
Citation: Ottaiano, A.; Santorsola, M.;

Circelli, L.; Trotta, A.M.; Izzo, F.;

Perri, F.; Cascella, M.; Sabbatino, F.;

Granata, V.; Correra, M.; et al.

Oligo-Metastatic Cancers: Putative

Biomarkers, Emerging Challenges

and New Perspectives. Cancers 2023,

15, 1827. https://doi.org/10.3390/

cancers15061827

Academic Editor: Dimitrios Moris

Received: 23 February 2023

Revised: 13 March 2023

Accepted: 16 March 2023

Published: 17 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Oligo-Metastatic Cancers: Putative Biomarkers, Emerging
Challenges and New Perspectives
Alessandro Ottaiano 1,*,† , Mariachiara Santorsola 1,†, Luisa Circelli 2, Anna Maria Trotta 1, Francesco Izzo 1 ,
Francesco Perri 1 , Marco Cascella 1 , Francesco Sabbatino 3 , Vincenza Granata 1 , Marco Correra 1,
Luca Tarotto 1, Salvatore Stilo 1, Francesco Fiore 1, Nicola Martucci 1, Antonello La Rocca 1, Carmine Picone 1,
Paolo Muto 1, Valentina Borzillo 1 , Andrea Belli 1 , Renato Patrone 1 , Edoardo Mercadante 1,
Fabiana Tatangelo 1 , Gerardo Ferrara 1, Annabella Di Mauro 1, Giosué Scognamiglio 1 ,
Massimiliano Berretta 4 , Maurizio Capuozzo 5, Angela Lombardi 6, Jérôme Galon 7,8,9, Oreste Gualillo 10 ,
Ugo Pace 1, Paolo Delrio 1 , Giovanni Savarese 2, Stefania Scala 1 , Guglielmo Nasti 1,‡ and Michele Caraglia 6,‡

1 Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
2 AMES, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24,

80013 Casalnuovo Di Napoli, Italy
3 Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
4 Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria,

98125 Messina, Italy
5 Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy
6 Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio 7,

80138 Naples, Italy
7 INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
8 Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
9 Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
10 SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and

Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago),
Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain

* Correspondence: a.ottaiano@istitutotumori.na.it
† These authors contributed equally to this work as co-first authors.
‡ These authors contributed equally to this work as co-last authors.

Simple Summary: Oligometastatic disease is a condition in oncology where cancer affects only a few
distant sites. It is associated with a low-burden spread and a more favorable prognosis compared
to polymetastatic disease. Recent studies have identified specific molecular and genetic features
that underlie the oligometastatic phenotype, including reduced cancer cell migration and invasion
ability, and an enhanced immune response in the metastatic microenvironment. Understanding these
characteristics could suggest innovative personalized therapies and contribute to improving the
understanding of complex cancer–host relationships. This scoping review highlights new clinical,
biological, and methodological challenges that characterize this fascinating field from a modern and
innovative perspective. By shedding light on the unique features of oligometastatic disease, we aim
to promote the development of more effective and tailored treatments for patients with this condition.

Abstract: Some cancer patients display a less aggressive form of metastatic disease, characterized by
a low tumor burden and involving a smaller number of sites, which is referred to as “oligometastatic
disease” (OMD). This review discusses new biomarkers, as well as methodological challenges and
perspectives characterizing OMD. Recent studies have revealed that specific microRNA profiles,
chromosome patterns, driver gene mutations (ERBB2, PBRM1, SETD2, KRAS, PIK3CA, SMAD4),
polymorphisms (TCF7L2), and levels of immune cell infiltration into metastases, depending on the
tumor type, are associated with an oligometastatic behavior. This suggests that OMD could be
a distinct disease with specific biological and molecular characteristics. Therefore, the heterogeneity
of initial tumor burden and inclusion of OMD patients in clinical trials pose a crucial methodological
question that requires responses in the near future. Additionally, a solid understanding of the
molecular and biological features of OMD will be necessary to support and complete the clinical
staging systems, enabling a better distinction of metastatic behavior and tailored treatments.
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1. Introduction

The metastatic spread to distant organs such as lungs, liver, bone, and brain from
primary tumor is the leading cause of death in cancer patients. The number, size of
tumor lesions, and involvement of loco-regional lymph nodes are well-established methods
of measuring the level of cancer diffusion, and they drive clinical staging systems for
cancer [1–3]. However, the initial tumor burden may vary in clinical practice in the context
of metastatic disease, typically stage IV disease [4]. Some patients present at diagnosis
with a highly metastatic pattern involving multiple sites (“poly-metastatic disease”), while
others have a more indolent course of the disease with involvement of a lower number
of sites (“oligo-metastatic disease” or OMD) [5]. In recent years, the study of OMD has
gained increasing attention since it is becoming clear that a multidisciplinary treatment
approach and long-term therapeutic path can achieve extended disease control in OMD
patients. This review will present and discuss the most recent insights, challenges, and
perspectives about OMD, ranging from practical definitions and clinical contexts to new
potential biomarkers.

