
8 8 4 | NOVEMBER 2002 | VOLUME 3  www.nature.com/reviews/neuro

R E V I EW S

California Institute of

Technology, Division of

Biology 139-74,

1201 East California

Boulevard, Pasadena,

California 91125, USA.

e-mail:

laurentg@caltech.edu

doi:10.1038/nrn964

Olfactory systems have evolved over millions of years to

solve a variety of ‘object’-identification problems. Some

of these are relatively simple (for example, the identifica-

tion of CO
2
or oligomolecular mixtures), and in these

cases, tight recognition by individual receptors might

enable the animal to identify the molecule, measure its

local abundance and track it through the use of olfactory

LABELLED LINES
1,2. However, many olfactory problems are

more complex: they involve odours that are composed of

multimolecular mixtures (sometimes containing hun-

dreds of volatile components3). Odour perception tends

to bind together rather than to segment the elements of

a mixture4–6; the olfactory system therefore recognizes

odours as patterns.Added complexity arises because the

precise composition of an odour often varies during 

the lifetime of the odour source; fluctuations can be due

to noise or to processes such as oxidation or differential

volatility of the analytes in a mixture. In addition, the

biological chemistry of odour formation (of flower

scents, for example) leads to the formation of mixtures

of chemically related elements (such as citrus essences).

Odour clusters can be defined qualitatively (with many

degrees of resolution: aromatic → minty → spearmint)

or quantitatively7,8, noting that concentration changes can

also lead to changes in perceived quality.Human psycho-

physics reveals that such clusters can be identified4. I will

therefore assume that, through evolution, the olfactory

system has found solutions to these pattern-recognition

tasks, in which the space of possible signals (perceptually

definable odours) is immense and is not smoothly occu-

pied. The magic of olfactory perception is that the brain

can achieve cluster separation at (seemingly) many levels

of resolution, allowing both gross classification and

precise identification. How does it do it?

The olfactory bulb (OB) and its insect analogue, the

antennal lobe (AL), are highly interconnected circuits in

which inhibition is physically widespread, owing to the

projections of either principal or local neurons (FIG. 1).

Electrophysiological experiments have revealed many

forms of temporal patterning of activity of their output

elements, the mitral cells (MCs, in the OB) or projec-

tion neurons (PNs, in the AL)8–18 (FIG. 2). The function

of this patterning — seen equally in species in which

MCs and PNs are multiglomerular (lower vertebrates

and some insects)8,13,19 and in species in which output

neurons are mainly uniglomerular (mammals and
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AND THE CODING OF
MULTIDIMENSIONAL SIGNALS
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The brain faces many complex problems when dealing with odorant signals. Odours are

multidimensional objects, which we usually experience as unitary percepts. They are also noisy

and variable, but we can classify and identify them well. This means that the olfactory system

must solve complicated pattern-learning and pattern-recognition problems. I propose that part of

the solution relies on a particular architecture that imposes a dynamic format on odour codes.

According to this hypothesis, the olfactory system actively creates a large coding space in which

to place odour representations and simultaneously optimizes their distribution within it. This

process uses both oscillatory and non-periodic dynamic processes with complementary

functions: slow non-periodic processes underlie decorrelation, whereas fast oscillations allow

sparsening and feature binding. 
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LABELLED LINES

A term that is used to describe a

simple connectivity, whereby a

set of identically and sharply

tuned receptor neurons

converge uniquely onto a set of

postsynaptic neurons, which in

turn project uniquely onto a set

of common targets (and so on).

Each channel (labelled line) can

unambiguously inform the

brain about the presence or

absence of the signal it conveys.

Working hypothesis

I propose that, because of the complexity of the 

olfactory pattern-recognition problem (the size and

landscape of odour space, and the noisiness of odours),

the brain exploits circuit dynamics to accomplish at

least two objectives. The first is to create, through 

other insects)9–16,20 — is unclear. By exploiting the small

sizes of insect (locust, honeybee) and zebrafish brains,

we have tried to address this issue from a systems rather

than a purely cellular or anatomical perspective; this

approach reveals interesting computations that might

otherwise remain undetected.
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Figure 1 | Cellular elements underlying lateral inhibitory connections in the vertebrate OB and insect AL. a | Schematic

diagram of lateral interactions between mitral cells (MCs) and granule cells (GCs) of the olfactory bulb (OB). EPL, external plexiform

layer; IPL, internal plexiform layer; OE, olfactory epithelium; ORN, olfactory receptor neuron; PG, periglomerular cell. b | Golgi stains

of MCs in the OB of a young cat57. Note the lateral extent of the secondary dendrites, parallel to the OB surface. c | Rabbit MC and

its extensive secondary dendrites. Note the lateral projections to more than 1 mm away from the soma. The glomerulus is indicated

by a green shadow. GCL, GC layer; GL, glomerular layer; MCL, MC layer; ONL, olfactory nerve layer. d | Reconstruction of a rat MC

in a plane tangential to the MC layer. Note the extensive dendritic disk and its size compared with the glomerulus (green shadow). 

e | Golgi stain of an urodele OB. Note the multiglomerular MCs and the extensive GC arborizations57. f,g | Stains (intracellular, f; Golgi,

g) of local neurons (the functional analogues of GCs) in the antennal lobe (AL) of two insect species in which projection neurons 

(the functional equivalents of MCs) are mainly uniglomerular. Part a reproduced, with permission, from REF. 58 © 1993 Elsevier

Science; part c reproduced, with permission, from REF. 59 © 1983 John Wiley & Sons; part d reproduced, with permission, from 

REF. 60 © 1984 John Wiley & Sons; part f reproduced, with permission, from REF. 61 © 1994 Springer Verlag; part g reproduced,

with permission, from REF. 62 © 1994 Springer Verlag.
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CODING SPACE

An abstract space that is defined

by the features used to embody

the code. If a neural system

contains n neurons, one coding

space can be viewed as an n-

dimensional space, where each

dimension represents the state of

each neuron.

