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Oligomeric amyloid b induces IL-1b processing via
production of ROS: implication in Alzheimer’s disease

B Parajuli1, Y Sonobe1, H Horiuchi1, H Takeuchi1, T Mizuno*,1 and A Suzumura1

Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by progressive neuronal loss and cognitive

decline. Oligomeric amyloid b (oAb) is involved in the pathogenesis of AD by affecting synaptic plasticity and inhibiting

long-term potentiation. Although several lines of evidence suggests that microglia, the resident immune cells in the central

nervous system (CNS), are neurotoxic in the development of AD, the mechanism whether or how oAb induces microglial

neurotoxicity remains unknown. Here, we show that oAb promotes the processing of pro-interleukin (IL)-1b into mature IL-1b in

microglia, which then enhances microglial neurotoxicity. The processing is induced by an increase in activity of caspase-1 and

NOD-like receptor family, pyrin domain containing 3 (NLRP3) via mitochondrial reactive oxygen species (ROS) and partially via

NADPH oxidase-induced ROS. The caspase-1 inhibitor Z-YVAD-FMK inhibits the processing of IL-1b, and attenuates microglial

neurotoxicity. Our results indicate that microglia can be activated by oAb to induce neuroinflammation through processing

of IL-1b, a pro-inflammatory cytokine, in AD.
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Alzheimer’s disease (AD) is a chronic neurodegenerative

disease characterized by progressive cognitive decline.1–3

The pathological hallmarks of AD are neuronal loss, neurofi-

brillary tangles, accumulation of activated glial cells, gliosis,

and the deposition of amyloid that forms senile plaques. The

imbalance between the production of amyloid b (Ab), the

proteolytic fragment of amyloid precursor protein (APP), and

its clearance is considered to be central event in the

pathogenesis of AD.4,5 The Ab peptide undergoes transition

frommonomer to oligomer and then forms insoluble fibrillar Ab

(fAb), which is the major component of senile plaque.6,7

Although fAb was thought to be the primary entity responsible

for AD, recent evidence suggests that soluble oligomeric

amyloid b (oAb) found in the cortex of AD patients contributes

to the pathogenesis of AD.8 Indeed, the level of oAb in the AD

brain or cerebrospinal fluid is directly correlated with the

degree of synaptic loss and severity of cognitive decline.9,10

Inflammatory process initiated by activated microglia is

another essential component of AD.11 Accumulation of

activatedmicroglia is observed around degenerating neurons.

It has been shown that microglial activation precedes

cognitive decline and the formation of senile plaque in

different APP transgenic mice, animal models of AD.12–14

Interleukin (IL)-1b, a member of the IL-1 cytokine family, is

produced as the inactive precursor pro-IL-1b in the cytoplasm

in response to a wide variety of stimuli.15,16 In order to exert its

functions, pro-IL-1b must be processed into its mature active

form by the protease caspase-1, which itself is activated by

cytosolic multiprotein complexes called inflammasomes.17,18

NOD-like receptor family, pyrin domain containing 3 (NLRP3)

is themost intensively studied inflammasome complex protein

and undergoes bipartite activation in macrophage and

microglia.17 The first signal, usually microbial toxins-like

lipopolysaccharides (LPS), induces NLRP3 and pro-IL-1b

expression. The second signal, usually many unrelated

entities like urate, extracellular ATP, and fAb, induces NLRP3

oligomerization with the adapter protein apoptosis-asso-

ciated-speck-like protein (ASC), which leads to autocatalytic

activation of caspase-1. This activation of caspase-1 requires

an efflux of potassium (Kþ ).19 Activated caspase-1 then

processes pro-IL-1b to mature IL-1b.20–23 In addition, NLRP3

activation in microglia is reported to contribute to the

progression of AD-like pathology in APP/PS1 transgenic

mice, and NLRP3 knock out (KO) mice are reported to have

decreased disease burden.24 Although oAb is postulated to

activate inflammasomes,25 how oAb induces NLRP3 activa-

tion to process pro-IL-1b to the mature form remains

unknown. Here we show that oAb increases the processing

of pro-IL-1b into mature IL-1b in microglia via reactive oxygen

species (ROS)-dependent activation of NLRP3.