2. The Origin of OMD: The Concept of “Metastatic Virulence”

It is heavily debated that OMD is not merely a temporary or intermediate status
between a localized and low-burden disease and a diffuse one, but rather a distinct dis-
ease with specific biological and molecular features. In other words, the low “metastatic
virulence” of OMD may reflect specific and dynamic states of tumor biology and/or
host/tumor relationships [6]. The complex and multi-step process that accounts for the
acquisition of a full malignant phenotype (from primary tumor to increasingly aggressive
and poly-metastatic) can be divided into a large number of biological features, such as
epi/genomic instability, epithelial-to-mesenchymal transition (EMT), proliferation, self-
renewal, invasiveness, interrelation with lymphocytes and tumor environment, life in
transit, organ-specific homing, neo-angiogenesis, and so on [7–12]. However, the acqui-
sition of full properties for each of these phenomena cannot be dichotomously identified
(genomic instability: yes/no; EMT: yes/no; proliferation: yes/no; etc.), as they plausibly
work continuously. Oligo-metastatic cells may have a lower capability in one or more of
these necessary characteristics compared to the poly-metastatic cells. Therefore, the origin
of oligo-metastases could rely on reduced metastatic power (i.e., “metastatic virulence”
scarcely and elusively valuable). An attractive consequence of these considerations is
that clinical staging systems should differentiate oligo-metastatic cancer forms and ideally
include specific molecular characteristics [13].

3. OMD Clinical Contexts

Previous studies have provided a pragmatic and quantitative approach to defining
OMD. Specifically, oligo-metastases can refer to 1–3 metastatic tumors per organ with
a maximum size of less than 7 cm [14]. A recent study provided a more stringent definition
with a maximum of 1–5 tumors and a size limit of 5 cm [15]. This definition should also take
into account the “rate of metastatic growth”, which is slower in OMD [16], but it is difficult
to quantify and poorly applicable in clinical practice. On the other hand, many authors
suggest that OMD could be defined as the presence of a metastatic cancer amenable to
curative/radical therapeutic local interventions (surgery or radiotherapy) on all metastatic
lesions, regardless of their number and/or volume [5,17]. However, in the real world,
identifying OMD is often done retrospectively, as many patients who undergo radical
treatment of oligo-metastases develop aggressive, poly-metastatic diseases within a year,
while others never experience disease progression (true OMD).
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A recent consensus study by ASTRO/ESTRO (American Society for Radiation On-
cology/European Society for Radiotherapy and Oncology) [18] has provided clear and
practical definitions for the various clinical scenarios of OMD. It is crucial to know and
understand these definitions not only for the sake of scientific terminology, but also because
they will require prospective validation and prompt scientific exploration in the near future.

The OMD classification and nomenclature consists of:

• Genuine (or “de novo”) OMD: it is considered the “purest” phenotype of OMD, when
the cancer has no prior history of polymetastatic disease. It is useful to distinguish
between synchronous and metachronous OMD, which refer to the diagnosis being
made within or after 6 months of the primary cancer diagnosis, respectively.

• Induced OMD: the polymetastatic cancer has become limited to a small number of
metastatic sites (OMD) following systemic treatment.

• Repeat OMD: OMD that recurs after a previous diagnosis and treatment for OMD.
• Repeat and induced can be associated with different imaging dynamics (i.e., repeat

oligo-recurrence vs. induced oligo-recurrence; both indicate new oligometastatic
lesions from OMD or polymetastatic disease, respectively):

• Oligorecurrence: OMD that recurs after initial treatment during a treatment-free period.
• Oligoprogression: the OMD progresses during active systemic treatment.
• Oligopersistence: the OMD persists after initial treatment.

4. Epidemiology of OMD

The incidence of OMD varies depending on the type of tumors. It was hypothesized
in the past that some cancers such as pancreatic adenocarcinoma and small-cell lung cancer,
never present with an oligo-metastatic behavior; to date, an oligo-metastatic status has
been reported in all cancers [19–32]. The incidence of OMD varies greatly among cancer
types, ranging from extremely rape (such as SCLC where only a few case reports are
described) [21] to 10–40% of HCC [25,26]. Table 1 presents the incidence of OMD for each
cancer type. A literature analysis was performed to provide an overview of the research on
OMD, which is represented in Figure 1. The search was conducted in PubMed (accessed
on 9 February 2023) using the keyword “oligometastatic disease” and related keywords
specific to each disease. Although this research is far from systematic (it did not include
additional “gray” keywords, multiple databases, or crucial “scoping” studies), the patterns
revealed in Figure 1 indicate a trend toward increasing attention to OMD over time, which
reaches a peak in the last year. Furthermore, it is important to note that the incidence
of “induced” OMD is increasing in all cancers as systemic treatments (biologic drugs,
immunotherapies, and integrated approaches) improve. This is a new clinical scenario
resulting from the effect of improved initial treatments for primary poly-metastatic cancers.

Table 1. Incidence of oligo-metastatic patients at diagnosis among metastatic patients in the ten most
common cancers.

Cancer Incidence of Oligo-Metastatic Disease (% on Metastatic Presentation)

Lung (NSCLC) 5
Lung (SCLC) Undefined (extremely rare)

Breast 5–20
Colorectal 10–15
Stomach 5

HCC 10–40
Prostate 10–30

Pancreatic 5
Ovarian 5–15

Esophageal 5
Cervical 5–15
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5. Definitive Local Therapies in OMD

The concept of OMD is an intriguing and versatile clinical model that allows for
a personalized and multidisciplinary approach to treatment [33,34]. Independently from
the origin of the primary tumor, the therapeutic approach to OMD generally tries to make
the patient disease-free through surgery and/or less invasive loco-regional techniques,
such as radiation therapy.

