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First published December 19, 2007; doi:10.1152/jn.01283.2007. Learn-
ing and memory has been studied extensively in Drosophila using
behavioral, molecular, and genetic approaches. These studies have
identified the mushroom body as essential for the formation and
retrieval of olfactory memories. We investigated odor responses of the
principal neurons of the mushroom body, the Kenyon cells (KCs), in
Drosophila using whole cell recordings in vivo. KC responses to
odors were highly selective and, thus sparse, compared with those of
their direct inputs, the antennal lobe projection neurons (PNs). We
examined the mechanisms that might underlie this transformation and
identified at least three contributing factors: excitatory synaptic po-
tentials (from PNs) decay rapidly, curtailing temporal integration, PN
convergence onto individual KCs is low (�10 PNs per KC on
average), and KC firing thresholds are high. Sparse activity is thought
to be useful in structures involved in memory in part because sparse-
ness tends to reduce representation overlaps. By comparing activity
patterns evoked by the same odors across olfactory receptor neurons
and across KCs, we show that representations of different odors do
indeed become less correlated as they progress through the olfactory
system.

I N T R O D U C T I O N

Understanding sensory learning requires some knowledge of
the format of sensory representations in the networks where
learning occurs and of the mechanisms by which these repre-
sentations are stored or associated with other behaviorally
relevant features (e.g., reinforcers, other sensory or motor
representations). An example from the visual system illustrates
the importance of representation format: the long-term mem-
ories of faces do not lie in the retina, although all the sensory
information needed to construct face representations is origi-
nally present in the collective activity of ganglion cells. Indi-
vidual ganglion cells can participate in the representation of all
possible visual stimuli, from faces to moving bars. Changing
synaptic strengths in the retina to store the memory of a
specific face there would interfere with the representations of
most other stimuli, making storage inefficient and imprecise.
Rather the brain forms new often invariant representations of
these objects in “higher” brain networks and in formats that are
thought to be useful for storage and association (Logothetis and
Sheinberg 1996; Quiroga et al. 2005; Tanaka 1996).

The olfactory system, with its relatively compact and shal-
low networks, offers a good opportunity to understand coding
strategies optimized for learning. In vertebrates, only one layer,
the olfactory bulb, separates the sensory neurons from olfac-
tory cortex, an associative network. In insects, only the anten-
nal lobe separates the sensory neurons from the mushroom

body, a structure required for memory formation and retrieval
(Erber et al. 1980; Heisenberg et al. 1985). As in the visual
system, representations of olfactory stimuli in the sensory layer
are distributed among a relatively small population of neurons.
In Drosophila, there are only �60 different types of sensory
neurons (OSNs), many of which have well-characterized odor-
response properties (Clyne et al. 1999; Gao and Chess 1999;
Hallem and Carlson 2006; Robertson et al. 2003; Vosshall and
Stocker 2007; Vosshall et al. 1999). Much like in the retina, a
given sensory neuron carries information about many different
stimuli; with the exception of special odors, such as phero-
mones [e.g., cis-vaccenyl acetate, carbon dioxide (Ha and
Smith 2006; Schlief and Wilson 2007; Suh et al. 2004; van der
Goes van Naters and Carlson 2007; Xu et al. 2005)], even
monomolecular odors activate combinations of OSNs. Combi-
natorial representations are efficient encoding strategies partic-
ularly when the number of possible stimuli far exceeds the
number of receptor types.

In Drosophila, olfactory sensory neurons project to the
antennal lobe; OSNs of a given type converge in regions called
glomeruli, where they contact projection neurons (PNs) and
local interneurons. Inhibitory (Python and Stocker 2002; Wil-
son and Laurent 2005) and excitatory (Shang et al. 2007) local
interneurons form widespread connections within the antennal
lobe, whereas PNs convey olfactory information to deeper
circuits in the brain, including the principal cells of the mush-
room body, called Kenyon cells (KCs). The antennal lobe
performs many important functions: because PNs of each type
receive convergent inputs from �40 OSNs of the same type,
input noise can be reduced by signal averaging (Laurent 1999);
using widespread local inhibition, the antennal lobe circuits
can compress the dynamic range of its PN output over many
orders of magnitude of input (Stopfer et al. 2003); and using
local excitatory and inhibitory interactions, the antennal lobe
broadens the tuning profiles of PNs relative to those of their
cognate OSNs, making better use of coding space (Olsen et al.
2007; Wilson et al. 2004). These operations are important first
steps in the processing of odor signals, ultimately favorable for
odor discrimination. However, because PNs are broadly tuned,
odor encoding at the level of antennal lobe output is densely
combinatorial and thus inefficient for storage.

Classical lesion experiments (Erber et al. 1980; Heisenberg
et al. 1985) and genetic blockade of KC synaptic output show
that mushroom bodies are essential for memory formation and
retrieval in fruit flies (Dubnau et al. 2001; Krashes et al. 2007;
McGuire et al. 2001; Schwaerzel et al. 2002). In addition,
many gene products with roles in learning are expressed at high
levels in mushroom body neurons (Han et al. 1992, 1996,
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1998; Nighorn et al. 1991). Nevertheless what forms olfactory
memories and associations take remains essentially unknown.
An essential step toward understanding this process is to
determine how odors are represented across KCs. Previous
studies of KC odor-response properties, using the genetically
encoded Ca2� sensor GCaMP, indicated that few KCs respond
to a given odor (Wang et al. 2004). However, the sensitivity of
the GCaMP sensor is low—typically a firing rate of 20 spike/s,
sustained for �1 s, is required for a detectable signal in vivo
(Jayaraman and Laurent 2007; Pologruto et al. 2004; Wang
et al. 2003). Under such conditions, many odor responses could
go undetected; an electrophysiological approach sensitive
enough to detect individual spikes and synaptic potentials or
currents is clearly valuable.

This study details, for the first time, the representations of
odors by mushroom body neurons in Drosophila, using in vivo
whole cell recordings. We find that these cells have highly
odor-selective responses and that odors are represented by
sparse ensembles of neurons in the mushroom body. An
important question is whether this sparseness could potentially
facilitate learning by reducing the overlap between ensemble
representations of different odors. We address this question
directly by comparing representations across KCs with those
across the sensory neurons, a comparison that is currently
feasible only in Drosophila. We show that representations of
different odors are on average less correlated in the mushroom
body than in the primary sensory layer. Reducing correlations
between different odor representations would diminish the
problem of synaptic interference during learning and is likely
to be a fundamental aspect of olfactory information processing
at this level of the system.

