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Abstract. Tumor-associated macrophages (TAMs) polarized 
to the M2 phenotype promote tumor cell proliferation and 
are associated with a poor prognosis in patients with high 
grade glioma. We previously revealed that corosolic acid, a 
triterpenoid compound, inhibits the M2 polarization of human 
monocyte-derived macrophages (HMDM). In the present 
study, we examined whether oleanolic acid (OA), a triterpenoid 
compound whose structure is similar to corosolic acid, also 
shows inhibitory effects on M2 polarization in HMDM. OA 
significantly inhibited the expression of CD163, one of the 
phenotype markers of M2 macrophages, as well as suppressed 
the secretion of IL-10, one of the anti-inflammatory cytokines 
preferentially produced by M2 macrophages, thus suggesting 
that OA suppresses the M2 polarization of macrophages. 
Furthermore, OA inhibited the proliferation of U373 human 
glioblastoma cells, and the activation of signal transducer and 
activator of transcription-3 (STAT3) in both human macro-
phages and glioblastoma cells. These results indicate that OA 
suppresses the M2 polarization of macrophages and tumor cell 
proliferation by inhibiting STAT3 activation. Therefore, OA may 
be a potentially new agent that can be used for the prevention 
and treatment of various malignant tumors, including glioma.

Introduction

Macrophages infiltrating in cancer tissues are referred to as 
tumor-associated macrophages (TAMs) and they are con sidered 
to be closely involved in the development of the tumor 

microenvironment (1-3). After the functions of alternatively 
activated (M2) macrophages were demonstrated, many 
researchers have focused on this macrophage phenotype in the 
pathogenesis of various disorders (4).

M2 macrophages are known to be associated with 
anti-inflammatory functions and angiogenesis in the tumor 
microenvironment (4,5). We previously demonstrated that 
CD163 is a useful marker for detecting M2 cells on paraffin-
embedded surgical specimens (6), and high infiltration of 
M2 TAMs are associated with a poor clinical prognosis in 
patients with high grade glioma, cholangiocarcinoma, angio-
immunoblastic T cell lymphoma, and renal cell carcinoma 
(7-9). Similar results have been reported in melanoma, 
follicular lymphoma, leiomyosarcoma, and pancreatic cancer 
(10-12). Therefore, it is speculated that the inhibition of macro-
phage polarization toward the M2 phenotype could represent a 
new strategy for anticancer therapy.

In our recent study, we prepared 130 purified compounds 
from natural products, and screened them for inhibitory effects 
on the M2 polarization of human monocyte-derived macro-
phages (HMDM). In that screening, we observed that corosolic 
acid (CA), a triterpenoid compound, significantly inhibited 
the M2 polarization of macrophages and glioblastoma cell 
proliferation by suppressing the activation of STAT3 (13), thus 
suggesting that CA is a potentially useful candidate agent for 
cancer immunotherapy.

OA is structurally similar to CA, and is contained in 
several foods and medicinal plants, and possesses various 
biological properties, including anti-diabetic, anti-bacterial and 
anti-oxidative activities (14,15). In this study, we examined the 
effect of oleanolic acid (OA), a major oleanane-type trterpenoid, 
on macrophage polarization and glioblastoma cell proliferation 
in order to identify additional potentially useful candidate 
anti-cancer agents other than CA.

Materials and methods

Cells and cell culture conditions. The human glioblastoma 
cell lines, U373-MG (U373) and THP-1 macrophages were 
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purchased from American Type Culture Collection (Manassas, 
VA) and were maintained in Dulbecco's modified Eagle's 
medium (DMEM) supplemented with 10% fetal bovine serum 
(FBS), 100 U/ml penicillin, 100 µg/ml streptomycin, and 
0.1 mg/ml sodium pyruvate. These cells were regularly tested 
and were found to be negative for Mycoplasma contamina-
tion and tumor culture supernatants (TCSs) were prepared as 
described previously (9).

Peripheral blood mononuclear cells were obtained from 
healthy volunteer donors. Informed written consent was 
obtained from all healthy donors. The cells were plated in 
plates and dishes for 1 h and non-adherent cells were removed 
by gentle washing with PBS. The remaining monocytes were 
cultured with GM-CSF (10 ng/ml, Wako, Tokyo, Japan) for 
5 days in order to differentiate macrophages (6).

Determination of the inhibitory effect of oleanolic acid on 
CD163 expression. HMDM (1x104 cells per well of a 96-well 
plate) were incubated with or without OA for 24 h after 
treatment with IL-10 (20 nM) or TCS for 2 days, followed 
by the determination of CD163 expression by Cell Enzyme-
linked Immunosorbent Assay (Cell-ELISA) as described 
previously (13).

Determination of the inhibitory effect of oleanolic acid on 
IL-10, and IL-12 secretion. HMDM and THP-1 macrophages 
(1x104 cells per well of 96-well plate) were stimulated with 
LPS (100 ng/ml) for 24 h after incubation with oleanolic acid 
(30 µM) for 24 h in the presence of TCS, followed by determi-
nation of IL-10 and IL-12 secretion by means of an ELISA kit 
(eBioscience, San Diego, CA).