Although surgical techniques are beyond the scope of this article, it is well established
that surgery can be curative in certain clinical situations, such as pulmonary metastases
from soft tissue sarcomas, osteosarcomas, and renal cell cancers, or hepatic metastases
from colorectal cancer, even when multiple metastases are present. In true OMD cases,
repeated surgeries and DLTs (definitive local therapies) have shown a similar likelihood
of cure as the initial surgery [35–38]. Pulmonary and liver metastasectomies are the main
surgical treatments for OMD, with notable differences in terms of technical, anatomical,
and clinical-prognostic issues. The best prognostic results are achieved when only one
site is affected; however, the availability of mini-invasive surgical techniques, including
robot-assisted and laparoscopic approaches, has expanded the fraction of patients who
may benefit from oligo-metastatic lesion removal, including older or sicker patients with
comorbidities [39–43]. However, due to the complexity of some clinical scenarios, such as
brain, lymph node, or limited peritoneal involvement, a personalized and multidisciplinary
assessment and discussion is required to determine the most appropriate surgical approach.

Stereotactic radiotherapy (SRT) is a highly precise form of radiation therapy used in
oncology to treat tumors in specific areas of the body. It delivers high doses of radiation
to a precisely targeted area while minimizing exposure to surrounding healthy tissues,
achieved through several different techniques. SRT on small, well-defined masses is safe
and feasible in areas where other forms of treatment (such as surgery) may be difficult
or impossible [44,45]. However, the risk of toxicity may depend on the size and location
of the tumor. It is clear that in OMD patients the role of radiotherapy is not a palliative
treatment but a disease-modifying treatment. Furthermore, a strong rationale exists to
support the addition of SRT in the immunotherapy era. Several data demonstrated that
hypo-fractionated SRT is able to increase MHC (Major Histocompatibility Complex) class I
expression, to improve APCs (Antigen-Presenting Cells) entry into tumor masses, to acti-
vate CTLs (Cytotoxic T Lymphocytes) through increased intracellular peptide generation
and cytokine secretion (Interleukin-2 and Interferon-gamma) [46–52]. These phenomena
are on the basis of a “radiation-induced immunity”. However, the role of SRT in OMD
continues to evolve. Future directions for the treatment of OMD include the development
of new SRT techniques for improved targeting and the use of SRT in combination with
other forms of less intensive and biologic cancer treatment, such as immunotherapy. In fact,
the time for the use of biological or target-oriented drugs as monotherapy in OMD is not
yet ripe as the biology of this type of disease is still largely unknown.
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Alternative treatments to SRT include radio frequency [53,54], electroporation [38],
laser interstitial thermal therapy [55], and others [56,57]. The choice of DLT depends on
the patient’s medical condition, tumor location, center expertise, and multidisciplinary
consensus. These DLTs can achieve comparable control rates and time-to-outcome as
surgery, at least in selected populations.

The main clinical characteristic of oligometastatic patients is that, even with locore-
gional treatments, their median survival is more than double of polymetastatic patients.
In this context, two main clinical courses can be listed. In some cases, OMD progresses
slowly, affecting the function of major organs (oligo-progression). However, locoregional
treatments can be intermittently and reasonably prolonged until advanced stages of the
disease in these patients [58,59]. In other patients, a clear and clinically aggressive poly-
metastatic disease develops (“poly-metastatic progression”), requiring a classical approach
based primarily on the administration of multiple lines of non-cross-resistant systemic
chemotherapy. Interestingly, some studies identify the median time to polymetastatic
conversion (tPMC) as a measurable outcome associated with treatment efficacy [60].

The practical and most important question on a clinical point of view is: could DLTs
be considered a standard therapeutic option in OMD?

Unfortunately, while DLTs, particularly SRT, are widely used in clinical practice to
manage OMD, there is limited evidence to support their use. A review of scientific literature
from PubMed in the past year (when a peak of publications is registered) reveals a high
number of heterogeneous, retrospective, and small-scale clinical studies conducted in real-
world settings [61–69]. While these studies are important, their results cannot formally
change the standard of therapy. The evidence ranges from case reports and retrospective
series [61–68] to phase III randomized trials [69] such as the SINDAS trial. This trial showed
that adding SRT to TKIs significantly improves survival in 133 EGFR-mutated NSCLC
OMD patients (median OS TKI plus SRT: 25.5 months vs. 17.4 months in TKI monotherapy).
The studies range in size from 39 NSCLC OMD patients (in a study reporting an interesting
retrospective comparison between DLTs, predominantly radiotherapy, vs. TKIs) [64] to
284 OMD patients with different cancers (a single-arm study performed predominantly in
lung, colon, and breast OMD) [67]. The median survivals achieved in these studies with
SRT are higher than those reported in the poly-metastatic setting, 30.8 and 53.4 months,
respectively, confirming that OMD has a good prognosis. However, examples of systemic
approaches have also been pursued and published in the past year in OMD, including
immuno-plus chemotherapy [61,62] and immune therapy plus SRT [66]. These studies are
retrospective, heterogeneous (patients received different treatments before and/or after the
therapeutic approach for OMD), and lacking in comparison with a “control” arm. Only
a few prospective randomized trials (Table 2) on the role of SRT (vs observation or standard
of care) in OMD are available [69–73], but their results all point in the same direction.
Time-to-outcome curves are clearly separated even in longer time follow-up, indicating
a persistent and robust beneficial effect of SRT in OMD. However, the optimal dose and
schedule for SRT in various OMD situations is still unknown due to the variety in treatment
dosage and timing among clinical trials.
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Table 2. Randomized trials including SRT treatment in OMD.