M E T H O D S

Preparation and olfactory stimulation

All flies were wild-type Canton-S females. For KC recordings, the
animals were aged 1–2 days posteclosion; for PN recordings, they
were 4–12 days old. They were raised on standard cornmeal medium
(Lewis 1960). Flies were prepared for recording as described (Wilson
et al. 2004) except that for KC recordings, the head was tilted forward
to enable access to the posterior surface of the brain where the KC cell
bodies are located. For KC recordings, flies were fixed in place using
epoxy (Devcon 5 min epoxy). Cells were targeted for recording with
IR-DIC optics under 400� magnification using an Olympus BX51WI
with a 40� water-immersion objective.

Odors were delivered by injection of odorized air into a constant
stream of carrier air. Two different stimulus conditions were used in
the experiments in this study: 71 KCs were recorded under conditions
that matched those used to characterize PN tuning curves (Wilson
et al. 2004), and 40 KCs were tested with a different stimulation
protocol where OSN responses have been most extensively charac-
terized (Hallem and Carlson 2006). In the first stimulus protocol, a
constant flow of air at 37.5 ml/s was directed at the fly’s head. During
odor stimulation, one 1/10 of this constant stream (3.75 ml/s) was
diverted through a vial containing odorized air. Vials contained odor
diluted 1:100 in paraffin oil (J. T. Baker), which, combined with the
1:10 dilution in the constant air stream, resulted in a 1:1,000 effective
odor dilution. Six trials of each odor were delivered with a 500-ms
stimulus duration and a 22-s interstimulus interval. Seventy-one KCs
were recorded under these stimulus conditions, identical to those used
to characterize PN tuning curves (Wilson et al. 2004).

To measure the separability of odor representations in KCs and
OSNs (Fig. 5), we adjusted our stimulus protocol to match that in the

study of Hallem and Carlson (2006) in which OSN responses have
been most thoroughly characterized to date. Odors were diluted 1:100
in paraffin oil, as with the previous stimulation protocol; however, the
flow of odorized air was increased to 5.9 ml/s, and the carrier air
stream was decreased to 24 ml/s. Forty KC recordings were made with
this odor concentration.

The 25 odors tested on KCs were: acetoin (CAS No. 513-86-0),
benzaldehyde (100-52-7), 2-butanone (78-93-3), 2,3-butanedione
(431-03-8), butyl butyrate (109-21-7), ethyl acetate (141-78-6), ethyl
butyrate (105-54-4), ethyl propionate (105-37-3), geranyl acetate (105-
87-3), 2-heptanone (110-43-0), 1-hexanol (111-27-3), trans-2-hexenal
(6728-26-3), isoamyl acetate (123-92-2), linalool (78-70-6), 4-meth-
ylcyclohexanol (589-91-3), methyl salicylate (119-36-8), 3-methylthio-
1-propanol (505-10-2), 3-octanol (589-98-0), 1-octen-3-ol (3391-86-
4), pentyl acetate (53496-15-4), pentenal (1576-87-0), phenylethanol
(98-85-1), propionic acid (79-09-4), 1-propanol (71-23-8), �-valero-
lactone (108-29-2). The 33 odors tested on the PNs (Wilson et al.
2004) were benzaldehyde (100-52-7), 2,3-butanedione (431-03-8),
1-butanol (71-36-3), butyric acid (107-92-6), L-carvone (6485-40-1),
cyclohexanol (108-93-0), cyclohexanone (108-94-1), 1,4-diaminobu-
tane (110-60-1), ethyl butyrate (105-54-4), geranyl acetate (105-87-3),
heptanal (111-71-7), 1-heptanol (111-70-6), 2-heptanone (110-43-0),
hexanal (66-25-1), 1-hexanol (111-27-3), trans-2-hexenal (6728-26-
3), cis-3-hexen-1-ol (928-96-1), isoamyl acetate (123-92-2), linalool
(78-70-6), 4-methyl phenol (106-44-5), methyl salicylate (119-36-8),
3-methylthio-1-propanol (505-10-2), octanal (124-13-0), 1-octanol
(111-87-5), 3-octanol (589-98-0), 2-octanone (111-13-7), 1-octen-3-ol
(3391-86-4), pentyl acetate (53496-15-4), phenylacetaldehyde (122-
78-1), propionic acid (79-09-4), 4-propyl phenol (645-56-7), pyrroli-
dine (123-75-1), �-valerolactone (108-29-2). There were 16 odors
tested on both PNs and KCs.

Whole cell recordings

In vivo whole cell patch-clamp recordings were performed as
described previously (Wilson and Laurent 2005). For KC recordings,
low-resistance recording pipettes with a high taper angle, but small
(�0.5 �m) opening were shaped using the pressure polishing tech-
nique in which air (�35 psi) is forced down the lumen of the pipette
while the tip is shaped with a heated platinum filament (Goodman and
Lockery 2000; Lockery and Goodman 1998). Recordings were ob-
tained using an Axoclamp-2B amplifier with a 0.01� headstage in
bridge mode. Signals were filtered at 3 kHz and acquired at 10 kHz.

Extracellular saline contained (in mM) 103 NaCl, 3 KCl, 4 MgCl2,
1.5 CaCl2, 26 NaHCO3, 5 N-tris(hydroxymethyl) methyl-2-aminoeth-
ane-sulfonic acid, 1 NaH2PO4, 10 trehalose, and 5 glucose. Saline
osmolarity was adjusted to 275 mOsm with sucrose if necessary and
equilibrated to pH 7.3 by constantly bubbling with a mixture of 95%
O2-5% CO2. The preparation was continuously superfused with this
solution throughout the recording (2 ml/min). The saline in the
recording electrode contained (in mM) 125 L-K aspartate, 10 HEPES,
1.1 EGTA, 0.1 CaCl2, 4 MgATP, 0.5 Na3GTP, and 13 mM biocytin
hydrazide (Invitrogen). We visualized biocytin labeling of KC pro-
cesses using fluorescent conjugated streptavidin as described (Wilson
et al. 2004).

Data analysis

All data analysis was performed with Matlab (The Mathworks,
Natick, MA) or Igor Pro (WaveMetrics, Lake Oswego, OR). Spikes
were identified based on their amplitude and sharpness using a
time-derivative based algorithm custom written in Igor.

To assess whether a neuron responded to an odor, KC firing rates
were measured in successive 200-ms bins and averaged across all
trials. To qualify as a response, a KC’s firing rate had to exceed 3.5
SD of baseline firing rate in a window 0–2 s after odor onset on at
least half of the trials (typically 3 of 6 trials). We included this
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reliability criterion because KC baseline firing rates are very low: one
trial with several spikes could potentially qualify as a response. We
used a slightly more conservative 4 SD threshold for PNs. To
determine whether KC and PN tuning widths were significantly
different, we used a bootstrap approach, creating mock distributions
of tuning widths by sampling randomly with replacement from the
tuning widths of 37 PNs. We compared these mock distributions with
the observed distribution of KC tuning widths by t-test. In 105

iterations, all mock distributions were significantly different from
the KCs.