LOCAL FIELD POTENTIAL

The extracellular potential

between two points in a brain

region, resulting from synaptic

and other current flow at and

around the recording electrodes.

It usually reflects input better

than output.

The OB and AL as decorrelators

Slow patterns. Recordings from zebrafish MCs8 and

insect PNs13 indicate — as shown in other species10–14,21

(FIG. 2) — that the responses of principal neurons are

not static. Rather, individual neurons respond with

characteristic epochs of increased and decreased firing

that are both neuron- and odour-specific. FIGURE 4

shows an example of a locust PN and its response pat-

terns to 16 different airborne odours22. Similar pattern-

ing was seen across the responses of zebrafish MCs to

many amino acids8. Because not all responding neu-

rons express the same patterns at the same time, the

population representation is dynamic, carried by an

assembly of neurons (MCs or PNs) that evolves in a

stimulus-specific manner over time (FIG. 3b). In locusts,

this evolution can be tracked along a periodic LOCAL

FIELD POTENTIAL (LFP; 20–30 Hz), which is caused by 

the synchronized periodic firing and updating of the 

participating neurons23. LFP oscillations in the same

frequency range are also seen in fish, although their

development during a response generally lags behind

peak MC activity8.

spatiotemporal patterns of neuronal activation, a large

CODING SPACE in which to spread representation clusters

(FIG. 3a). The large size of this representation space is a

consequence of the number of possible spatiotemporal

combinations. The goal, however, is not to allow the

storage of an infinite number of items; rather, it is to

ease the handling of a smaller number of — often

unpredictable — items that the animal will, in its life-

time, need to store and recall. The second objective is to

use distributed dynamics both to confer stability on

each representation in the face of noise and to optimize

the filling of the representation space. In this article, I

will present evidence that the first olfactory relay can, in

two parallel operations, increase the separation between

the representations of chemically related odours (decor-

relation through slow dynamics) and format those rep-

resentations so that they can be sparsened in the next

station (exploiting oscillatory synchronization) (FIG. 3b).

I propose, therefore, that the OB and AL are ‘encoding

machines’that actively transform a distributed, multi-

dimensional afferent input to allow the formation of

compact and easily recalled memories.
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Figure 2 | Slow temporal patterning of odour responses. Examples of slow temporal patterning in the responses to odours of

uniglomerular mitral/tufted cells (MCs) of the mammalian olfactory bulb (OB) or projection neurons of the insect antennal lobe,

indicating that slow response patterning is not limited to systems in which principal neurons are uniglomerular. a | Response of a

cockroach projection neuron to three pheromonal stimuli. The red line indicates stimulus onset and offset. b | Responses of a rat MC

to background air (top) and to different concentrations (in M) of amyl acetate. The red line indicates the period of stimulation (500 ms).

c | Schematic summary of temporal odour-response patterns in hamster OB neurons, including mitral and tufted cells. E and S

indicate excitatory and suppressive patterns, respectively. Yellow blocks represent the odour stimulus. d | Schematic summary of rat

MC response patterns relative to the respiratory cycle (window length corresponds to one cycle). e | Responses of a rabbit MC to

three different aldehydes (5, 6 and 7 carbons). The bottom trace indicates an artificially imposed respiratory cycle; the bar marks the

period of odour presentation. Part a modified, with permission, from REF. 10 © 1982 John Wiley & Sons; part b modified, with

permission, from REF. 9 © 1989 The American Physiological Society; part c modified, with permission, from REF. 12 © 1992 The

American Physiological Society; part d modified, with permission, from REF. 14 © 1972 American Association for the Advancement

of Science; part e modified, with permission, from REF. 15 © 1995 National Academy of Sciences, USA.
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ORBIT

The trajectory that is defined by

a dynamical system, or its

motion within state space. When

applied to a system of neurons,

an orbit is an abstract

description of the states of all the

neurons and the evolution of

those states as a function of time.

stimulus identification8. Early epochs offered reliable

clues for odour classification, whereas later ones allowed

precise stimulus identification by an observer.

Mechanisms and possible formal principles. The mecha-

nisms that underlie this slow population patterning

must involve interactions within the OB (or the AL),

because afferent output shows no odour-specific or

olfactory receptor neuron (ORN)-specific patterning,

and no decorrelation over time8,24. In the locust, these

mechanisms seem to be independent of fast inhibition

in the AL25, and do not involve feedback from down-

stream areas. Slow patterning in the locust AL therefore

results from both slow inhibition (the mediation of

which is still not fully understood) and, possibly, lateral

excitatory interactions within the AL. A computational

model of the AL and its connections was used to

explore the minimum cellular, synaptic and network

requirements for generating realistic population

dynamics26,27. This revealed that distributed dynamics

similar to those observed experimentally arise naturally

in networks with realistic slow synapses and distributed

lateral connections. A more abstract approach with

smaller networks was used to explore fundamental

aspects of these dynamic phenomena28. This work pro-

poses, within the framework of nonlinear dynamical

systems theory, a ‘weak chaotic’regime called ‘winner-

less competition’28 (WLC), in which the activity of the

responding population follows an ORBIT that links

unstable states. Orbits are highly sensitive to input,

explaining the amplification over time of small input

differences. Owing to the dissipative properties of

motion, these orbits are stable, such that the population

trajectory can be resistant to noise in the participating

neurons, possibly explaining the trial-to-trial reliability

of population patterns despite probabilistic responses

in each neuron and epoch28. Qualitatively, each odour is

represented by a constantly changing assembly in

which each active neuron both participates in the

dynamics of the others and benefits from the global sta-

bility of the assembly, preventing large individual

response deviations. The possible link between WLC

dynamics and experimental observations needs to be

strengthened. However, this approach provides a sim-

plified framework for exploring olfactory responses,

their causes (such as asymmetrical inhibitory coupling)

and their computational consequences (including rep-

resentation optimization and stability). It is hoped that

this combination of experiment and theory, focused on

small model systems, will help to reveal principles of

broad relevance.