Type of Cancer Targetable
Mutations

Maximum
No. of

Lesions
Arms No. of

Patients
mPFS

(Months) p mOS
(Months) p

NSCLC Not permitted 6
SRT + CT 14 9.7 NR

CT 15 3.5 0.01 17.0 NR

CRC Permitted 10 liver met
RFA + resection + CT 51 16.8 45.6

CT 57 9.9 0.005 40.5 0.01

NSCLC Permitted 3
SRT or surgery 25 14.2 41.2

Observation or CT 24 4.4 0.022 17.0 0.034
Breast, CRC,

NSCLC,
prostate, others

Permitted 5
SRT + SC 66 12.9 41.0

SC 33 6.0 0.0012 28.0 0.09

NSCLC
Only

EGFR-mutated cancers
5

SRT + TKI 68 20.2 25.5
TKI 65 12.5 <0.001 17.4 <0.001

CRC: colorectal cancer; CT: chemotherapy; met: metastases; mOS: median overall survival; mPFS: median
progression-free survival; NSCLC: non-small cell lung cancer; RFA: radio-frequency ablation; SC: Standard of
Care; SRT: stereotactic radiotherapy; TKI: tyrosine kinase inhibitor.

6. Biomarkers of OMD

Unfortunately, very few studies have been so far performed to find specific genetic
and biologic characteristics of the OMD (Table 3). In fact, it has been considered that
investigating the relationship between genotype and phenotype in cancer is extremely
challenging. Cancer usually develops as a multi-gene acquired disease with the excep-
tion of few uncommon, inherited forms of tumors, such as retinoblastoma and Wilms’
tumor [74–76]. The foremost obstacle in performing genotype/phenotype correlations is
the selection of appropriate human cancer models. This is because several genes involved
in widespread conditions like hypertension, diabetes, allergies, and chronic inflammation
contribute to the heterogeneity of cancer [77–85]. The latter diseases can interfere with can-
cer genetics. In fact, some genes involved in cancer-related processes, such as proliferation
and angiogenesis, are altered in hypertension and atherosclerotic plaque or are induced
due to hypoxia, oxidative stress, and inflammation [86,87]. Lussier et al. reported that
specific microRNA profiles from OMD patients drive an oligo-metastatic behavior both
in vitro and in vivo [88]. Interestingly, oligomiRNAs target genes are involved in adhesion,
invasion, and migration. Although the study was performed in tumor cells from different
histologies (colon, small cell lung cancer, non-small cell lung cancer, renal, sarcoma and
ovarian cancer), most of oligomiRNAs mapped at a common locus (14q32), suggesting
that common epigenetic/genetic phenomena are responsible for OMD. In a large study on
clear cell renal carcinoma (575 primary tumors and 335 matched metastases), somatic copy
number alterations, genetic intra-tumor heterogeneity, chromosome 9p status associated
with the oligo-metastatic and good prognosis behavior of clear cell renal carcinoma [89].
Furthermore, as already reported in other settings, in contrast with the common knowledge
suggesting that gene mutations constantly prompt cell transformation and metastases,
some driver gene mutations (PBRM1 and SETD2) were associated with attenuated pro-
gression and OMD. More studies have been reported in colorectal cancer (CRC) where
molecular subtyping (“canonical” and “immune” subtypes) [90], regression of key-driver
gene mutations (KRAS, PIK3CA) [91], high level of T-cell infiltration into metastases [92],
high level of peripheral cytotoxic T-cells [93], specific gene mutations (ERBB2) [92] corre-
lates with the OMD phenotype. In particular, in our previous reports [91,92], we provided
an evolutionary and dynamic analytic perspective, highlighting that comparing primary
and metastatic lesions could assist in identifying the true de novo oligo-metastatic behavior.
Specifically, we found that patients with a “regressive” genetic trajectory from primary
to metastatic lesions and high granzyme-B, CD8+ T cell infiltration into the tumor core
of metastatic lesions did not experience relapse within 3 years of follow-up. In contrast,
patients who did not exhibit these characteristics developed poly-metastatic disease within
1 year of radical resection of all visible lesions (Figure 2).
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Figure 2. The figure shows two patients (A1,B1) who have the same onset of de novo OMD. Both
patients receive radical excision of all lesions (primary tumor and single liver metastases). Patient
A1 is disease-free at the 3-year follow-up (A2) (“true” OMD). Patient B1 develops poly-metastatic
disease (“false” OMD) within 1 year of follow-up (B2). The markers that clearly differentiate these
two clinical entities that apparently have the same onset are unknown. Previous evidence suggests
that the dynamic study of the primary tumor and metastases (C1 vs. C2 and D1 vs. D2) could
provide important prognostic indications. High infiltrates of cytotoxic granzyme-b positive (GrzB+)
CD8+ T cells and the regression of key-driver mutation clones could be the basis for true OMD. The
cellular composition of the tumor mass is shown in the figure (C1,C2,D1,D2) to focus on these two last
concepts. Some types of cells that make up the tumor microenvironment, such as neutrophils, mast
cells, fibroblasts, regulatory cells, etc., have been omitted.