Power spectral density (PSD) of the KC membrane potential
waveforms was calculated with Thomson’s multitaper method using
Matlab routines from chronux.org. Odor-evoked power was deter-
mined by calculating the PSD of the signal during odor presentation.
The valves controlling odor flow were opened for 500 ms. PSDs were
analyzed for a 600-ms period beginning 100 ms after valve opening
(because air flow rates introduce a delay in the arrival of the odor at
the fly’s) antennae, and subtracting from this the PSD during the same
sized time window 10 s after stimulus presentation. Odor-evoked
PSDs were calculated over the 10- to 55-Hz frequency range and
averaged over all trials with a particular odor (5–15 trials) and
normalized by the sum of the PSD in this bandwidth. Confidence
intervals were at 0.01 (�2).

Sliding autocorrelations were calculated on KC membrane potential
waveforms after band-pass (2–55 Hz) filtering and down-sampling
from 10 to 1 kHz. Autocorrelation values for each trial were normal-
ized to the maximum autocorrelation value for that trial, before
averaging across all trials of an odor (5–15 trials).

We identified excitatory postsynaptic potentials (EPSPs) using a
time-derivative-based algorithm. We measured EPSP frequencies in
recordings of 27 different KCs. In a subset of 8 of those recordings,
we blocked spiking activity by the addition of 1 �M TTX to the saline
and calculated the frequency of mini EPSPs after the block. We
constructed average waveforms from 49 well-isolated EPSPs (7 dif-
ferent KC recordings, and 7 EPSPs per recording) and 50 excitatory
postsynaptic currents (EPSCs, 5 different recordings, 10 EPSCs per
recording), identified by eye.

Population vectors were constructed to represent the responses of
24 different OSN types and 40 different KCs to a panel of eight odors.
Responses of each OSN were the mean number of spikes during 1 s
after odor onset, averaged over four to six different recordings for
each OSN type. The responses of each KC were the mean spike rate
across six odor trials from that KC, calculated in a 2-s epoch after
odor. The angular separation between vectors representing two dif-
ferent odors was calculated as 1-cos(�), where � is the angle between
the vectors.

Simulations

KCs were modeled as single-compartment neurons with channels
governed by Hodgkin-Huxley kinetics: CmdV/dt � �gL(V � EL) �
Isyn, where Cm is the membrane capacitance, gL is the leakage
conductance, V is the membrane potential, EL is the leak reversal
potential, and Isyn is the sum of synaptic currents. Only passive
membrane properties were simulated: Cm � 1.0 �F/cm2, gL � 0.089
mS/cm2, EL � �57.8 mV. Model parameters were tuned to produce
the experimentally measured EPSP decay time constant: � � 11.5 ms.

Synaptic currents mediated by PN spikes were calculated according
to Isyn � gsyn [O] (V � Esyn), where gsyn is the maximal conductivity,
[O](t) is the fraction of open channels, and Esyn � 0 is the reversal
potential. Synaptic currents were modeled by first-order activation
schemes (Destexhe et al. 1994): d[O]/dt � �(1 � [O])[T] � �[O],
where [T] represents the concentration of transmitter (Bazhenov et al.
2001). [T] � A�(t0 � tmax � t)�(t � t0), where �(t) is the Heaviside
(step-) function, A � 0.5, tmax � 0.3 ms (Destexhe et al. 1994). The
rate constants, � and �, were estimated from voltage-clamp data using
clampfit software (MDS Analytical Technologies): � � 2.5 ms�1 and

� � 0.4 ms�1. Two values of the maximal conductance of PN-KC
synapses were tested: g1 � 0.05 mS/cm2 to produce ESPS with
amplitude 1.4 mV and g2 � 0.04 mS/cm2 to produce ESPS with
amplitude 1.2 mV.

To test the effect of PN:KC convergence on KC spiking probability,
a network of KCs (n � 1,000) was stimulated by PN input. PN spike
times were taken from experimental data; different KCs in the net-
work received input from different randomly selected sets of PNs. We
assumed that a KC produces a spike when its membrane potential
reaches the experimentally determined spike threshold Vth � �36.3
mV. KC spiking probability was then calculated for different values of
PN:KC convergence ratio varying between 1 and 20.

R E S U L T S

Whole cell patch-clamp recordings of mushroom body KCs
in vivo

We investigated olfactory responses in KCs using whole cell
patch-clamp recordings in intact flies in vivo. KCs were tar-
geted for recording using their characteristic location and small
(2–3 �m), clustered cell bodies; identity was confirmed by dye
filling. Input resistance at the soma was �10 G�; KCs were
held at �58 	 2 (SD) mV in current clamp. KCs showed
abundant and mostly depolarizing PSPs in the absence of odor
stimulation but very low spontaneous firing (0.1 	 0.4 spike/s).
Action potentials could be evoked by depolarizing current
injection in every KC recorded and were typically �15 mV as
recorded from the soma. They were effectively blocked by 1
�M tetrodotoxin (TTX), indicating that they are caused by
sodium conductances (Fig. 1A).

We tested KC odor responses using a panel of 25 odors,
presented at 1:1,000 dilution (1:100 in mineral oil and a further
1:10 dilution in a carrier air stream). We used this odor
concentration to match that used previously with PNs and
OSNs (Clyne et al. 1997; de Bruyne et al. 1999, 2001; Dobritsa
et al. 2003; Wilson et al. 2004). This concentration is within
the dynamic range of the OSNs (Hallem and Carlson 2006) and
is similar to that used in the standard T-maze olfactory-foot
shock learning protocol (Tully et al. 1994).

We obtained long-lasting recordings from 71 KCs at this
odor concentration and tested each neuron with 10 odors on
average, randomly selected from the panel of 25 (see METHODS).
Whereas every KC had a synaptic response to at least one of
the tested odors, spikes were evoked only rarely. Subthreshold
responses could be depolarizing, hyperpolarizing or consist of
overlapping or successive de- and hyper-polarizing epochs
(Fig. 1, B–D). A given KC could exhibit very different sub-
threshold responses, depending on the odor presented. The KC
in Fig. 1B, for example, was consistently depolarized in re-
sponse to acetoin (3-hydroxy-2-butanone) and hyperpolarized
in response to propionic acid. The KC in Fig. 1C was depo-
larized by both 2,3-butanedione and propionic acid but with
consistently different profiles.