Fast oscillations and sparse representations

Oscillatory synchronization in the olfactory system was

first described using electroencephalographic (EEG)

and LFP recordings in mammals17. It has since been

found in most other systems (visual, auditory,

somatosensory and motor)29,30, including other olfac-

tory systems18,29,31,32. We are attempting to provide a

high-resolution description of the cellular, synaptic and

circuit events that underlie these oscillatory LFPs13,23,25–27

Decorrelation. Successive time epochs in a sustained

response involve different but stimulus-specific assem-

blies of active projection cells. What are the functional

consequences of this dynamic and distributed activity?

In zebrafish, spatiotemporal patterning results in a

rapid decorrelation of odour representations8; how-

ever, for this to be uncovered, representations must be

considered across MC assemblies. Decorrelation

means that the overlap between the representations of

related odours (for example, several aromatic amino

acids) decreases with time, corresponding to divergent

redistributions of activity over time across the MC

array8. In this study, the representation size remained

constant, on average. The trajectory followed by each

stimulus-evoked evolution was reliable from trial to

trial, and importantly, short response segments late in

a response were more reliable than early ones for

t
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Representation spacea
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Memory

Figure 3 | Schematic representation of the possible functions of olfactory circuit

dynamics and their organization in time and space. a | The early computations that are

carried out in the olfactory bulb (OB)/antennal lobe (AL) and their immediate targets could result in

both an expansion of the size of the coding space for odours (using spatiotemporal patterning)

and a better use of that coding space for the distribution of odour representations. Each sphere in

the stimulus space represents a combination of chemicals; each sphere in the representation

space embodies one (or a family of) spatiotemporal pattern(s). b | As an odour is processed by

the first relay (OB or AL), its representation by afferent neurons (pattern of glomerular activation) is

given a spatiotemporal format because of dynamics that result from internal connectivity within

that circuit. This patterning results in a decorrelation of representations (overlap reduction) over

time. At the same time (at least in the locust), the spatial patterns of projection neuron activation at

each oscillation cycle are compressed into patterns of few active neurons in a large population

(relay 2; here, the mushroom body). This transformation results in an increase in the specificity of

individual neurons’ responses, and in a sparsening of representations8,22. The diagrammatic slabs

along the time axis represent short time epochs, approximately equivalent to one half of a local

field potential oscillation cycle. Each such epoch represents approximately the integration time of

neurons in relay 2. So, neurons in relay 2 take short ‘snapshots’ of the state of relay 1, at times

determined by the periodic output of relay 1.
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BODIAN STAIN

A reduced-silver impregnation

technique that is used for

neuroanatomical studies of

fixed brain tissue.

indicate that groups of neurons with outputs close to

the electrode tend to fire in common periodic epochs.

The LFP does not, however, reveal any details of the

activity that causes it. For example, in the simplest case,

it could be caused by a subgroup of neurons that all fire

together, periodically and precisely in phase throughout

the epoch of oscillation.Alternatively, it could be caused

by a neuronal group, the members of which change as

the response progresses, but which, when they fire, do

so in the proper phase. It could also be caused by a

dynamic group of cells in which some, but not all,

phase-lock to each other. Because the LFP is a mean, the

influence of the phase-locked neurons (even if they are

few) on the LFP waveform can be greater than that of

the neurons that fire independently. Finally, LFP oscilla-

tions could also result from a dynamic assembly in

which the active neurons can produce both locked and

non-locked spikes, at different times in the response.

Although seemingly baroque, this is what occurs in the

locust AL13,23,34. Because PN output is temporally pat-

terned (see above), not all PNs fire in the same epochs;

when individual PN firing events, collected over many

trials, are compared with the LFP, the spikes produced

by individual PNs in some epochs of a response tend to

be locked, whereas spikes produced earlier or later by

the same PNs are not13. These epochs of locking are

in insects, and to test their functional relevance21,33. This

system offers the prospect of understanding encoding,

decoding and functional/behavioural aspects of periodic

and synchronized activity in a brain area.

Causes and behavioural relevance. Oscillatory synchro-

nization in the locust AL arises through the action of

local inhibitory GABA (γ-aminobutyric acid) neurons

(LNs) with widespread output to other LNs and to the

PNs (FIG. 1f,g). Synchronization can be blocked by 

the local infusion of Cl– channel blockers into the AL25.

However, blocking fast inhibition leaves untouched the

slow inhibition that is important for generating slow

response patterning25. Consequently, the global, pat-

terned PN population output can be maintained while

disrupting periodic synchronization25. This dichotomy

of inhibitory actions allowed us to establish the relevance

of oscillatory synchronization, using both behavioural

(in honeybees)21 and physiological (in locusts) assays25,33.

Hidden activity. If oscillations are functionally relevant,

how and why are they useful? Let us first examine what

an oscillatory LFP indicates. An LFP is a weighted aver-

age of local potential fluctuations that are caused by

events (in our case, mainly synaptic currents) in the

vicinity of the sampling site. Oscillations in the LFP

b c
One KC, 16 odours

One PN, 16 odours

KC axons

KC axons

βLN

βLN

MB (KCs)

LH (LHIs)

AL (PNs and LNs)
PN

a

Figure 4 | The locust olfactory circuits and the transformation of response properties between the first and second

relay. a | BODIAN STAIN of a locust brain (transverse section) showing the antennal lobe (AL), mushroom body (MB) and lateral horn

(LH). The inset shows the terminal dendrite of one projection neuron (PN) in one glomerulus; in locusts, each PN sends dendrites to

~15 of ~1,000 glomeruli. KC, Kenyon cell; LHI, lateral horn interneuron; LN, local inhibitory neuron. Scale bar, 80 µm (inset, 20 µm).

b | The bottom panel shows a tetrode recording from one PN in the AL and its responses to 16 different odours (ten trials each;

odour pulses of 1 s are indicated by yellow shaded areas). Note the high baseline rates, high probability of response and odour-

specific temporal patterning. The top panel shows a tetrode recording from one KC in the MB and its responses to the same 16

odours. Note the very low baseline rate, high specificity and brevity of response22. c | Golgi stains of KC axon tracks in the MB beta

lobe and of beta lobe neuron (βLN) dendrites, sampling across those axons (see diagram in inset). βLNs are few (possibly several

tens to hundreds) relative to the number of their KC inputs (50,000). The anatomy of the KC–βLN circuit is reminiscent of the

microcircuit between beams of many parallel fibres onto the dendrites of Purkinje cells in the cerebellum53.
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TETRODE

An extracellular electrode that

comprises four juxtaposed

recording channels, which can

be used to disambiguate the

signals emitted by individual

point sources. Because each

neuron occupies a unique

position in space, its spikes are

‘seen’slightly differently by each

electrode, providing a unique

signature. This technique allows

the identification of many more

neurons than there are sampling

electrodes.