Interestingly, our previous works [91,92] on oligo-metastatic CRC patients focused on
identifying patients who only had cancer as their illness and characterizing the genetics of
all their lesions. Previous studies suffered from extreme heterogeneity, including different
stages, treatments, comorbidities, and more, which can impact the interpretation of results.
Specifically, we studied patients who only had lung- or liver-limited single metastatic
nodules. To identify the most dominant and interrelated genes in these patients, we used
the Phenolyzer tool [94]. Interestingly, we found that in addition to APC and TP53, EP300
was among the top three dominant genes. EP300 encodes a histone acetyl-transferase
involved in regulating chromatin activity and can influence important cell processes like
proliferation and differentiation [95]. Although EP300 mutations have been found in many
cancers, including CRC, its role in tumorigenesis is debated and contradictory. Our re-
sults suggest that further research is needed to define the relationship between EP300 and
oligo-metastatic behavior. In addition to genes involved in proliferation, apoptosis, differ-
entiation, and neoangiogenesis, a significant number of other genes were identified in the
group with “true” de novo OMD. These genes were involved in DNA repair mechanisms,
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including MSH3, BRCA1, ATM, POLE, BRCA2, CHEK1, and GLI1. Increased MSI and TMB,
along with these genes, may account for the high immunogenicity of metastases in this
group of patients who never developed poly-metastatic disease in subsequent follow-up.
On the other hand, patients who developed poly-metastatic disease after radical resection
of all their lesions showed a marked mutational divergence, with only one shared gene:
RP11-145E5.5. This gene encodes a S-methyl-5′-thioadenosine phosphorylase (MTAP)
involved in polyamine biosynthesis [96]. Although loss of MTAP activity has been hy-
pothesized to play a role in malignant melanoma, little is known in CRC, where it appears
overexpressed compared to normal mucosa and positively related to aggressiveness of
CRC cells [97]. We also observed frequent alterations of genes correlated to the homing
of metastases to the liver, including HSP90AA1, NR4A2, KDR, FLT3, and RPS6KB2. These
genes can act directly by promoting cell migration, EMT promotion, and proliferation, or
indirectly through pleiotropic actions like protein stabilization, epigenetic modifications,
and protein synthesis.

Genetic changes in lung-limited oligo-metastatic patients were identified in EpCAM
(Epithelial cell adhesion molecule), TP53, caspase-8, and ERBB2, which are considered
to be significant and frequently shared among the patients. Notably, both EpCAM and
caspase-8 play a role in regulating cell proliferation, migration, and adhesion to lung
tissue [98,99]. Hence, their alteration could be responsible, at least in part, for the lung
homing of metastatic cancer cells. ERBB2 was also found to be frequently mutated, with
a non-synonymous coding variant, p.Pro1170Ala, which may alter the spatial conformation
of the tail region and affect tyrosine kinase activity [100]. ERBB2 is a member of the
ERBB family of membrane tyrosine kinase receptors, which includes EGFR, ERBB3 (kinase
domain-lacking), and ERBB4. While no ligands for ERBB2 have been identified, it can
hetero-dimerize with any of the other three ERBB family receptors upon ligand binding.
This hetero-dimerization activates autophosphorylation of cytoplasmic tyrosine residues,
which then bind various signaling molecules involved in proliferation, migration, and
angiogenesis [101]. ERBB2 amplification has been extensively studied in cancer, but very
little is known about the role of point mutations. Interestingly, in ERBB2 overexpressing
breast cancer cell lines, lung colonization is predominant and mediated by SPARC (secreted
protein acidic and rich in cysteine) [102,103].

Table 3. Biomarkers identifying the oligo-metastatic status.

Author, Year Tumor Type Biomarker Clinical Significance

Lussier, 2011 [88] Mixed tumor histologies. OligomiRNAs. MicroRNAs expression patterns
associated with OMD.

Turajlic, 2018 [89] Clear-cell renal
cell carcinoma.

9p loss. Low intra-tumor heterogeneity
of primary cancer. High genomic
somatic copy-number alterations.

The patients with these
characteristics develop

poly-metastatic disease.

PBRM1 and SETD2 mutations in
primary tumor.

These genetic features associate
with oligo-metastases and

attenuated progression.

Pitroda, 2018 [90] Colorectal cancer. “Canonical” and “immune” molecular
subtypes in primary tumor.

They associate with long-term
survival and OMD.

Ottaiano, 2020 [91] Colorectal cancer.
KRAS regression from primary to

metastatic lesions. ERBB2
p.Pro1170Ala.

They associate with
lung-limited OMD.
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Table 3. Cont.

Author, Year Tumor Type Biomarker Clinical Significance

Ottaiano, 2020 [92] Colorectal cancer.

Loss of KRAS and SMAD4 alterations
from primary to metastatic lesions.

High granzyme-B+ T-cell infiltration
into metastatic tumor.