Results

We first assessed whether oAb induces IL-1b mRNA or

processes IL-1b protein in microglia. We found that oAb alone

did not induce IL-1b mRNA and protein in microglia
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Figure 1 oAb induces IL-1b release in LPS-primed microglia. Microglia primed with LPS for 3 h were washed with ice-cold PBS and treated with oAb for varying times; the
concentration of IL-1b in the culture supernatant was then measured (a). ***Po0.001, versus 0 h. Western blot analysis of oAb used in the present study (b). The blot was incubated
with mouse anti oAb monoclonal antibodies (6E10) (1 : 1000, Chemicon). LPS-primed microglia were treated with oAb for 48 h, and the concentration of IL-1b in the culture
supernatant as well as mRNA expression were measured by ELISA (c) and qPCR (d). Data indicate means±S.D. for five independent experiments. ***Po0.001, versus LPS-primed
microglia
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Figure 2 oAb induces IL-1b secretion/release via caspase-1 activation. LPS-primed microglia were treated with Z-VAD-FMK (a) or Z-YVAD-FMK (b) for 30min before
oAb stimulation, and IL-1b in the culture supernatant was measured at 48 h. Data indicate means±S.D. for four independent experiments. ***Po0.001, versus LPS-primed
microglia as control (ctl). ww, or www denotes Po0.01, or 0.001, respectively, versus LPS-primed microgliaþ oAb. (c) After LPS-priming microglia were treated with oAb for
48 h, Casp-1 p10 in the culture supernatant as well as caspase-1 and b-actin in the cell lysates were assessed by western blotting. Data are representative of two independent
experiments. (d) LPS-primed microglia were treated with oAb for 48 h, and caspase-1 activity was measured. Data indicate means±S.D. for three independent experiments.
**Po0.01, versus LPS-primed microglia without oAb
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(Supplementary Figures 1a and b). To assess whether oAb

affects the processing of IL-1b, we transiently activated

microglia with LPS (1mg/ml) for 3 h (LPS priming). The cells

were then washed twice with ice-cold PBS and further

stimulated with oAb (5mM) for varying times (0–72 h), and

IL-1b concentration in the culture supernatant was measured.

We found that oAb time-dependently increased IL-1b con-

centration in the culture supernatant when compared with

transiently activated microglia with LPS for 3 h, which served

as control (Figure 1a). Western blot analysis of oAb used in

the present study was shown in Figure 1b. In addition, oAb

dose-dependently increased IL-1b secretion (Figure 1c). As

oAb alone did not upregulate mRNA levels of IL-1b

(Figure 1d), these results indicate that oAb upregulates

processing of IL-1b in LPS-primed microglia. As pro-IL-1b is

reported to be processed by a caspase-dependent pathway.15

To determine whether oAb-induced IL-1b secretion is

dependent on caspase, microglia primed with LPS for 3 h

were treated with the pan-caspase inhibitor Z-VAD-FMK or

caspase-1 inhibitor Z-YVAD-FMK for 30min before oAb

stimulation. We then measured IL-1b in culture supernatant

at 48 h. Both Z-VAD-FMK and Z-YVAD-FMK dose-depen-

dently decreased IL-1b secretion in the culture supernatant

(Figures 2a and b). We next assessed the cleaved fraction of

caspase-1 (Casp-1 p10) by western blotting and found that

oAb dose-dependently increased the secretion of Casp-1 p10

in the culture supernatant (Figure 2c). Similarly, treatment of

oAb after LPS priming dose-dependently increased caspase-1

activity in microglia (Figure 2d).