AFTERHYPERPOLARIZATION

The membrane

hyperpolarization that follows

the occurrence of an action

potential.

PNs diverge, on average, to ~600 KCs. Third, given this

fan-out ratio, the number of PNs (830) and the num-

ber of KCs connected to PNs (25,000–50,000), each KC

must receive convergent input from 10–20 PNs, on

average. Fourth, KC responses to PN spikes can be

amplified by voltage-dependent nonlinearities that

also shorten excitatory postsynaptic potentials (EPSPs)

when the input causing them is strong enough22,32. So,

KCs will summate EPSPs preferentially if their timing

is synchronized. Fifth, a short feedforward circuit

through inhibitory lateral horn interneurons (LHIs)

produces inhibitory postsynaptic potentials onto KCs

that are out of phase (FIG. 5b) with the EPSPs caused by

synchronized PNs22. Because individual LHIs respond

to most odours, because LHIs are few (~60) and

because they diverge extensively in the MB, they can

collectively inhibit the KCs during half of every oscilla-

tion cycle caused by any odour. This ensures that KCs

can summate PN input only briefly and periodically

during the other half of each cycle; that is, before the

LHIs fire (FIG. 5b).

How, then, do KCs respond at all? This is explained

by the limited convergence of PNs onto any KC, by the

transient nature of the PN output during odour stimu-

lation, and by a presumably high KC firing threshold.

Only when a sufficiently high proportion of the PNs

presynaptic to a KC fire synchronously does that KC fire

an action potential. The brevity of the KC response

could be explained by two observations: first, a large and

long-lasting AFTERHYPERPOLARIZATION follows each KC

spike32, making EPSP summation less effective and fur-

ther firing unlikely; and second, the evolving nature of

the PN output ensures that, within a few cycles, the set

of co-active PNs has changed. So, sparsening results

from an asymmetrical influence of periodic excitation

and inhibition on each KC: excitation is highly specific,

whereas inhibition is not (FIG. 5a,b). These results show

that neurons can act as coincidence detectors35,36, and

they reveal how oscillatory synchronization underlies an

important computation.

Significance. Oscillatory synchronization and a set of

appropriately tuned ancillary mechanisms can, in one

step, convert a dense, distributed and redundant stim-

ulus representation into a sparse one. But are oscilla-

tions necessary? I would argue that shaping synthetic

and specific responses might not be easy, especially if it

must be achieved in only one step. Synthetic tuning

implies the convergence of many inputs onto one 

neuron. If that neuron must respond only to the co-

activation of all (or most) of its converging inputs (a

logical ‘AND’), it must be able to ignore a pattern in

which only a subset of these inputs is vigorously active,

but respond when all inputs are equally active. In other

words, it must be able to select against temporal sum-

mation and for spatial summation of (coincident)

input; input synchronization and active shortening of

the integration window, as found here, is a solution to

this problem. It will be interesting to determine

whether solutions that do not use synchrony are

equally efficient.

different for different PNs and for different stimuli.

Possible reasons for this conditional locking are indi-

cated by modelling experiments26,27: the strength of

locking of any PN spike is correlated with the number 

of presynaptic LNs that are active in the short period

before that spike. Consequently, the epochs during

which the spikes of a PN are locked to the LFP can be

determined continuously by the instantaneous state of

the network and of the LNs presynaptic to that PN.

These observations matter for several reasons. First,

they indicate that detecting pairwise correlations

between any two neurons can be difficult: it is easy to

miss those few oscillation cycles in which the two exam-

ined PNs fire synchronously13,23, and it is similarly easy to

erase the existence of a transient correlation by improper

data analysis (for example, by measuring inter-cell corre-

lations over time windows that exceed the average dura-

tion of pairwise correlation). Realizing the transient

nature of pairwise synchronization is crucial to under-

standing the decoding of these signals (see below).

Second, they indicate that LFP oscillations arise from a

large number of spikes, of which only a fraction is locked

at any one cycle. This is also important because, as we

will see, the decoding circuits will not react to all spikes

equally. The overall PN output during an odour response

is therefore a complex distributed pattern in which PN

spikes can be found at any time, but with a bias towards

some periodic epochs, imposed by collective LN activity.

The cells that are active together at different cycles change

throughout a response and the spatiotemporal patterns

differ for different odours.

Decoding. How is all this decoded? Recent intracellular

and TETRODE recordings from Kenyon cells (KCs) — the

intrinsic neurons of the mushroom body (MB) —

indicate a marked transformation of representations

between the AL and the MB22 (FIGS 3 and 4). PN

responses are long lasting, patterned, transiently

locked, highly probable when tested over a set of ~20

randomly selected odours, and superimposed on a

baseline firing rate of ~4 spikes s–1. By contrast, most

KC responses are extremely brief (~2 spikes), conse-

quently unpatterned, locked to the LFP, highly improb-

able over the same odour sets, and superimposed on a

baseline firing rate of 0.005–0.025 spikes s–1 (REF. 22).

FIGURE 4 shows the responses of a typical PN and KC to

the same set of 16 odours. The information content of

a KC spike is clearly much higher than for a typical PN.

Because KC responses are rare and because the 

MB contains many more KCs than there are PNs

(50,000 compared with 830, respectively), odour repre-

sentations in the MB are sparse22. The MB therefore

seems to be sparsening (in space and in time) odour

representations.