The patients with these
characteristics remain with

liver-limited OMD for long time.

Gain in KRAS, PIK3CA and SMAD4
alterations. Scarce granzyme-B+

T-cells infiltration.

The patients with these
characteristics develop
poly-metastatic widely

diffusive disease.

Ottaiano, 2022 [93] Colorectal cancer. KRAS regression from primary to
metastatic lesions. HLA-C7 aplotype.

The patients with these
characteristics remain

oligometastatic for long time.

Ottaiano, 2022 [103] Colorectal cancer.
Absence of TCF7L2 variants, low

frequency of type 2 diabetes-associated
genetic polymorphisms.

The patients with this
characteristic have
persistent OMD.

Moreover, we previously reported that certain genes associated with type 2 diabetes
(T2D) may also play a role in the malignant phenotype of OMD in CRC [104]. In particular,
some variants associated with T2D, such as HNF1A p.I27L, IDE3 p.T105A, IRS1 p.S892G,
and INSR p.A2G, although considered benign, could influence the activity of related
proteins. This effect can also be found in changes at 5′-UTR or intron variants that influence
transcription activity or alternative splicing. The genetic results of the OMD setting of CRC
indicate that these genetic variants (polymorphisms) were less prevalent compared to the
poly-metastatic disease. This observation adds further complexity to the phenotype of
cancer transformation processes and OMD phenotype. In fact, the effects of these variants
are unknown and largely undervalued from both a functional and clinical perspective.
Interestingly, diabetes-associated TCF7L2 variants were absent in the observed group of
patients with OMD from CRC. TCF7L2 is a transcription factor that plays a role in various
pathways involved in CRC and acts as an effector in the Wnt pathway [105]. The TCF7L2
gene is strongly associated with T2D and is located on chromosome 10q25.3, with rs7903146
being one of the most common single nucleotide polymorphisms in the TCF7L2 gene. The
exploration and identification of molecular characteristics of OMD is a crucial endpoint.
Clinical staging systems are imperfect and too simplified models.

In the future, a solid understanding of molecular and biological features will neces-
sarily support and complete the clinical information to distinguish the metastatic range.
Although defined only by the tumor burden, the OMD represents a setting where the
discovery of biomarkers will dramatically change the clinical management and enter into
clinical staging systems.

7. Timings of DLTs and Systemic Treatments

The timing of surgery and other forms of DLTs is a highly debated topic. Patients who
develop new oligometastases within a year after surgery should be not recommended for
repeated surgery but considered for other forms of DLTs [106]. However, there is a lack of
randomized trials that could establish any survival differences or clarify the role of pseudo-
adjuvant systemic interventions after surgery and/or other DLTs in OMD. To address
this gap, randomized trials are essential to explore the role of adjuvant interventions at
least in de novo OMD patients treated with DLTs. On a practical point of view, clinicians
consider multiple factors driving the decision about chemotherapy and its type, such as
the previous intensity and lasting of response, time-to-progression, associated symptoms,
tolerability of the current and next line of systemic treatments, predicted efficacy of the
next line of systemic treatment, patients’ needs and expectations, age, and comorbidities.
Even if the scientific community perceives OMD as being amenable to “less intensive”
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treatments, no randomized studies have been published on such approaches. A debated
issue in this regard is deciding the best control arm, which can be observation or standard
systemic treatment. However, in the absence of biomarkers specifically and unequivocally
identifying OMD, this induces difficult methodological, ethical, and pragmatic problems.

8. Technological Limits for Studying OMD

Exploration of genetic characteristics is essential to understand the biological dy-
namics of OMD. The discussion about the limitations of current approaches can help to
interpret the existing knowledge and to overcome these limitations. Next Generation
Sequencing (NGS) technology has generated great enthusiasm in the scientific community
due to its ability to sequence DNA from restricted gene panels to entire genomes quickly
and at a relative low cost [107,108]. This breakthrough was made possible by integrating
biochemistry, molecular technology, and bioinformatics. The potential impact of NGS in
cancer research is remarkable since tumor is a complex multi-gene disease. Therefore, the
identification of genes involved in malignant transformation and progression is critical to
design effective treatments. In most clinical and experimental settings, researchers have to
analyze a cancerous tissue, either fresh or paraffin-embedded, selected by the pathologist.
The pathologist enhances the analyzed tissue by extracting the most cancer-enriched areas
through macro and micro dissection. The minimum tumor cell content for adequate NGS
analysis is typically 20%, particularly when the aim is to find specific mutations [109].
When exploring the “genetic landscape” of a tumor, efforts should be made to minimize
contamination with normal cells to avoid interference and accurately estimate the variant
allele frequency (VAF) of tumor genetic variants. In this scenario, obtaining more than
95% neoplastic cells should be ideal. Two closely related mechanisms can affect the study
of OMD genetics: heterogeneity and evolution. When a tumor develops, it adapts itself
to the host through genetic evolution, and most malignant cancers progressively acquire
and accumulate alterations in genes related to DNA integrity and stability [110]. These
genetic changes increase cancer mutational plasticity and heterogeneity, making tumor cells
dynamic evolutionary machines [111]. Heterogeneity and genetic dynamism are present
and crucial in most malignant tumors and are responsible for the clinical/phenotypic
trajectories of cancer, such as OMD. Firstly, neoplastic “OMD cells” can be “quantitatively”
scarce in the primary tumor and result in a low VAF in genetic NGS assessments, inducing
a high risk of analytic biases and underestimation. It is crucial to analyze these cells as
they contain genetic information that is likely linked to the OMD phenotype. Moreover,
analyzing only the primary tumor, due to healthcare budget limitations or unavailabil-
ity/inaccessibility of metastatic tissue, can cause the loss of detection of these genetic
alterations wrongly classifying them as “metastatic private events” with low significance
and penetration. These crucial events, which occur during the early stages of the malignant
process, are elusive and diluted by other genetic alterations and polymorphisms. A single
NGS assessment is a single genetic snapshot.