Immunohistochemistry. Cell block specimens were fixed in 
10% neutral buffered formalin and then were embedded in 
paraffin as described previously (16). Briefly, the sections 
were deparaffinized in xylene and rehydrated in a graded 
ethanol series. After the reaction of anti-phosphorylated 
STAT3 antibody (D3A7), the samples were incubated with 
horseradish peroxidase (HRP)-labeled goat anti-rabbit anti-
body (Nichirei, Tokyo, Japan). The reaction was visualized 
by the use of the diaminobenzidine substrate system (Vector, 
Burlingame, CA).

STAT3 activation assay. STAT3 activation was determined 
using by measuring the increased expression of the phos-
phorylated STAT3 by Western blot analysis as described 
previously (13). Briefly, the solubilized HMDM were run on a 
10% SDS-polyacrylamide gel and transferred to a polyvinyli-
dine fluoride (PVDF) transfer membrane (Millipore, Bedford, 
MA). To detect phosphorylated STAT3, the membranes were 
exposed to an anti-phosphorylated STAT3 antibody (D3A7) 
(17) and visualized by horseradish peroxidase-conjugated 
anti-rabbit IgG antibody with ECL Western blotting detection 
reagent (CE Healthcare Bio-Sciences). To detect STAT3, the 
membranes were exposed to an anti-STAT3 antibody (sc-8019; 
Santa Cruz Biotechnology) (18) and visualized by horseradish 
peroxidase-conjugated anti-mouse IgG antibody with ECL 
Western blotting detection reagent. These membranes were 
re-blotted with an anti-β-actin antibody as an internal calibration 
control.

Cell proliferation assay. Briefly, 1x104 U373 cells were cultured 
in a 96-well plate in quadruplicate before treatment. The cells 

Figure 1. The effects of oleanolic acid on IL-10-induced M2 polarization in HMDM. The chemical structure of oleanolic acid is shown (A). HMDM (5x104 
cells per well of 96-well plates) were incubated with oleanolic acid (30 µM) during the incubation with IL-10 (20 nM) for 24 h, followed by deter mination 
of the CD163 expression by Cell-ELISA (B). HMDM (5x104 cells per well of 96-well plates) were incubated with oleanolic acid (30 µM) for 24 h, followed 
by determination of the IL-12 secretion by ELISA (C). HMDM were incubated with the indicated concentrations of oleanolic acid for 24 h, followed by the 
determination of cell proliferation by the WST-8 assay (D).
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were then cultured in the presence of oleanolic acid. Cell 
viability was determined by using the WST assay (WST-8 cell 
counting kit; Dojin Chemical, Kumamoto, Japan) according to 
the manufacturer's protocol.

Statistics. All data are representative two or three indepen-
dent experiments. Data are expressed as the means ± SD. 
Differences between the groups were examined to determine 
statistical significance using the Mann-Whitney U test and the 
non-repeated measures ANOVA. A p-value <0.05 denoted the 
presence of a statistically significant difference.

Results

The effects of OA on M2 macrophage polarization. We 
first measured the effect of OA (Fig. 1A) on IL-10-induced 
CD163 expression as an M2 phenotype marker in HMDM. We 
observed that OA significantly suppressed the IL-10-induced 
CD163 expression (Fig. 1B), and also induced the secretion of 
IL-12, a M1 phenotype marker, in HMDM (Fig. 1C). However, 
OA caused no morphological changes or cytotoxic effects in 
the HMDM, even at 150 µM (Fig. 1D). Next, we measured the 
effects of OA on the expression of CD163 and secretion of IL-10 
and IL-12 by HMDM induced by the tumor culture super natant 
(TCS) of the U373 glioblastoma cell line. Stimulation with 
TCS increased the CD163 expression (Fig. 2A and B) and IL-10 
secretion (Fig. 2C), and decreased IL-12 secretion (Fig. 2D), in 
the HMDM. Under the employed assay con ditions, OA signifi-
cantly suppressed the TCS-induced CD163 expression (Fig. 2A 
and B) and IL-10 secretion (Fig. 2C), and enhanced the IL-12 

secretion that was reduced by TCS treatment (Fig. 2D). These 
data strongly indicate that OA inhibits the M2 polarization of 
HMDM.

The effects of OA on the JAK-STAT signaling pathway in 
human macrophages. Since activation of STAT3 contributes 
to the M2 polarization of macrophages (19,20), we next inves-
tigated the effect of OA on IL-10- and TCS-induced STAT3 
activation in human macrophages. As shown in Fig. 3A, IL-10 
induced STAT3 activation in HMDM. Under the employed 
assay conditions, OA significantly inhibited the IL-10-induced 
STAT3 activation (Fig. 3A). Furthermore, OA also inhibited 
TCS-induced JAK and STAT3 activation in THP-1 macro-
phages (Fig. 3B and C). These results suggest that OA inhibits 
the M2 polarization of human macrophages by suppressing 
the JAK-STAT signaling pathway.