How is this accomplished? Some of the basic mech-

anisms are summarized in FIG. 5a,b. KCs and the circuits

that surround them act as coincidence detectors on the

dynamic PN input22. This results from several cooper-

ating sets of features. First, the olfactory input to KCs is

a complex pattern of PN firings distributed in space

and in time. Second, anatomy indicates that individual

© 2002        Nature  Publishing Group
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Figure 5 | Mechanisms and possible consequences of sparsening of sensory representations by oscillatory patterning

and coincidence detection. a | The main cellular elements in the early olfactory system of locusts. The antennal lobe (AL) contains

about 830 excitatory projection neurons (PNs) and 300 local inhibitory neurons (LNs). Interactions between PNs and LNs within the AL

generate the patterned PN output. The 830 PN axons run through the mushroom body (MB) and terminate in the lateral horn (LH). In

the MB, each PN contacts ~600 Kenyon cells (KCs), which are distributed throughout the MB. Each KC receives inputs from an

estimated average of just 10–20 PNs. A single KC therefore samples the states of a small subset of PNs. The same PN axons

terminate in the LH, which contains about 60 GABA (γ-aminobutyric acid) interneurons (LHIs)22. LHIs send branched and divergent

projections to the MB, contacting KC dendrites. Because LHI responses to odours show little stimulus specificity, each KC receives

reliable inhibition at each oscillation cycle, out of phase with the excitation from a subset of PNs (b). During each oscillation cycle, an

ensemble of PNs is activated, among which some are tightly locked. Most KCs will receive weak excitation caused by the few active

PNs that each KC is connected to; these KCs will remain silent. For a subset of KCs, however, a significant proportion of the PNs

presynaptic to them will be activated. The action potentials of these KCs encode the co-activation of these PN sets. At least two

mechanisms ensure that these KCs produce an action potential only if their presynaptic PNs fire at the right time. KC intrinsic

properties amplify and shorten excitatory postsynaptic potentials (EPSPs) when the input is sufficiently strong; this automatically

reduces the KC effective temporal integration window at each oscillation cycle. Second, the feedforward circuit through the LH inhibits

all the KCs during each half of each oscillation cycle (b). This ensures that most KCs are actively kept silent during an odour

presentation and that PN-evoked EPSPs can summate only during the short period of each cycle that corresponds to synchronized

PNs firing. Spurious and ill-timed PN spikes must compete with an inhibitory postsynaptic potential and are therefore less effective. 

b | Schematic of the firing time probability of PN, LHI and KC populations relative to the local field potential. c | Schematic indicating

how the combination of decorrelation and sparsening in early olfactory circuits could allow a simple decoding of odour identity by slow

temporal integration (Σ) by neurons such as the MB beta lobe neurons (FIG. 4c). Odours A (blue) and A′ (yellow) evoke overlapping PN

response patterns in the AL. The overlap between them decreases with time, but because of the dense, distributed representation

mode in the AL, the sums of the A and A′ patterns over time overlap. If, by contrast, the AL patterns are sparsened in the MB, the sum

of the A and A′ patterns in the MB can have very little overlap, implying that simple integrators (one for A and one for A′) downstream

of the MB could easily differentiate them. A temporal pattern could therefore be decoded without recourse to sequence decoding.
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cycle at a time, with no apparent memory of activity in

previous cycles. For this reason, slow dynamics might

seem to be irrelevant. But we believe them to be essen-

tial. First, sequence decoding could be accomplished

downstream of KCs — for example, by extrinsic neu-

rons in the alpha and beta lobes of the MB33,39,40 (FIG. 4c)

— using unknown spatiotemporal integration mecha-

nisms. Alternatively, the relevance of slow dynamics in

the AL might be implicit in the KC responses. We have

proposed that the AL/OB output is a self-organized

process, the outcome of which becomes less ambiguous

with time8,34. I would argue that the evolution of AL/OB

patterns might need no decoding per se. According to

this perspective, dynamics are crucial for the optimiza-

tion of the code, but need not be the code itself (that is,

a feature to be decoded); the complicated patterning we

observe in AL/OB neurons might simply be part of the

process through which the format of the message is

actively optimized for further processing (learning,

association, recall) by downstream areas. The more

time there is available for optimization (that is, the

longer the stimulus), the easier the discrimination. The

decoding could therefore occur piecewise over time,

becoming increasingly refined as it is updated with each

oscillation cycle, or alternately, it could be achieved by

simple temporal integration, as explained below.

Temporal patterning without sequence decoding

The existence of a sparsening stage in the representation

considerably simplifies the read-out of spatiotemporal

patterns. Consider odour A, which is represented in the

periphery by a physical array of activated glomeruli.

This representation overlaps with that of A′, a related

odour. By imposing a temporal structure on this repre-

sentation, the OB/AL unfolds the spatial patterns of A

and A′, and reduces overlaps (FIG. 5c). In the locust, using

the periodic output of the AL, the MB sparsens these

representations at each oscillation cycle across a large

assembly of KCs. Both transformations decrease the

probability of overlap between representations. This

implies that slow postsynaptic integration of KC out-

puts (sensitive to the identity but not to the order of

activation of the responding neurons) might suffice to

separate A from A′, even if these assemblies contain a

few common elements, as a consequence of their relat-

edness or common root. (This would not be possible

with PNs in the AL, especially if many patterns needed

to be stored, because PN representations are dense.)

Neurons in the alpha and beta lobes, the dendrites of

which sample the axons of hundreds to thousands of

KCs33,39,40 (FIG. 4c), could carry out this simple inte-

gration. In conclusion, one could imagine that slow

temporal patterns, although crucial for the separation

of representations, are never actually decoded as such.