To determine whether oAb-induced IL-1b processing is

dependent on NLRP3, we increased the Kþ concentration in

the culture medium, which was previously described to inhibit

NLRP3.19 We found that the increased Kþ concentration, by

the addition of KCl, significantly decreased IL-1b release from

microglia (Figure 3a). The addition of NaCl did not affect

IL-1b release. Furthermore, oAb stimulation induced the

co-localization of caspase-1 with NLRP3 (Figure 3b). NLRP3

is reported to be activated by lysosomal destabilization and

release of cathepsin B in response to phagocytosis.22,23,26

To evaluate the requirement of phagocytosis and cathepsin B

release in oAb-induced IL-1b secretion, phagocytosis

and cathepsin B were pharmacologically inhibited with

cytochalasin D and cathepsin B inhibitor, respectively.

We found that cytochalasin D inhibited fAb-induced IL-1b

release and caspase-1 activity as previously described22

(Supplementary Figures 2a and b); however, it had no effect
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Figure 3 oAb-induced caspase-1 activation is dependent on NLRP3. (a) LPS-primed microglia were treated with NaCl or KCl before oAb stimulation, and IL-1b in the
culture supernatant was measured at 48 h. Data indicate means±S.D. for four independent experiments. ***Po0.001, versus LPS-primed microglia (ctl). wwwPo0.001,
versus LPS primingþ oAbþKCl. (b) LPS-primed microglia were treated with oAb for 48 h, and co-localization of NLRP3 and caspase-1 were assessed by
immunocytochemistry. Data are representative of three independent experiments. Scale bar represents 10 mm
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on oAb-induced IL-1b secretion and caspase-1 activity

(Figures 4a and b). Similarly, cathepsin B inhibitor decreased

fAb-induced IL-1b secretion and caspase-1 activity as

previously described22 (Supplementary Figures 2c and d), it

had no effect on oAb-induced IL-1b secretion and caspase-1

activity (Figures 4c and d). ROS are reported to act as danger

signal for NLRP3 inflammasome activation.21,27,28 High

concentrations of ROS inhibitors are reported to block

NF-kB-mediated by priming of NLRP3 inflammasome.29

We treated microglia with N-acetylcysteine (NAC), a potent

ROS scavenger, for 30min after LPS priming and before

the addition of oAb. NAC dose-dependently decreased

oAb-induced IL-1b secretion (Figure 5a). Similarly, NAC

also inhibited oAb-induced caspase-1 activity (Figure 5b).

Similarly, gp91ds-tat, an NADPH oxidase (NOX)-specific

inhibitor, also dose-dependently decreased oAb-induced IL-1b

secretion as well as caspase-1 activity, but not as potently

as NAC (Supplementary Figures 3a and b). These results

indicate that oAb-induced IL-1b secretion is partially depen-

dent on NOX. Mitochondrial ROS are reported to activate

NLRP3, so we next determined cellular and mitochondrial

ROS production by flow cytometry. Microglia treated with oAb

after LPS priming produced cellular and mitochondrial ROS,

which were inhibited by NAC (Figure 5c). We also assessed

whether LPS-primed microglia affect neuronal viability.

LPS-primed microglia were cocultured with primary cortical

neurons and treated with oAb (5 mM) with or without Z-YVAD-

FMK or IL-1ra. Neuronal cultures were also treated with oAb

with or without Z-YVAD-FMK or IL-1ra. We found that

treatment of neuronal cultures with oAb decreased the

viability of neurons. The neuronal damage with oAb was

further enhanced in the neurons/LPS-primed microglia

cocultures. Although Z-YVAD-FMK or IL-1ra had no effect in

the neuronal cultures, it attenuated microglia-induced neuro-

toxicity in the neuron/LPS-primed microglia cocultures

(Figures 6a and b).