In some cases, a depolarizing response drove the membrane
potential above firing threshold (Fig. 1D, pentenal). Examples
of spiking responses, taken from selected KCs, are shown in
Fig. 1, E–H. These responses were rare and comprised small
numbers of spikes (sometimes as few as one per trial). We now
examine KC response statistics and compare them to those of
PNs, the source of their excitatory inputs from the antennal
lobe.
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KC responses are sparse

We compared the density of odor responses in KCs to that in
the antennal lobe PNs (Fig. 2, A and B). KCs were tested
collectively with a panel of 25 different odors, PNs with 33. To
estimate representation density, we measured the spiking re-
sponse probability in KCs and PNs for each odor (equivalent to
the fraction of neurons that respond to each odor). A KC was
described as responsive if its firing rate crossed a threshold
�3.5 SD above baseline at any time in the 2 s after odor onset
(see METHODS). In our sample of 71 KCs, a given odor evoked
a spiking response in only 6 	 5% of the cells. PN response
probability, by contrast, was 59 	 14% (Fig. 2A, n � 37 PNs).
These values are similar to those measured using tetrode
recordings in the locust olfactory system where, using the same
definition of a response, 11% of KCs and 64% of PNs re-
sponded to a given odor (Perez-Orive et al. 2002). Fourteen of
the 71 analyzed Drosophila KCs did not fire a single sponta-
neous action potential during the entire recording session (note
that all KCs could be driven to spike with current injection).
Although these KCs all had clear subthreshold responses to
odor, they would have gone undetected with extracellular
recordings, possibly explaining the higher apparent response
rate in locust experiments.

We next examined the tuning width of these two neuron
populations. Each KC was tested with 10 odors on average
(range: 6–14), and tuning width was measured as the fraction
of those odors that evoked a spiking response. KCs were
narrowly tuned, with 6 	 12% of odors evoking a response in
a given KC (Fig. 2B). PNs, by contrast, were broadly tuned:

53 	 39% of odors evoke an excitatory response over all tested
PNs. Note, however, that the distribution of PN tuning curve
widths is bimodal (Fig. 2B): some PNs, possibly as many as
20%, are clearly specialists in Drosophila. PN and KC tuning-
width distributions were statistically significantly different
(P � 10�5, see METHODS).

Different anatomical classes of KCs have different
response properties

Drosophila KCs can be classified into three anatomical
types based on their axonal projections (Crittenden et al.
1998; Lee et al. 1999). �/� and �
/�
 KCs have bifurcating
axons: one branch projects dorsally and forms the vertical
lobe of the mushroom body (�, �
); the other extends
medially to form the medial lobe (�, �
). �
/�
 KCs are
easily distinguished from �/� KCs by their projections to
the thumb-like branch of the vertical lobe (�
 lobe, arrow
Fig. 2C). � KCs have a single axon, contributing to the
medial lobe. Previous work suggests that the three classes
play different roles in memory formation, possibly because
they connect to different postsynaptic targets (Akalal et al.
2006; Krashes et al. 2007; Pascual and Preat 2001; Zars
et al. 2000). We examine here whether these morphological
KC classes also differ physiologically.

�
/�
 KCs were more broadly tuned than the other two
types (P � 0.05, 1-way ANOVA). Overall, a trend of
decreasing responsiveness could be detected from �
/�
 to
�/� to � KCs, with statistically significant differences only
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FIG. 1. Odor responses of Kenyon cells (KCs). A: whole
cell patch-clamp recording of KC membrane potential. Cur-
rent injection evokes TTX-sensitive action potentials.
B–D: whole cell recordings of KC membrane potential
during odor presentation, indicated by black bar. KCs ex-
hibited a variety of subthreshold synaptic responses to
odors. Suprathreshold spiking responses (D, bottom) were
rare. Spike times during each trial, are indicated by tick
marks above Vm. Voltage traces for multiple trials with the
same stimulus are superimposed to illustrate consistency
with one trace shown in black for clarity (scale bar � 10
mV). E–H: examples of spiking responses from 4 different
KCs to a panel of different odors. Each odor is presented for
6 successive trials.
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between � and �
/�
 KCs (Fig. 2D). Only 1 of the 15 � KCs
we tested with this odor set (and 1 of the 23 total � KCs
recorded at all odor concentrations) showed a spiking re-
sponse to an odor, although all had detectable subthreshold
responses.

We also computed the average instantaneous firing rate
across all odors for all KCs of a given type (Fig. 2E).

Average KC response profiles were single-peaked and
closely followed the stimulus time course in all KC types. In
addition to being more broadly tuned, �
/�
 KCs had the
highest baseline firing rate and the most vigorous responses
to odors: they fired 4.9 	 3.0 spikes during an odor re-
sponse, significantly more than �/� KCs (2.2 	 1.2; P �
0.007, t-test).
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Synaptic drive from PNs to KCs

To examine how KCs integrate their inputs to achieve high
odor selectivity, we analyzed synaptic events in these neurons.
Our goals were to derive an understanding of synaptic integra-
tion by KCs and to estimate connectivity between the PNs and
the KCs.

QUANTAL EVENTS. We characterized the amplitude, kinetics,
and frequency of EPSPs in KCs held at 58 	 2 mV (Fig. 3).
EPSP rise time was short (�2 ms), allowing many synaptic