More generally, the creation of spatiotemporal repre-

sentations by circuit dynamics might be a transient

phase in signal processing, used simply to spread out

those representations in a larger coding space and to

facilitate decoding (for example, sparsening followed by

conventional spatiotemporal integration). Note that I

do not exclude the possibility of sequence decoding

There are practical considerations. The detection of

sparse representations, when they exist, can be difficult,

simply because spikes might be extremely rare. If there

is no independent reason to suspect the existence of

such responses (such as intracellular recordings that

indicate stimulus-related subthreshold activity), it is

easy to miss these few, highly informative action poten-

tials. However, KC action potentials are highly signifi-

cant only because they ride on a very low baseline firing

rate. So, mechanisms must be invested to secure the

contrast between response and no-response. This mode

of representation therefore has an associated cost that it

would be interesting to estimate.

Sparsening has many advantages, especially if it

occurs in a structure that is implicated in learning

(such as the MB). As well as reducing overlaps, sparse

representations could facilitate storage (fewer synapses

need to be modified), pattern matching (fewer elements

need to be compared) and pattern association: the dif-

ferent attributes of a percept (for example, shape,

colour, texture, odour, identity and category) should,

in principle, be more easily associated if they require

the linking of fewer neuronal elements. Conversely, by

combining many converging inputs, specific neurons

(KCs in our case) could contribute to the formation of

the complex associations that underlie perceptual

binding29,30,37. Sparse, synthetic representations are use-

ful, but they eliminate the detail and segmentability of

a representation (Gestalt). This is consistent with

behavioural and psychophysical observations5,6,38 in

olfactory perception. Another possible advantage of

the phenomena that we describe is that they are adap-

tive. The feedforward inhibitory loop that sharpens KC

tuning could also be viewed as a compensatory mecha-

nism for the sloppiness of the oscillatory clock: the LFP

oscillation frequency usually varies between 15 and 

30 Hz from cycle to cycle18. Because feedforward inhi-

bition is locked, cycle by cycle, to each ongoing wave of

excitation, delays or advances in the PN output are

always compensated for adaptively by LHIs. The relative

lack of formatting precision in the PN output can

therefore be corrected automatically.

Finally, our results imply that not all spikes are alike:

whether a PN spike succeeds in activating its targets will

be determined by the timing of that spike relative to the

timings of other spikes that are produced by other neu-

rons at around the same time. The relevant information

content of a PN spike is therefore determined by its tem-

poral correlation with the spikes of other PNs that share

the same targets; it cannot be measured meaningfully

without the knowledge of these spatiotemporal relation-

ships. The existence of oscillatory synchronization can

therefore indicate a selective filtering of throughput.

Are slow dynamic patterns features of a code?

So far, it seems that decoding of the AL output by KCs

makes no explicit use of the dynamic features of PN

responses. KCs do not seem to accomplish any kind of

sequence decoding across the incoming PN input;

rather, each KC selectively assesses the state of a small

part of the PN assembly, one fraction of an oscillation
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HAMMING DISTANCE

The number of bits by which

two n-bit vectors differ. For

example, the Hamming distance

between 001101 and 001110 is 2.

It is also the square of the

Euclidian distance.

Presumably, evolution exerted some selective pressure

on brain mechanisms that serve both pattern forma-

tion/memorization and recall equally well. So, we

should consider the possibility that dynamics might be

useful not only for representation, but also for recogni-

tion. For example, reinforcing, through learning, the

connections between the neurons that form sequences

in a spatiotemporal pattern might facilitate reactivation

of the sequence by a corrupted input, and thus recogni-

tion. This idea, sometimes called ‘pointer chain’, is

implicit in Marr’s paper41 and is developed in Kanerva’s

book42 (BOX 1). Circuit dynamics might also be crucial

when the animal is actively looking for a particular fea-

ture: top-down influences might bias and facilitate the

recognition of the searched item by more peripheral cir-

cuits43. In brief, circuit dynamics might have functions

that we do not yet understand or even suspect, because

mechanisms. I simply point to a realistic solution, pos-

sible here only because AL and MB processing results in

advantageous representation formats.

Circuit dynamics as a mechanism for recall

Forming and storing representations (for odours as for

any other feature) is clearly not an end in itself for the

brain. Memories are formed because they might be

needed later to help in decision-making and action. In

other words, the format of what we call a ‘response’

probably depends as much on the process that forms a

representation as it does on the process that will lead to

recall of that representation at a later stage: when an ani-

mal explores and samples the world, it might not always

choose between acquisition and recognition modes.

These two operations must therefore be able to occur

through the same machinery and the same process.

Box 1 | Sparse memories, the cerebellum and the mushroom body

Marr41 and Kanerva42 proposed related theoretical approaches to the problem of memory storage in neural circuits.

Their proposed data structures (for the cerebellum) are reminiscent of those described here. Marr proposed a scheme in

which three features of connectivity — divergence of mossy fibres onto granule cells (GCs), convergence of mossy fibres

onto GCs and very high GC number — are elements of a sparsening design. Each mossy fibre input pattern to a GC is

called a codon, and each GC fires only when all of its afferents are active. Simple calculations show that this naturally

leads to overlap reduction between input patterns. This rule is reminiscent of the projection patterns and input

transformations between the antennal lobe and the mushroom body (MB)22.

Kanerva42 imagines n binary neurons that define a space, {0,1}n, where n » 102. If each memory (representation) is an 

n-bit word, 2n memories can be encoded. A HAMMING DISTANCE d (0–n bits) is used to measure the separation between any

two points (dissimilarity between two memories). Given an arbitrary point x, most of the space lies d = n/2 bits away

from x (most points are uncorrelated with x). If n = 1,000 neurons, only 10–10 of the space will be within 400 bits of x.

If we define memory item X as anything within 400 bits of x — if we aim to store a number of items that is small relative

to 21,000 — then recognition can be almost guaranteed if the state of each neuron can be determined with a success

probability of 0.6 (600 correct bits out of 1,000). So, if memories are spread out in a large coding space, recognition could

occur even with a very partial match between object and target patterns.