More dynamic and complete (primary and metastatic lesions) assessment of the tumor
is required to allow large-scale genetic exploration of OMD. To this regard, improvements
in sequencing platforms, technologies, and bioinformatics are required. We are witnessing
the development of less invasive, new digital high-throughput PCR platforms based on the
combination of PCR techniques and cytofluorometric assays and nanotechnology-based
biosensors capable of detecting mutated circulating tumor DNA directly at the patient’s
bedside [112,113]. These advancements will allow for precise (single cell) and dynamic
(repeatable) determination of OMD. Furthermore, these techniques can be applied to patient
tissues, blood, or even biological fluids such as saliva and tears. The so-called liquid biopsy
can disclose a new scenario in which the sum of all the gene mutations in the primary
and metastatic tumor can be detected at the same time giving a general picture about the
mutational landscape of the neoplasm. Moreover, it can be repeated during the course of
the disease and after the treatments that can, in turn, induce a mutational pressure to the
tumor changing the genetic and biological behavior. The technological advancements in
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NGS today give the opportunity to analyze the circulating tumor DNA at high sensitivity
and specificity.

9. Exploring the OMD from Cancer Biopsies: Pros and Cons

The analysis of DNA from cancer biopsies is a promising approach for understanding
the molecular basis of OMD and developing personalized treatment strategies. However,
there are several challenges associated with this approach. Tumor heterogeneity is one
such challenge, as tumors comprise a diverse range of cell types, each with a unique
genetic landscape [114]. Biopsies can provide a limited view of the tumor’s genetic profile,
where important mutations may be missed. To overcome this challenge, multiple biopsies
from different areas of the tumor can be taken, or advanced techniques such as single-
cell sequencing can be employed for a more comprehensive view of the tumor’s genetic
landscape [115]. Another factor that can affect the quality of DNA analysis is the type of
tissue sample. Fresh tissues are preferred as they contain high-quality DNA and RNA
that can be used for downstream applications [116]. However, fresh samples may be more
difficult to obtain and manage logistically, and paraffin-embedded tissues may be the only
option available in some cases [117]. These samples are often degraded, which can pose
technical challenges during DNA analysis, such as low DNA yield, poor quality DNA,
and increased levels of artifacts. Therefore, careful consideration of the tissue type and
appropriate techniques for DNA analysis is crucial to obtaining reliable and accurate results.
Furthermore, the dynamic nature of cancer adds another layer of complexity to the analysis
of DNA from cancer biopsies in OMD. A single biopsy from a single lesion may not be
representative of the entire tumor’s genetic profile, as tumors are constantly evolving and
changing over time [118]. This is particularly important in the context of the differentiation
between oligo- and poli-metastatic disease, where a single biopsy may not accurately reflect
the genetic landscape of all metastatic sites. Serial biopsies taken over time can track tumor
evolution and identify potential therapeutic targets. Analyzing DNA from cancer biopsies
has both advantages and challenges, with tumor heterogeneity, tissue type, and cancer
dynamics being critical factors to consider.

10. Does Chemotherapy Induces Genetic Remodeling in OMD?

OMD is a stage of cancer in which there is limited spread of cancer cells to distant
organs. OMD presents with low burden metastatic involvement, making it possible to
apply therapeutic strategies based on pre-operative and/or peri-operative chemotherapies.
This is particularly relevant on a clinical point of view in liver metastases from colorectal
cancer [119]. Surgical resection is the primary treatment for oligo-metastatic CRC, especially
in the initially resectable liver metastases. However, the role of chemotherapy in this setting
is becoming increasingly important. The folfox schedule, a chemotherapy regimen that
combines fluorouracil, leucovorin, and oxaliplatin, has been shown to be effective in
treating liver metastases from colorectal cancer. Nordlinger et al. demonstrated that the
use of folfox in the neoadjuvant setting resulted in a higher rate of complete resection and
longer disease-free survival compared to surgery alone [120]. This suggests that the use
of chemotherapy in OMD can improve outcomes and increase the chances of complete
and durable remissions. However, reflection and insights are necessary since the study
of the molecular and genetic effects of chemotherapy in OMD is an important area of
research. Two observations need to be made: this study did not demonstrate improvements
in survival [121], and the use of chemotherapy can induce genetic changes in cancer cells.
Understanding these changes can lead to the development of new therapies that target
specific genetic mutations and help identify patients who are most likely to respond to
treatment. For example, the response to chemotherapy can be influenced by mutations in
genes that regulate DNA repair, such as BRCA1 and BRCA2. Patients with mutations in
these genes may be more sensitive to chemotherapy that induces DNA damage [122].