The effects of OA on STAT3 activation and tumor prolifera-
tion in glioblastoma cells. It is clear that activation of STAT3 
is critically involved in tumorigenesis (21,22), and STAT3 
is considered to be an important target molecule for anti-
cancer therapy, including for glioblastoma (23,24). Therefore, 
we also investigated the effects of OA on STAT3 activation 
in glioblastoma cells. As shown in Fig. 4A, STAT3 was 
constantly activated in U373 glioblastoma cells. Under the 
assay con ditions, OA significantly inhibited STAT3 activation 
(Fig. 4A). Furthermore, OA significantly suppressed glioblas-
toma cell proliferation at concentrations of 30 µM and higher 
(Fig. 4B). These data suggest that OA suppresses glioblastoma 
cell proliferation by inhibiting STAT3 activation.

Figure 2. The effects of oleanolic acid on TCS-induced M2 polarization in HMDM. HMDM (5x104 cells per well of 96-well plates) were incubated with oleanolic 
acid (30 µM) during the incubation with TCS for 24 h, followed by determination of CD163 expression by an immunohistochemical analysis (A) and Cell-
ELISA (B). The HMDM were then stimulated with LPS (100 ng/ml) for 24 h after the incubation with oleanolic acid (30 µM) for 24 h in the presence of 
TCS, followed by the determination of IL-10 (C) and IL-12 (D) secretion by ELISA.



FUJIWARA et al:  OLEANOLIC ACID INHIBITS STAT3 ACTIVATION IN MACROPHAGES AND GLIOMA CELLS1536

Discussion

M2 TAMs release many proangiogenic cytokines and growth 
factors, such as vascular endothelial growth factor (VEGF), 
epidermal growth factor (EGF), colony stimulation factor-1 
(CSF-1), platelet-derived growth factor (PDGF), and basic 
fibroblast growth factor, which promote tumor progression. 
They also produce arginase-1, IL-10, and transforming growth 
factor-β (TGF-β), which inhibit the antitumor function of T 
cells and natural killer cells (1-3). These cytokines are well 
known to be induced by STAT3 activation (14). In a murine 
model of glioma, STAT3 inhibition induced the production 
of pro-inflammatory cytokines from TAMs, and resulted in 
tumor growth inhibition (25,26). In human glioma, a STAT3 
inhibitor recovered the expression of costimulatory molecules 
and pro-inflammatory cytokines on peripheral macrophages 

and TAMs and resulted in the enhancement of immune 
responses (27). These findings indicate the significance of 
STAT3 activation in the cell-cell interactions between glioma 
cells and TAMs.

STAT3 is involved not only in macrophage differentiation, but 
also in tumor cell proliferation (28). In glioma, STAT3 activation 
is necessary for the proliferation of glioma cells and glioma stem 
cells (29). STAT3 activation in glioma cells is closely related 
to a poor clinical prognosis in patients with grade III glioma 
(30). Therefore, STAT3 is considered to be a target molecule in 
patients with glioma (31). In addition, STAT3 activation in tumor 
cells is considered to cause tumor cell resistance to anti-cancer 
therapies, such as chemotherapy and radiotherapy (32). We also 
previously demonstrated that the STAT3 inhibitor CA enhanced 
the efficacy of chemotherapeutic agents against glioblastoma 
cells.

In this study, we showed that OA significantly suppressed 
the JAK-STAT3 activation in human macrophages and glio-
blastoma cells, and inhibited the macrophage polarization 
into the M2 phenotype, and also decreased the proliferation 
of glioblastoma cells. Inhibition of macrophage differentiation 
into the M2 phenotype is suggested to increase the immune 
response in patients with glioblastoma. OA might also directly 
suppress the proliferation of glioblastoma cells, and increase 
their sensitivity to chemotherapy or radiotherapy. These data 
suggest that OA may be a potentially useful new compound for 
anticancer therapy.

Figure 4. The effects of oleanolic acid on cell proliferation and STAT3 
activation in glioblastoma cells. U373 cells were incubated with the indicated 
concentrations of oleanolic acid for 3 h, followed by determination of the 
expression of phosphorylated STAT3, STAT3 and β-actin by a Western blot 
analysis (A). U373 cells were incubated with the indicated concentrations of 
oleanolic acid for 24 h, followed by the determination of cell proliferation 
by the WST-8 assay (B). The data are presented as the means ± SD. *P<0.01, 
**P<0.001 vs. control.

Figure 3. The effects of oleanolic acid on STAT3 activation in human mac-
rophages. HMDM were incubated with oleanolic acid (30 µM) during an 
incubation with IL-10 (20 nM) for 30, 60 and 120 min, followed by determina-
tion of the expression of phosphorylated STAT3, STAT3 and GAPDH by a 
Western blot analysis (A). THP-1 macrophages were incubated with oleanolic 
acid (30 µM) during an incubation with TCS for 3 h, followed by determi-
nation of the phosphorylated STAT3 expression by immunohistochemical 
analysis (B). THP-1 macrophages were incubated with oleanolic acid (30 µM) 
during an incubation with TCS for 30 and 45 min, followed by determination 
of the expression of phosphorylated STAT3, STAT3, phosphorylated JAK, 
β-actin and GAPDH by a Western blot analysis (C).
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