events to be identified easily as peaks in the first time deriva-
tive of the membrane potential (Fig. 3A). These events were
predominantly the result of spike-mediated synaptic vesicle
release because their frequency dropped significantly when
TTX was added to the saline (control: 19.8 	 13.2 s�1; TTX:
1.8 	 1.3 s�1, n � 8 KCs; Fig. 3B). TTX, however, did not
change the mode of the EPSP amplitude distribution (Fig. 3C)
and caused only a small change in its mean (control: 1.4 	 0.8
mV; TTX: 1.0 	 0.5 mV), resulting mainly from a decrease in
the distribution’s upper tail. We conclude that most spike-
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FIG. 3. Synaptic input to Drosophila KCs.
A: spontaneous excitatory postsynaptic poten-
tials (EPSPs) are detected by finding peaks in
the first time derivative of the membrane po-
tential (red: Vm, black: dVm/dt). B: rate of
EPSPs before (spontaneous EPSPs) and after
action-potential blockade with 1 �M TTX
(miniature EPSPs). C: distribution of spontane-
ous and miniature EPSP amplitudes. The upper
end of the distribution ranged to larger ampli-
tudes for spontaneous EPSPs, consistent with
the occurrence of multi-quantal events, but the
smallest EPSP amplitudes are the same under
the two conditions. D: average EPSP (top) and
EPSC (bottom) waveforms (thick black line).
Individual events are superimposed in gray,
and the exponential fit to the falling phase
shown in red. Synaptic kinetics are relatively
rapid [mean EPSP 10–90% rise time � 2.1 ms;
decay time constant � 11.5 ms; mean EPSC
10–90% rise time � 0.9 ms; decay time con-
stant � 2.8 ms]. E: distribution of rates of
spontaneous EPSP rates in KCs (32.6 	 12.7
s�1, n � 27 KCs). F: distribution of spontane-
ous spike rates in PNs (4.6 	 4.2 s�1, n � 37
PNs). G: distribution of difference between
resting potential and threshold for odor-evoked
spikes (21.5 	 5.6 mV, n � 17 KCs). H:
number of synaptic output terminals per PN in
the mushroom body (7.2 	 4.2 terminals, for
216 PNs representing 31 different glomeruli).
Red line indicates fitted � probability density
function. I: spiking responses of 23 different
PNs to benzaldehyde presentation, indicated by
gray bar. Responses are recorded in different
flies and aggregated. J: relationship between
response probability of conductance-based
model KCs and PN:KC connectivity. The ex-
perimentally observed 6% response probability
is indicated by the dashed red line. Black sym-
bols indicate response probability obtained
with mean EPSP amplitude (1.4 mV), gray
with median EPSP amplitude (1.2 mV).
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evoked EPSPs must result from the release of single quanta;
the tail of the control distribution indicates that some sponta-
neous events contain multiple quanta, although they could also
result from coincident inputs from more than one PN.

EPSP/EPSC KINETICS. EPSP kinetics were surprisingly fast for
neurons with input resistance �10 G� (Fig. 3D). We exam-
ined the time course of 50 well-isolated EPSPs from seven
independent recordings. EPSP 10–90% rise times were 2.1 	
0.5 ms, and decays were well fit with a single exponential
(11.5 	 5.3 ms). We measured the kinetics of 50 EPSCs from
voltage-clamp recordings (Vhold � �60 mV) in five different
flies. EPSC rise time was 0.9 	 0.4 ms, and decay time
constant was 2.8 	 1.2 ms (Fig. 3D). Although EPSP kinetics
were fast, the membrane time constant, measured at the soma
by hyperpolarizing current injection, was very long (�200 ms).
These observations suggest that EPSP kinetics are determined
mostly by synaptic (and possibly, voltage-gated) conductances
in the dendrites.

ESTIMATING PN-KC CONVERGENCE. Focusing on stretches of
baseline voltage, we measured the frequency e of spontaneous
EPSPs in KCs (Fig. 3E: 32.6 	 12.7 s�1, n � 27 KCs; detected
as in Fig. 3A) and compared it to the spontaneous PN firing rate
f, measured in the same conditions (Fig. 3F: 4.6 	 4.2 s�1, n �
37 PNs). Because PNs are likely to be the sole source of
excitatory inputs to KCs, and assuming that each spontaneous
PN action potential causes an EPSP in its postsynaptic KCs, we
can estimate average connectivity between PNs and KCs as the
ratio e/f. This ratio is about seven PNs to one KC. This estimate
is a lower bound, however: e is almost certainly underesti-
mated in our measurements, and PN release probability is
probably �1. In addition, the distribution of spontaneous
events detected in KCs is wide and asymmetric, indicating that
convergence ratios are probably also variable across PNs
and KCs.

We made an independent estimate of PN-KC connectivity
based on anatomical data. We estimated the total number of
synapses made by PNs within the mushroom body and as-
sumed that those outputs are divided among the population of
�2,500 KCs. The total number of PN outputs in the mushroom
body is the product of three quantities: the number of PNs
projecting to the mushroom body; the number of synaptic
boutons per PN; and the number release sites per terminal.
Approximately 150 PNs project to the mushroom body (Jef-
feris et al. 2007). Each PN extends several axon collaterals into
the mushroom body that each terminate in large synaptic
boutons. The distribution of numbers of boutons made, in the
calyx, by PNs with dendrites in 31 of the 50 glomeruli (216
PNs in toto) is shown in Fig. 3H (Jefferis et al. 2007). We fit
this distribution with a � probability density function, and from
it estimate that there are about 1,115 boutons for a population
of 150 PNs. PN boutons are relatively large (2–7 �m in
diameter), and each makes synapses onto several dendritic
profiles (Yasuyama et al. 2002). Here we assume that each
profile corresponds to a different KC, which may lead to an
overestimate of PN:KC convergence. To estimate the number
of synapses per bouton, we refer to electron microscopic
observations of PN active zones (Yasuyama et al. 2002). In one
section of one PN bouton, Yasuyama et al. found seven active
zones. Assuming an average bouton diameter of 4 �m, those
seven active zones would be distributed along a perimeter of

12.6 �m with 1.8 �m average spacing between active zones.
Tiling the surface of a spherical 4-�m-diam bouton with this
density yields �30 active zones per bouton. These figures
predict that there are 33,450 PN synapses in the MB, for an
average of 13 PNs per KC. Thus our two independent measures
of connectivity give a PN:KC convergence ratio of around 10:1
or 5% on average, with a likely range of 5:1 to 15:1.

TESTING OUR ESTIMATES OF CONVERGENCE. Could we, using
such PN:KC convergence ratios, reproduce the observed 6%
response probability in a model KC population, driven by
odor-evoked PN spiking patterns? We simulated a population
of 1,000 conductance-based model KCs with only passive
membrane properties, randomly connected to an input layer of
23 PNs, with a fixed PN:KC convergence ratio. Activity
profiles for these 23 PNs were taken directly from the recorded
responses of 23 PNs to the odor benzaldehyde (Fig. 3I). These
23 PNs are an extensive sample of the �50 different PN types
found in the Drosophila antennal lobe. We next examined the
relationship between KC response probability and convergence
ratio.

Model EPSP kinetics were tuned to match experimental
data, and model unitary EPSP amplitude was chosen to be
either the mean (1.4 mV) or the median (1.2 mV) of the
experimental distribution (Fig. 3C). KC spiking thresholds
were measured from experiments by analyzing odor responses
that contained four or fewer action potentials. Threshold was
defined as the peak of the second time derivative of the
membrane potential trace. The difference between resting po-
tential and spike threshold is shown for 17 KCs in Fig. 3G
(21.5 	 5.6 mV). The average holding potential for the KCs
was �57.8 mV; thus we set the voltage threshold for our model
KCs at �36.3 mV. We found that, with connectivity ratios
around 10:1, and an EPSP amplitude of 1.4 mV, our model
matched closely the experimental KC response probability of
6% (Fig. 3J). When EPSP size was decreased to match the
median value of 1.2 mV, a higher connectivity ratio of 15:1
was required to achieve the same response probability (gray
curve in Fig. 3J). Thus a simple KC model based entirely on
experimental data for EPSP amplitude, EPSP kinetics, KC
firing threshold and PN response profiles, produces the ob-
served KC response probabilities within the appropriate range
of PN:KC convergence ratios.