In this regard, our previous works revealed an important and intriguing observation [91,92].
Specifically, we found a significantly higher occurrence of private events in metastatic
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lesions (with a genetic concordance <20% in all coding variants) in patients who un-
derwent chemotherapy (fluoropyrimidines and oxaliplatin) prior to surgical resection
of metachronous lung metastases. These findings suggest a compelling hypothesis that
the treatment may contribute to the genetic heterogeneity of subsequent cancer cells that
progress. Further research is necessary to clarify and explore these phenomena and how
they can be exploited for personalized therapies.

11. Heterogeneity of Initial Tumor Burden in Clinical Trials

It is clear that patients with OMD give an intriguing opportunity to study low-
metastatic potential/low-burden metastatic cancer. OMD has a favorable prognosis as the
disease is controlled effectively with local treatments and milder systemic therapies. In fact,
the median survival of low-burden CRC patients is typically higher (around 44 months)
compared to that of patients with poly-metastatic disease (24 months) [123]. A crucial
scientific question is how the initial burden of metastatic disease, including the presence of
OMD, is reported in phase III clinical trials. We previously performed a systematic review
of phase III randomized clinical trials in NSCLC, breast, and colorectal cancers to assess
the reporting and analysis of the initial tumor volume of enrolled patients, including any
OMD [4]. Interestingly, we found no clear identification of OMD in the analyzed trials.
In 28.6% of the trials, a “low-burden disease” was reported, but this was mostly based
on the number of affected organs without any further information on the extent of the
disease. This cannot accurately define a patient having OMD. In fact, a patient with only
one affected organ could have a larger number and size of metastatic lesions than another
with multiple involved sites. Moreover, only a limited number of trials used the extent
of the disease as stratification factor, and no trials used an explicit definition of OMD as
an exclusion criterion. In some trials, particularly in lung cancer, stage III vs. IV was used as
a stratification factor, but a patient with OMD (stage IV) may have a smaller tumor burden
than another with extensive stage III loco-regional lymph nodal disease. In 18.6% of the
trials, subgroup analyses did not consider the oligo- vs. polymetastatic status, but only the
high vs. low disease burden, which was heterogeneously defined. Most importantly, if the
size of low-burden disease (or OMD) patients in different study arms is unequal, this could
introduce unexpected biases into the results. In 2 studies, we demonstrated a significant
imbalance between arms in patients with low-burden disease, increasing the probability of
biased results.

Could the unbalanced enrollment of genuine OMD patients affect the results of
trials and the prognosis of patients? This is a crucial methodological question that re-
mains unanswered. As the analyzed trials did not address this issue, the direct impact of
an imbalanced distribution of OMD patients between treatment arms cannot be measured.
To shed light on this question, we collected information on the treatment and outcomes of
112 consecutive mCRC patients with characteristics allowing inclusion in phase III trials.
We found a statistically significant difference in survival between polymetastatic and OMD
patients. Some patients were indeed enrolled in clinical trials, and the presence of omCRC
patients improved the overall prognosis (+2 months) of the cohort. These differences can
be even more pronounced in immunotherapies or other biological treatments that are more
effective in patients with low tumor burden (due to the presence of more immunosuppress-
ing cells in larger masses) [124]. If oligo-metastatic or low-burden disease is not identified,
it can impact the effectiveness of the assessment of several drugs in clinical trials.

We propose that evaluating tumor burden in future clinical trials, including the as-
sessment of OMD and complete tumor volume, would improve the validity of phase III
study results, especially in those using biological/immunotherapy drugs. In addition
to the standard clinical and radiological evaluations, advanced computational tools and
artificial intelligence for automated tumor volume quantification could be integrated into
clinical trial designs for better patient stratification and efficacy data interpretation. Further-
more, a harmonized definition and reporting of oligo-metastatic and low-burden diseases
through consensus meetings is essential.
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12. Identification of OMD

Some practical considerations and take-home messages can be made. To date, true de
novo OMD definition remains elusive. In fact, a single imaging snapshot of a patient with
only a few visible lesions may not be representative of the true tumor burden and evolution.
However, from a clinical standpoint, in synchronous OMD (when the primary tumor and
sites of metastases are diagnosed simultaneously or <6 months after the treatment of the
primary tumor), it is reasonable to suspect a polymetastatic disease. In metachronous OMD,
we can hypothesize a more favorable prognosis than synchronous disease because of the
lower capacity to develop a metastatic progeny. In the case of induced OMD (patients
with a previous history of polymetastases), it is even more difficult to predict the course
of the disease. Once again, the definition of OMD mainly relies on a clinical retrospective
approach. Oligopersistent and oligoprogressive diseases are very heterogeneous clinical
entities with unpredictable clinical behavior requiring an extremely personalized and
multidisciplinary diagnostic and therapeutic approach. In any case, the identification of
specific OMD biomarkers is a crucial challenge.

13. Conclusions

To date, we are aware that not only an elusive “spectrum” of malignancy, but also
an accompanying evolving range of potentially curative treatment exist. The interactions
between these two concepts will lead, in the near future, to increasingly individualized
and integrated cancer treatments with the support of improved molecular assessments and
computational tools, including artificial intelligence.
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