This idea is appealing if applied to projection neurons (PNs). At each odour-induced oscillation cycle, we can picture

the PN assembly as defining a 830-bit word in which up to n/4 of the bits are ‘1’s. At later cycles, PN patterns become

decorrelated — the mean distance between words created by similar odours increases. Provided that the occupation of

the coding space is optimized (decorrelation) and the decoding is carried out correctly, recognition could occur with a

very partial match.

The decoding stage is crucial. The 2830 patterns that PNs could produce per oscillation cycle cannot each be assigned to

an individual neuron. Kanerva’s solution is a sparse and distributed memory, where ‘sparse’means that only a fraction of

possible words will be represented physically in a ‘storage location’:he considers that to be the GCs. For our purpose,

imagine the storage location to be the Kenyon cells (KCs). KC numbers range from 2,500 (Drosophila) to 4 ×105

(cockroaches) per MB. The distribution of the n-bit words embodied by these storage locations should ideally be

homogeneous in {0,1}n space. The memory should also be distributed, because the distribution of points in {0,1}n means

that any two points have many common neighbours. Confusion can be avoided by representing an input across a

combination of storage locations. In Kanerva’s implementation, the memory item is copied across several GCs, and

identification converges rapidly to the stored item, if it exists. Convergence also occurs when recalling input sequences,

which is the format of the PN input to KCs. In Kanerva’s implementation, the ‘bit locations’(where memories are stored as

synaptic weights) are the synapses between GCs and Purkinje cells (PCs). A single GC diverges onto many PCs, and a

single PC receives many GC inputs (parallel fibres). The PC acts as the output line and sums GC input during recall. If we

substitute KCs for GCs, KC axons for parallel fibres, and extrinsic MB neurons for PCs, we obtain a prototypical MB:KC

axons make many en passant synapses in the pedunculus and lobes. The recipients of these contacts are ‘extrinsic’neurons

with stratified dendrites that comb through the KC axon arrays (FIG. 4c), just as PCs do across parallel fibres33,39,40,53. Marr

and Kanerva propose a rationale for this architecture. However, theory and experiments do not fit perfectly. For example,

Kanerva’s scheme implies that learning occurs at the GC–PC synapse. Although odour memories probably reside in

KCs54, synaptic transmission by KCs might not be required during odour learning55,56. In addition, Kanerva’s scheme

requires that most GCs (KCs) receive n/2 inputs (n being the number of input lines:mossy fibres for Kanerva, PNs for us).

This is true neither of the cerebellum nor of the MB:convergence is ~ 5:1 onto cerebellar GCs and ~ 10–20:1 onto KCs22. In

olfactory circuits, we believe that this small convergence ratio is a constraint to sparsen odour-activated patterns. Perhaps

this is also true of GC activation patterns.
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HOPFIELD NETWORK

A type of trainable,

asynchronous artificial neural

network with symmetrical

connections that defines sets of

attractor states. Given a certain

input set, a Hopfield network

can therefore be made to settle

into a given attractor, in a

process akin to pattern

completion.

ATTRACTOR

Given a dynamical system and

the state space in which it lives

(that is, all the possible states

that this system can occupy), an

attractor is a preferred region of

state space; that is, a state or set

of states to which the system

moves inexorably as time

approaches infinity.

suppress the baseline noise that results from non-

activated PNs. Modulatory neurons and their potential

role for plasticity in ALs could be similarly important.

Finally, the mechanisms that ensure that KCs fire only

when they detect the right input combination probably

require delicate fine-tuning of the balance between

excitation and inhibition. Inhibitory feedback from the

output of the MB to the dendrites of KCs is known to

exist40. These pathways might contribute to the adaptive

control of KC excitability and therefore to a more-or-less

constant representation sparseness. In conclusion, the

experimental results and proposed principles that are

summarized above require mechanisms that can dis-

criminate noisy from meaningful differences. There are

a few promising candidate mechanisms that could

ensure or promote resistance to noise, but much work

is needed in this crucial area.

Decorrelation and perceptual clusters

Although the decorrelation of input representations 

is useful in principle, it could also have undesirable

effects. For example, the perceptual relatedness of

odours (for example, all citrus-like smells) might be

lost. Similarly, individual odours at different concentra-

tions usually retain, at least over some range, the same

perceptual identity. But if the patterns evoked by dif-

ferent concentrations of the same odour differ even

slightly from one another, decorrelation would enhance

those differences and possibly preclude their perceptual

grouping. How is this potential conflict resolved? Again,

we do not know yet, but we can suggest several possible

solutions, each of which needs to be explored. The first

is that perceptual grouping could be a high-level,

learned property. In this scheme, input patterns that

end up in the same perceptual group (for example, sev-

eral concentrations of jasmine) do not actually evoke

related patterns after decorrelation. But because the

animal experiences all these concentrations within a

given epoch (perhaps while visiting a given cluster of

flowers), and because all patterns experienced during

this period are equally meaningful (they are all associ-

ated with a reward), all patterns evoked by the different

concentrations are lumped, downstream of the circuits

responsible for decorrelation, as ‘meaning’the same

thing (in this example, jasmine). This is a high-level

grouping, by contingency.

A second possibility draws on the fact that decorrela-

tion is a temporal process, so early phases of a represen-

tation (say, the first 100 ms) are similar across related

stimuli8. Provided that the brain can hold this (fleeting)

information, it could use it for perceptual grouping or,

conversely, ignore it for precise identification using

decorrelated patterns. This supposes the existence of

several read-out streams — for example, one for early

patterns and one for the entire pattern — and a top-

down system to decide which stream to listen to.

A third hypothesis is that network dynamics and spars-

ening never completely orthogonalize representations.

In this scheme, the dynamics would be designed such

that the spacing between representation clusters increases

faster than the spacing between representations within a

our functional framework, defined by experimental

constraints, is often much narrower than that in which

brains normally operate.