PERIODICITY OF INPUTS. In locust, odor-evoked PN population
output is oscillatory (Laurent and Davidowitz 1994) (Fig. 4A,
top), due to fast inhibitory feedback in the antennal lobe
(MacLeod and Laurent 1996). Consequently, periodicity (20–30
Hz) can be seen in intracellular KC membrane voltage record-
ings and in power spectra or autocorrelation functions calcu-
lated from these traces (Fig. 4A) (see also Jortner et al. 2007;
Laurent and Naraghi 1994; Perez-Orive et al. 2002). In locust,
each period of synaptic drive to a KC is composed of alternat-
ing volleys of direct excitation from PNs and delayed feed-
forward inhibition via a small group of GABAergic neurons in
the lateral horn (Perez-Orive et al. 2002). These oscillation
cycles define short and periodic synaptic integration windows
for KCs, contributing to their high odor specificity (Perez-
Orive et al. 2002). We analyzed Drosophila KC membrane
potential fluctuations during odor stimulation. We could find
no significant evidence for consistent periodicity in these traces
(Fig. 4, B–D). These results alone do not rule out the possible
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existence of synchronized (periodic or not) PN output. Because
PN convergence to each KC is low, periodicity might also be
difficult to detect from such recordings. Definitive evidence
will require simultaneous recordings from multiple PNs during
odor responses.

Does sparsening decrease overlap between representations?

Sparse representations are useful in memory networks for
at least two related reasons (Kanerva 1988; Marr 1969;
Olshausen and Field 2004; Tsodyks 1988): if an item is
represented by relatively few neurons, memorization of this
item requires the modification of only a few synaptic nodes; if
representations are sparse, overlap and thus the probability of
synaptic interference is reduced. As a corollary, sparse repre-
sentations can be more easily separated because their overlap is
reduced: sparsening, if done well, decorrelates representations
(Laurent 2002; Perez-Orive et al. 2002). The Drosophila
olfactory system affords a chance to test this directly: we
predicted that the representations of different odors by the KC
population should be more separable than they are in upstream

layers where representations are denser. We thus compared the
discriminability of population responses to a panel of eight
different odors in KCs and in OSNs.

For this comparison, we obtained a new KC dataset (Fig. 5),
where odors were delivered at a slightly higher concentration,
to match the stimulus conditions where OSNs have been
recently characterized (Hallem and Carlson 2006). We re-
corded the responses of 40 KCs to a panel of eight odors (6
trials each) under these conditions. KC population activity
evoked by each odor was characterized as a 40-dimensional
vector, where each dimension represents the mean firing rate of
one KC during odor presentation. We used published data
(Hallem and Carlson 2006) to construct corresponding popu-
lation vectors with 24 OSN types (4–6 trials). For each odor
pair, we compared the angle separating the two KC vectors
(one for each odor) to that between the two corresponding OSN
vectors.

Angular separation is a measure of correlation, however, in
this context it has a biological interpretation: it reflects the
ability of a network to learn to discriminate different inputs by
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adjusting synaptic weights appropriately. In formal two-lay-
ered neural network models, activity at the output layer is
usually calculated as the dot product between an input activity
vector and a matrix of synaptic weights. Discrimination be-
tween input vectors is optimized by gradual modification of
synaptic weights. It follows that the angle between different
input vectors is important for stimulus discrimination: if two
input vectors are separated by a small angle, only few synaptic
weight matrices will improve separation. If input vectors are
widely separated, however, finding appropriate sets of synaptic
weights is relatively easy. Hence angular separation between
input vectors directly relates to how effectively plasticity in the
network can optimize discrimination.

All pair-wise separation values [1-cos(�), where � is the
angle defined by the two vectors] between odor vectors are
shown in Fig. 5A in OSN and KC spaces. Overall, distances
were significantly greater between KC vectors than between
OSN vectors (Fig. 5B; t-test : P � 10�7). Separation was
greater in KC space for 24 of the 28 possible odor pairs (Fig.
5C; Wilcoxon signed-rank test: P � 10�4). Vector separation
decreased for only four odor pairs; all such pairs included the
odor methyl salicylate. OSN tuning to methyl salicylate hap-
pens to be unusually narrow: only 1 of the 24 OSNs (express-
ing Or10a) responds to this odor with a firing rate �50 Hz
(Hallem and Carlson 2006). Consequently, the representation
of methyl salicylate is far less distributed among OSNs than it
is for all other odors tested. The decrease in separation of this
odor’s representation from the others may reflect the ultimate
convergence of multiple OSN channels onto individual KCs.
Altogether, these results indicate that odor separability is, as
hypothesized, greater overall in the sparsely activated KC
population than it is in the OSN array.

To further examine the transformations of representations
from OSNs to KCs, we tested whether KC response profiles
might be derived simply by thresholding the tuning curve of
any of the 24 well-characterized OSNs (Hallem and Carlson
2006). Of the 22 KCs (among 111 KCs in our entire data set)
that responded to two or more odors, this was possible with
only 4 KC response profiles (Fig. 5D). This analysis included
only 24 of the �60 total OSN tuning curves, raising the
possibility that the 18 unmatched KC tuning profiles corre-
spond to the 37 uncharacterized OSN profiles. However, the
probability that, in a sample of 22 KCs, 18 are from this set of
uncharacterized OSNs can be calculated from the cumulative
binomial probability distribution; this probability is 0.008. This
mismatch between KC and OSN tuning profiles indicates that
KC responses cannot be explained by simple thresholding of
labeled-line channels from OSNs; rather, KC response profiles
probably result from the previously documented broadening of
PN tuning profiles (Wilson et al. 2004) together with conver-
gence of multiple PN inputs.

D I S C U S S I O N

Olfactory networks—like all sensory systems—face the
complex problem of generating representations in a format
appropriate for detection, discrimination, storage, and recall.
Optimizing odor representations for memorization should sat-
isfy at least three requirements: appropriate capacity, ease of
storage and recall accuracy. Insect olfactory systems are ideal
to study these forms of computational optimization. In fruit

flies, odor representations by OSNs are distributed and com-
binatorial (Hallem and Carlson 2006; Hallem et al. 2006). In
the antennal lobe, PNs that respond to nonpheromonal odors
are more broadly tuned than their cognate OSNs (Schlief and
Wilson 2007; Wilson et al. 2004). Such distributed codes
endow this network with a high representational capacity. At
the same time, because combinatorial codes use each individ-
ual neuron in the representation of many inputs, they impose
distributed formats for memorization also and thus increase the
chance of interference between memories. The transformation
to sparse representations in the mushroom body may represent
one solution to this problem.

