglycerides and their derivatives (Miao
et al. 2014). With polyols, flexible or rigid foams can be
manufactured that can be used in a wide range of products,
which goes from vehicle interiors and building insulation
until the core of surf boards. The production of biopoly-
mers is also useful for biomedical applications mainly be-
cause vegetable oil is a bio-based raw material that can be
metabolized in the human body, and, therefore, materials
derived from them are potentially biocompatible (Ca et al.
2013). A huge market can be explored if the production of
oleaginous yeasts oil becomes competitive.

Others

Other applications can be found in pharmaceutical and
cosmetic industries, and several others should be
researched aiming at finding high-value products to raise

Fig. 2 Main points of
improvement to lower production
costs in the three main stages of
the production process

Fig. 3 Envisioned yeast lipid production and applications
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the income of oleaginous yeast oils and turn its produc-
tion more profitable and viable even at small scale.

Conclusions

Oleaginous yeasts have great potential for sustainable produc-
tion of oils similar to vegetable oils. The high potential comes
from their ability to utilize several kinds of low-cost sub-
strates, high growth rate and lipid production, small amount
of land and water requirements, and the simple cultivation
methods that are not climate-affected.

Despite all the potential they have, a lot of research
still needs to be done to improve the economics of yeast
oil production. Screening for more robust oleaginous
yeasts, or even genetically manipulating them to obtain
high lipid yields and productivities, utilizing a wide vari-
ety of low-cost carbon sources in non-sterile media and
the possibility of operating at a wide range of pH and
temperatures, mainly high temperatures, would signifi-
cantly improve the economics of the lipid production by
reducing the costs in energy spent and by using carbon
sources obtained locally. Considering that the carbon
source can contribute to over 60% of the total production
costs if glucose is used, a wider range of low-cost sub-
strates should be evaluated, as a successful use of nega-
tive cost carbon source would have a significant impact in
the reduction of the production costs. In the fermentation
process, further research should be done to develop better
fermentation methods to raise the lipid yield and produc-
tivities together with the use of cheaper and more energy-
effective fermenters as this would also considerably im-
prove the economics of lipid production by reducing the
capital investment and energy spent and by raising the
productivity. Oil recovery processes should also keep be-
ing improved to reduce the energy and solvent usage, and
high-value co-products recovery should also be imple-
mented if the amount of co-product obtained justifies the
investment. The ability of the oleaginous yeasts of pro-
ducing oils with different lipid profiles should be further
explored, since the production of oils with different pro-
files could be directed for the production of different
products like biodiesel, vegetable oil substitutes, food ad-
ditives, biopolymers, pharmaceutical and cosmetic indus-
tries, etc., widening the market for yeast oils. To direct the
lipid profile of the oils for the production of high-value
products would significantly improve the economics of
yeast lipid production.

In Fig. 3, we can see in a schematic way the conclusions of
this work. To improve the economics of oleaginous yeast oil
production, we should reduce production costs in all stages,
improve lipid yields and productivities, and direct the produc-
tion to high-value products.
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