The problem with noise

Much of the processing described above exploits mech-

anisms that should, in principle, be very sensitive to

noise. Input decorrelation, for example, requires an

operation akin to the amplification of small input dif-

ferences, but not of ones that arise from natural, noisy

fluctuations of the stimulus. Also, pattern encoding by

KCs relies on rare but highly informative action poten-

tials that must not be polluted by spurious spikes. How

are these problems solved? We do not know, but there

are some hints to the possible solutions. The conver-

gence of many (in some cases thousands of) ORNs

onto single glomeruli (and therefore few output neu-

rons)44–46, and the distributed sprinkling of these ORNs

on the receptive sheet44,47, limiting the probability of

correlated noise, could allow the averaging necessary to

increase signal-to-noise ratios. In addition, slow and

diffuse communication within individual glomeruli

could contribute to averaging or adaptive gain control.

This issue clearly needs careful attention. A second

potential mechanism for noise reduction is a form of

fast learning that is seen in the locust48. AL circuits seem

to undergo stimulus-specific modifications (the under-

lying mechanisms of which remain unknown) to the

extent that successive responses of PNs to the same

stimulus rapidly decrease in intensity, but become more

precise and coordinated with those of other PNs48.

Because olfaction is generally intermittent, and because

the detection of an odour at one time predicts the pres-

ence of the same odour in the very near future (odours

rarely disappear suddenly), the AL circuits might oper-

ate at low detection threshold at ‘rest’(explaining the

high responses in a naive state), but immediately ‘focus’

on a signal once it has been detected (explaining the

refined representation after just a few trials). If this

form of learning exploits short-term changes in the

synapses formed by the activated neurons, only those

synapses that are repeatedly activated over successive

samplings could be reinforced. In other words, unreli-

able contamination occurring on some but not all trials

(noise) would be averaged out. Third, network mecha-

nisms (especially the connectivity matrix of OB/AL 

circuits) could have a crucial role in ensuring stability in

the collective output. Recall that the dynamic evolution

of the OB/AL output is forced as long as the stimulus

lasts. So, the input signal is not an initial condition (as it

is in HOPFIELD NETWORKS), but rather, an ongoing signal

that generates an ongoing dynamical pattern across the

AL. During that time, the stimulus could define a state

space in which the ATTRACTOR is unique. There might be

particular rules of connectivity that confer stability on

their dynamical evolution in response to noisy stimula-

tion. This is an area in which theory, modelling, neu-

roanatomy and physiology will all be necessary. Fourth,

the powerful slow inhibition that is mediated by LNs

(in addition to fast, synchronizing inhibition)25 creates

a means by which to average out noise and also actively
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several timescales and correlation rules have an integral

role in optimizing stimulus representations. Dynamic

formatting might be a transient phase in the processing

of these signals: once representations have been 

optimized, their apparent initial complexity could be

reduced to simple responses that are carried by a few

specific neurons. Circuit dynamics might have other

advantages for processes such as memory recall, but

experimental support for this is so far lacking.Advances

in our knowledge of how natural stimuli are distributed

within odour space and what multiple tasks olfactory

systems must be capable of (for example, learning, recog-

nition and classification) will help us to understand

better why olfactory  computations are the way they

are; I would argue that a traditional, passive ‘stimulus–

response’view of sensory processing hinders our under-

standing of seemingly complicated modes of operation

(BOX 2). Note that the computational framework that 

I propose need not be valid only when examining com-

plex (multimolecular) odour processing. Indeed, what 

is crucial is simply that the input signal — be it mono- 

or multimolecular — be transduced and processed in

parallel by interacting ‘channels’(which might represent

the several receptor types and postsynaptic neurons that

are activated by a single molecule).

Finally, one should resist the temptation to propose

an artificial and misleading dichotomy between spatial

and temporal aspects of olfactory codes. As emphasized

previously34, I believe that spatial (that is, identity

related) and temporal aspects are two sides of the same

coin. What matters is that we understand the functions

of each one of these facets, and the features of cellular

and population activity that matter to the neurons

doing the ‘decoding’. It will be interesting to learn

whether the principles and mechanisms that I propose

here apply to other olfactory systems, including those 

of mammals, and possibly also to other brain systems

that are involved in the processing of multidimensional

signals, such as vision49–51 or action52.

cluster. So, patterns that are similar (different concen-

trations or related chemicals) remain more similar to

one another than to any random pattern. This type of

biased decorrelation might require a particular circuit

architecture.

Conclusion

Much integrative work is needed to understand the com-

putational organization of olfactory systems. I propose a

systems perspective that is based on experimentation

with small olfactory brains; by exploiting their relative

simplicity, we have shown that circuit dynamics over

Box 2 | An active and systems perspective on sensory processing

The contrast between odour representations in the antennal lobe and in the mushroom

body is enormous. An observer looking at activity in these two areas might never

suspect that they are separated by only one synapse. Similarly, observing individual

Kenyon cell responses alone does not hint at integrative properties that depend on

presynaptic spike timing and on the coordination of input arrival. In other words,

understanding the computations that take place in a circuit can be difficult if we fail to

consider individual neurons as parts of a system in action. I would argue that our

lexicon introduces subtle but real biases in our thinking about sensory processing. Our

predisposition as sensory physiologists is to call ‘responses’the spike patterns that follow

a stimulus;we then use these responses to define ‘receptive fields’. In doing so, we forget

that these terms are meant only to be operational. Our thinking about sensory

integration seems to be much too linear and passive:stimulus a leads to a response in

area x, which produces a response in area y, and so on. In reality, neural circuits are often

massively interconnected and reciprocally connected. Similarly, our thinking generally

ignores the fact that, with the exception of motor neurons, a given neuron is never an

end-point or its ‘response’an end-product. So, how a neuron behaves might be relevant

not as a response per se (something to be analysed by us to estimate the information it

contains about a stimulus, although this is, of course, useful knowledge), but as part of a

transformation (possibly extremely complex and distributed) to help further processing

(for example, optimization, storage, recognition and retrieval) in the area in which the

neuron lies (for example, decorrelation in circuits of the olfactory bulb) or in ‘target’

circuits. Thinking about sensory integration in these active terms (considering

‘responses’not only as products, but also as ongoing transformations towards some

other goal) might be helpful as we try to understand some brain operations.
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