We presented evidence that the representations of odors by
Drosophila mushroom body neurons are sparse and that over-
lap between different representations is significantly less in the
mushroom body than it is in the receptor layer. Although
sparseness has long been proposed to be useful for learning and
memory, this is the first direct experimental evidence indicat-
ing that the olfactory network could learn to discriminate odors
more readily by adjusting synaptic weights at the KC layer than
at the OSNs. Simple thresholding of individual OSN channels
can probably not explain KC response profiles (P � 0.01).
Individual KCs receive inputs from �10 PNs on average.
Because there are only two to five PNs per antennal lobe
glomerulus, each KC must receive convergent inputs from
multiple glomeruli. This convergence, combined with reshap-
ing of tuning profiles in the antennal lobe (Wilson et al. 2004),
could enable KCs to represent a wide variety of odors however
complex their composition, even though responses are sparse.
Such a design requires that KCs vastly outnumber their input
channels, consistent with observations with all studied insect
species (Strausfeld et al. 1998).

We described the synaptic mechanisms that shape KC odor
response profiles and found them to differ from those used in
a distantly related species, the locust (Perez-Orive et al. 2002).
This indicates that different integration schemes may be used
to achieve a similar transformation to sparse encoding. It also
suggests that this transformation, because it is common to these
two species, may be a fundamental requirement of these types
of circuit. The mechanistic differences between species may,
however, also have interesting implications for each system’s
capacity. We now discuss these results.

Transformation of olfactory representations in the
Drosophila mushroom body

The tuning profiles of a large fraction (24 of 60) of all the
OSNs have been well characterized in Drosophila by John
Carlson and colleagues (Hallem and Carlson 2006). By com-
paring these with our characterizations of KCs, we could test
whether the overlap between odor representations diminishes
as signals flow through olfactory circuits. To measure the
degree of overlap, we constructed population activity vectors
for eight odors, with sets of 24 OSNs and 40 KCs; we then
compared the distribution of correlations between those vectors
calculated with OSNs to those in the KC population. Overall,
representations were significantly better separated in the mush-
room body than in the receptor layer. A combination of
sparseness and good representation separability is highly de-
sirable for memory systems (Garcia-Sanchez and Huerta 2003;
Huerta et al. 2004; Kanerva 1988; Olshausen and Field 2004;

742 G. C. TURNER, M. BAZHENOV, AND G. LAURENT

J Neurophysiol • VOL 99 • FEBRUARY 2008 • www.jn.org

 on M
arch 2, 2008 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


# 
oc

cu
rr

en
ce

s

OSNs
KCs

A

B

C

OSNs KCs

 

 
2-heptanone

1-hexanol

1-octen-3-ol

pentyl acetate

2,3-butanedione

trans-2-hexenal

ethyl acetate

methyl salicylate
 

 

hpn

hxo

o3o

pac

btd

hea

eaa

msa

0.2

1

0.4

0.6

0.8

0

1

10

8

6

2

4

0.1 0.80.70.60.50.40.30.2 0.90
0 # 

oc
cu

rr
en

ce
s

1

10

8

6

2

4

0.1 0.80.70.60.50.40.30.2 0.90
0

1

0.1

0.8

0.7

0.6

0.5

0.4

0.3

0.9

0

0.2

angular separation in OSNs angular separation in KCs

an
gu

la
r 

se
pa

ra
tio

n

angular separation

D

OSNs KCs

OSN tuning profiles

od
or

 r
es

po
ns

e
2-h

ep
tan

on
e

1-h
ex

an
ol

1-o
cte

n-3
-ol

pe
nty

l a
ce

tat
e

2,3
-bu

tan
ed

ion
e

tra
ns

-2-
he

xe
na

l

eth
yl 

ac
eta

te

meth
yl 

sa
lic

yla
te

2-h
ep

tan
on

e

1-h
ex

an
ol

1-o
cte

n-3
-ol

pe
nty

l a
ce

tat
e

2,3
-bu

tan
ed

ion
e

tra
ns

-2-
he

xe
na

l

eth
yl 

ac
eta

te

meth
yl 

sa
lic

yla
te

FIG. 5. Separation of odors in olfactory sensory neuron and KC populations. A: angular separation between population vectors representing different pairs
of odors in sensory neurons (OSNs, left) and KCs (right). Vectors comprised the mean responses of 24 OSNs or 40 KCs, and angular separation was calculated
as 1-cos(�) where � is the angle between a pair of vectors. Odors ordered by rank in OSN space. B: angular separation values for all pairs of the 8 odors in A.
Separation values for OSNs are shown on the left, for KCs on the right. C: change in angular separation values between OSNs and KCs. Separation values for
each pair of odors in OSNs are plotted on the left, and the corresponding values in the KCs are on the right. Twenty-four of 28 pairs of odors have greater angular
separation in KC space (P � 10�4, Wilcoxon signed-rank test). D: OSN tuning profiles that best match KC profiles. For 22 KCs that responded to �2 odors,
a closely matching OSN tuning profile was identified. Each column represents an OSN tuning profile, where each square displays the normalized response
intensity to a particular odor (response intensity decreasing from white to black). OSN tuning profiles are arranged so odors that evoke a response in the KC are
above the green or red line, and 3 odors that fail to evoke a response are below the line. These 3 odors are arranged in order of descending response intensity
in the OSN. Thus an OSN tuning profile that monotonically decreases down the column can be thresholded to generate a KC tuning profile; these thresholds are
shown in green. OSN tuning profiles that are not monotonic cannot be simply thresholded to generate a KC profile, as indicated by the red lines.
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Tsodyks and Feigel
man 1988; Willshaw and Lonquet-Hig-
ging 1969) and consistent with the role assigned to mushroom
bodies (de Belle and Heisenberg 1994; Hammer and Menzel
1998).