Discussion

Microglial-mediated neuroinflammation contributes to the

pathogenesis of AD. Indeed, microglial activation and

subsequent production of neurotoxic pro-inflammatory mole-

cules have a pivotal role in the progression of AD. However,

whether Ab, a main component of misfolded protein in the AD

brain, could induce the production of pro-inflammatory

cytokines is controversial. It has been reported that oAb does

not induce IL-1bmRNA in microglia.30However, other reports

indicate that oAb induces various inflammatory mediators

such as IL-1b, TNF-a, and NO.31–33 In this study, we have

shown that oAb alone is not sufficient to induce IL-1bmRNAor
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increase IL-1b secretion in unstimulated microglia. oAb

induces IL-1b secretion via activation of caspase-1 when

microglia are primed with toll-like receptor (TLR) 4 ligand LPS.

We also showed that both mitochondrial as well as NOX2-

induced ROS contribute to oAb-induced caspase-1 activation.

Furthermore, oAb has been shown to induce ROS inmicroglia

by activation of NOX andmitochondria damage.34–38ROS are

reported to activate caspase-1 via NLRP3.27,28 ROS induce

oxidation of Kþ channel.39Similarly, oAb is reported to induce

pore formation in the cell membrane40 and to alter Kþ current

in neurons.41 Thus, oAb-induced pore formation or oxidation

of Kþ channel might lead to Kþ efflux activating NLRP3

inflammasome in microglia. We have also shown that

inhibition of Kþ efflux decreases oAb-induced IL-1b secretion.

Kþ efflux is required for NLRP3 activation.19

Our results indicate that themechanism of oAb-induced IL-1b

secretion is different from that induced by fAb. oAb-induced

IL-1b secretion by microglia was not dependent on phagocy-

tosis and lysosomal disruption with subsequent release of

cathepsin B, because we found that the inhibition of

phagocytosis by cytochalasin D and cathepsin B inhibitors

had no effect on IL-1b secretion. However, fAb-induced IL-1b

secretion is dependent on phagocytosis with subsequent

lysosomal disruption. oAb and fAb differentially activate

microglia and neurons.30,42 For instance, oAb is reported to

inhibit phagocytosis, whereas fAb is reported to stimulate

phagocytosis.42 Moreover, oAb is reported to be more

neurotoxic than fAb.30 We have also shown that oAb induces

far greater secretion of IL-1b than fAb in LPS-primed

microglia. We further showed inflammasome activation in

microglia increases oAb-induced neuronal cell death, which is

ameliorated by the inhibition of caspase-1 and IL-1b.