Drosophila KCs can be classified into three types, based on
axonal projections and birth order (Crittenden et al. 1998; Lee
et al. 1999; Strausfeld et al. 2003): � KCs are born first and
have a single medially projecting axon; �
/�
 KCs are born
second and �/� KCs last; both types have bifurcating axons
with both medial and dorsal projections. Genetic and behav-
ioral studies, exploiting selective blockade of synaptic release
from individual KC classes suggest that these KC types are
differentially involved in olfactory learning and memory (Aka-
lal et al. 2006; Pascual and Preat 2001; Zars et al. 2000).
Recent work, for example, indicates that �
/�
 KCs are in-
volved in memory acquisition (Krashes et al. 2007). Our results
indicate that there are small but notable physiological differ-
ences between KC subtypes: in a sample of 71 KCs, we found
there was a trend for tuning widths to decrease from �
/�
 to
�/� to � KCs, although the only statistically significant differ-
ence was between �
/�
 and � KCs. �
/�
 KCs also had the
largest baseline- and response-firing rates. As the most respon-
sive KC types, �
/�
 neurons might be the ones most likely to
experience spike-timing dependent plasticity (Cassenaer and
Laurent 2007), which could account for their involvement in
memory acquisition.

Mechanisms for sparsening in Drosophila mushroom bodies

To investigate synaptic integration by Drosophila KCs, we
characterized EPSP amplitudes, EPSP/C kinetics and PN:KC
connectivity. EPSPs recorded from somata were quite large:
1.4 	 0.8 mV. EPSPs rose and decayed rapidly, a corollary of
fast EPSC kinetics, consistent with in vitro recordings (Gu and
O’Dowd 2006). We estimated PN:KC convergence using two
independent methods. The first, based on electrophysiological
measurements, suggested an average of 7:1. The second, based
on available anatomical data (Jefferis et al. 2007; Yasuyama
et al. 2002), suggested an average of 13:1. Based on these
estimates, we propose that PN:KC convergence in Drosophila
is distributed about a mean of 10:1 with a likely range between
5:1 and 15:1. Using these parameters, we could simulate a
layer of conductance-based model KCs and reproduce re-
sponses to PN input with sparseness consistent with experi-
ments. This input was taken from the odor responses of 23
PNs, a significant sample of the �50 different PN types in the
Drosophila antennal lobe. Hence in Drosophila, low PN con-
vergence combined with rapid EPSP kinetics and appropriately
high KC firing thresholds appear sufficient to generate sparse
KC responses.

Comparative aspects

We can now compare circuits, formats and mechanisms of
olfactory computation between two insect species— the locust,
a hemimetabolous orthopteran and the fruit fly, a holometabo-
lous dipteran—separated by �300 million years of evolution.
The most striking common features are the dense, distributed
odor representations in the antennal lobes and the sparse,
distributed representations of those same odors in the mush-
room bodies: mean response probability drops from 64% in

PNs to 11% in KCs in locust (Perez-Orive et al. 2002), and
from 59 to 6% in Drosophila (this paper). This consistency
suggests that there is a strong selective pressure to generate
sparse representations in the mushroom bodies. We propose
that sparsening is an intrinsic requirement of such memory
systems (Broome et al. 2006; Laurent 2002; Perez-Orive et al.
2002).

Although sparsening is common to both species, the mech-
anisms to achieve it appear to be quite distinct. In locust,
sparseness is achieved in part because temporal integration by
KCs is curtailed: PN input to KCs is composed of periodic
excitation and phase-lagged inhibition, defining repeated short
(25 ms) integration windows separated by voltage-resetting
inhibitory postsynaptic potentials (IPSPs) (Perez-Orive et al.
2002). These volleys occur periodically at a frequency of �20
Hz, generating synchronized oscillations in the KC membrane
potential (Laurent and Naraghi 1994; Perez-Orive et al. 2002).
This periodic integration scheme is essential because PN-
to-KC convergence is extremely high [�50% or �400 PNs per
KC (Jortner et al. 2007)] relative to the number of simulta-
neous PN inputs required to bring a KC to threshold (�70)
(Jortner et al. 2007). Without periodic voltage-resetting IPSPs,
KCs lose their odor selectivity because temporal integration
becomes possible (Perez-Orive et al. 2002).

In Drosophila, by contrast, PN:KC convergence is low
(�5% or �10 PNs per KC) relative to the minimum number of
EPSPs needed to get a KC to spike (15 inputs minimum: 21.5
mV from Vrest to Vspike, 1.4 mV EPSP amplitude). This implies
a need for input amplification and/or temporal summation.
Indeed we find no evidence for a periodic voltage reset by
IPSPs, as seen in locust, allowing considerable temporal inte-
gration by KCs.

Note that the lack of evidence for periodic synaptic input to
KCs in Drosophila does not rule out the possibility that PN
output is, as in locust (Laurent and Naraghi 1994; Wehr and
Laurent 1996), periodic and/or synchronized: given the low
PN:KC convergence in Drosophila, the membrane potential of
individual KCs may not reflect well the average discharge
statistics of the PN population. Neither PN nor LN recordings
in the Drosophila antennal lobe indicate prominent periodicity
in their odor responses (Olsen et al. 2007; Schlief and Wilson
2007; Wilson and Laurent 2005; Wilson et al. 2004); still, a
definite answer will require simultaneous recordings from
multiple PNs.

Do these mechanistic differences have any functional sig-
nificance? Both mechanisms achieve similar goals: they
sparsen odor representations in the mushroom body. Yet the
differences could have important consequences for the repre-
sentational capacity of each species. A key difference lies with
PN:KC convergence ratios and neuron population sizes: with
�50,000 KCs and 50% convergence, locust mushroom bodies
could, in principle, generate and store vastly more input com-
binations than Drosophila. If true, we would predict that
olfactory circuit design is correlated with these global at-
tributes. One interesting possibility is that oscillatory synchro-
nization is correlated with high convergence ratios: with large
fan-in, constraining temporal integration is essential for gen-
erating sparseness, as in the locust, whereas in systems with
low convergence, such as Drosophila, sparseness can be
achieved without oscillations.
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Even with low fan-in, Drosophila KCs likely integrate
information from multiple antennal lobe glomeruli. With 10 to
1 convergence, and between two and five PNs per glomerulus,
a KC would receive input from at least two glomeruli if all the
PNs from the same glomerulus connect to the same target KC
and most likely more, especially if pairwise connections are
not precisely specified. This convergence of glomerular chan-
nels, combined with processing in the antennal lobe (Olsen
et al. 2007; Wilson et al. 2004), could increase the diversity of
tuning profiles in the KC population relative to the earlier
stages of the pathway. This is consistent with the diversity of
tuning profiles we observe here and with our demonstration
that KC tuning profiles cannot be generated simply by thresh-
olding tuning profiles of individual OSNs. Although diverse,
these tuning profiles are also odor specific. This combination of
operations diminishes overlap between representations of dif-
ferent stimuli while maintaining high capacity, useful features
for a network involved in learning and memory.
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