Consistent with this observation, genetic deletion of NLRP3

in mice expressing mutant human APP/PS1, an animal model

of AD, deceases their disease burden.24

The role of IL-1b in AD pathology is complex. IL-1b

transgenic mice expressing mutant human APP/PS1 are

reported to have decreased plaque formation, although the

total amount of oAb is unaltered.43 However, IL-1b transgenic

mice are reported to have learning andmemory impairment.44

IL-1b can also affect synaptic plasticity and inhibit long-term

potentiation.45,46 It has been shown that secreted mature IL-1b

induces the phosphorylation of tau protein and mediates the

formation of neurofibrillary tangles.47,48 IL-1b can be elevated

before the formation of amyloid plaque in patients with Down

syndrome, who invariably develop AD-like pathology.49 Thus,

oAb-induced IL-1b secretion by microglia may augment

neuroinflammation, increase neuronal cell death, and

contribute to the pathogenesis of AD. Indeed, the infusion of

oligomeric human amyloid b in mice lacking IL-1 receptor

antagonist (IL-1ra) induces microglial activation and causes

neuronal cell death.50

In conclusion, our results indicate that oAb induces the

secretion of active IL-1b via increased activation of caspase-1

in LPS-primedmicroglia, which is dependent onmitochondrial

and NOX2-induced ROS production. Secreted IL-1b is

involved in neuronal cell death that is ameliorated by inhibiting

caspase-1 activation or by neutralization of IL-1b. Thus, the

cascade of oAb-induced IL-1b secretion in microglia may be a

target for treating AD.
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Materials and Methods
Reagents. LPS, N-acetyl-L-cysteine (NAC) and cytochalasin D were obtained
from Sigma-Aldrich (St. Louis, MO, USA). Z-VAD-FMK (pan-caspase inhibitor),
Z-YVAD-FMK (caspase-1 inhibitor), and Ac-Leu-Val-lysinal (cathepsin B inhibitor)
were obtained from Calbiochem (Gibbstown, NJ, USA). Anti-cryopyrin (sc-34410)
and anti-caspase-1 antibodies (sc-514) were from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Gp-91 ds tat was from Anaspec (Fremont, CA, USA).
IL-1ra was obtained from R&D (Minneapolis, MN, USA).

Cell culture. All animal experiments were conducted under protocols that were
approved by the Animal Experiment Committee of Nagoya University. All primary
cultures were prepared from C57BL/6 mice (Japan SLC, Hamamatsu, Japan).
Microglia were isolated from primary mixed glial cell cultures prepared from

newborn mice on day 14 using the ‘shaking off’ method as previously described.51

The purity of the cultures (499%) was determined by anti-CD11b immunostaining
(BD Biosciences, Franklin Lakes, NJ, USA). The cultures were maintained in
Dulbecco’s modified Eagle’s minimum essential medium (Sigma-Aldrich) supple-
mented with 10% fetal bovine serum (SAFC Biosciences, Lenexa, KS, USA), 5mg/ml
bovine insulin (Sigma-Aldrich) and 0.2% glucose.
Primary neuronal cultures were prepared from the cortices of mouse embryos at

embryonic day 17 (E17) as described previously.52 Briefly, cortical fragments were
dissociated into single cells in dissociation solution (Sumitomo Bakelite, Akita,
Japan) and resuspended in nerve culture medium (Sumitomo Bakelite). Neurons
were seeded onto 12-mm polyethyleneimine (PEI)-coated glass cover slips (Asahi
Techno Glass Corp, Chiba, Japan) at a density of 5� 104 cells/well in 24-well
plates. The purity of the culture was more than 95% as determined by NeuN-specific
immunostaining (Merck Millipore, Billerica, MA, USA).

Neuron-microglia cocultures were prepared as follows: 1� 105 microglia in
100ml of neuronal mediumwere added to neuronal cultures (5� 104 neuronal cells)
in 24-well plates on day 14.

Preparation of oAb and fAb. oAb and fAb were prepared as previously
described.30 To form fAb synthetic human Ab1-42 (Peptide Institute, Osaka,
Japan) was dissolved in 0.02% ammonia solution at a concentration of 250mmol/l,
diluted to 25mmol/l in PBS, and incubated at 37 1C for 72 h. Briefly, oAb1-42 was
prepared by dissolving Ab1-42 to 1 mmol/l in 100% 1,1,1,3,3,3-hexafluoro-2-
propanol. 1,1,1,3,3,3-Hexafluoro-2-propanol was dried by a vacuum desiccator
and resuspended to 5mmol/l in DMSO. To form oligomers, amyloid peptide was
diluted to a final concentration of 100mmol/l with Ham’s F-12, incubated at 4 1C for
24 h, and then immediately added to cultures at a final concentration 5mmol/l.
Formation of oAb was confirmed by western blotting as previously described.30

Measurement of IL-1b and caspase-1 activity. Microglia, seeded at a
density of 1� 105 cells/well in 24-well plates, were treated with LPS for 3 h. The
cells were then washed twice and treated with oAb. Supernatants were collected
and the levels of IL-1b in culture supernatant were determined by ELISA
according to the manufacturer’s instruction (BD Biosciences). Microglia, seeded at
a density of 1� 107 cells and treated as described above, were measured for
caspase-1 activity according to the manufacturer’s instruction (Merck Millipore).

RT-PCR. For quantitative PCR, the total cellular RNA was extracted using the
RNeasy Mini Kit (Qiagen, Hilden, Germany). cDNA was synthesized from total
cellular RNA that was denatured for 5min at 65 1C, followed by a reverse
transcription reaction using the SuperScript II (Life Technologies, Carlsbad, CA, USA).
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The cDNA served as a template to amplify genes in quantitative PCRs with
TaqMan Gene Expression assays (Applied Biosystems, Foster City, CA, USA),
Universal PCR Master Mix (Applied Biosystems), and Rotor-Gene Q (Qiagen).
Expression levels of target genes were calculated using a comparative method
and normalization to GAPDH expression levels as previously described.53 The
following primers and probes were obtained from Applied Biosystems: IL-1b,
Mm00434228_m1; GAPDH, Mm99999915_g1.

Immunocytochemistry. Immunocytochemistry was conducted as pre-
viously described. Microglia plated on a glass cover slip were fixed with 4%
paraformaldehyde for 10min. The cells were then permeabilized with 0.05% Triton
X-100 for 5 min and blocked with 5% bovine serum albumin for 1 h, followed by
incubation with anti-caspase-1 (1 : 500), and anti NLRP3 (1 : 500) antibodies
overnight at 4 1C. The cells were then incubated with Alexa 488- or Alexa 568-
conjugated secondary antibodies for 1 h. Cells were examined with a
deconvolution fluorescence microscope system (Bio Zero, Keyence, Osaka,
Japan). Neuronal viability was assessed as previously described.30,52 To
determine the viability of neurons in microglia-neuronal cocultures, microglia were
labeled with Cy5 conjugated anti-CD11b (1 : 250) for 30min before permeabiliza-
tion with 0.05% Triton X-100 for 5 min, and blocked with 5% goat serum for 1 h,
followed by incubation with anti-4 G8 antibodies (Chemicon, Temecula, CA, USA,
1 : 1000), and anti-MAP2 antibodies (Merck Millipore, 1 : 1000) for 2 h at room
temperature. Then, the cells were incubated with Alexa 488- or Alexa 568-
conjugated secondary antibodies (1 : 1000) for 1 h. Cells were examined with a
deconvolution fluorescence microscope system.

Western blotting. Western blotting was done as previously described.22 Cell
culture supernatants were precipitated by the addition of an equal volume of
methanol and 0.25 volumes of chloroform, followed by vortexing and centrifugation
for 10min at 20 000� g. The upper phase was discarded and 500ml methanol
was added to the interphase. This mixture was centrifuged for 10min at
20 000� g, and the protein pellet was dried and resuspended in Laemmli buffer.
The samples were boiled for 5 min at 99 1C. The samples were then separated by
SDS-PAGE and transferred onto nitrocellulose membranes. Blots were incubated
with rabbit polyclonal anti-mouse caspase-1 antibodies. To determine the
caspase-1 level in the cell lysate, microglia were lysed with TNES buffer (1 M
Tris-HCL, 20% SDS, and 2.5% glycerol) containing phosphatase (Sigma-Aldrich)
and protease inhibitor (Roche, Mannheim, Germany). Fifty micrograms of protein
from the total lysate was assayed for caspase-1 and b-actin.

Flow cytometry. Flow cytometry was conducted as previously described.53

Briefly, LPS-primed microglia treated with oAb or left untreated were stained with
5-(and-6)-chloromethyl–20,70-dichlorodihydrofluorescein diacetate, acetyl ester
(CM-H2DCFDA) or MitoSOX red superoxide indicator (both from Invitrogen,
Carlsbad, CA, USA) for 15min according to the manufacturer’s instruction. After
washing twice, cells were analyzed using a Cytomics FC500 (Beckman Coulter,
Brea, CA, USA).

Statistical analysis. Statistically significant differences between experimental
groups were determined by a one-way ANOVA followed by the Tukey’s test for
multiple comparisons. Statistical analysis was performed using the software
program Prism 4.0 (GraphPad Software, San Diego, CA, USA). P-values o0.05
were considered to be statistically significant.
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