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1. Introduction

The speed with which firms choose to extract a natural resource
depends crucially on the value the firms attach to the unextracted resource.
Under well-defined property rights, abstracting from imperfections in the
final market for the firms' outputs, the firms will extract at the socially
optimal rate. When the resource is owned in common and entry into the
industry is free, the firms have no incentive to conserve the resource
because they know that newcomers to the industry will extract immediately
any unit of the resource that can be extracted with immediate profits.

This case has been thoroughly analyzed in the literature.1 When the resource
is owned in common but the number of firms is fixed (perhaps because each
extracting firm must have a lease to the property from which the resource
is extracted), the firms have some incentive to conserve the resource:

they know that immediate profitability does not necessarily result in
immediate extraction by rivals. It does not follow, however, that this
incentive to conserve the resource is strong enough to generate a socially
optimal extraction rate. Each unit of the resource which a firm chooses
not to extract today may be in part extracted by a rival firm tomorrow;
thus, even without free entry, the firms' valuation of the unextracted
resource may be too low and the firms may extract the resource too quickly.
(The belief that common-property resources are extracted too quickly has
motivated much of the regulation of the U.S. petroleum industry: see
McDonald, 1971, Chs. 1, 2, 3.)

This paper investigates dynamic equilibria for an oligopolistic
industry with a given number of firms exploiting a common-property non-

renewable resource. It excludes the problem of market imperfections through



the assumption of a constant-elasticity demand curvezand thus concentrates
on the distortions due to the common-pool aspect.

Several recent studies have examined the dynamics of the exploitation
of non-renewable common-property resources by an oligopolistic industry.

Bolle (1980) considered the case of a common stock of a resource to which

several countries have access. Dasgupta and Heal (1979, Ch. 12), Kemp and
Long (1980), Khalatbari (1977), and Sinn (1981) analyzed the problem of
oil-well owners who have the right to extract the oil located under their
own properties: the oil is in a single pool underground, and seeps from
one holding to another at a speed dependent on the relative sizes of the
stocks currently under each property.
In modelling dynamic oligopoly, some choice of equilibrium concept
must be made. A natural candidate is a dynamic analog of the static
equilibrium concept introduced by Cournot: each firm makes its decisions e

under the assumption that its rivals' actions are not affected by its own

(]

actions. Unfortunately, for dynamic common-property problems the meaning

of Cournotesque behavior is ambiguous. One possible Cournotesque assumption
(adopted by Bolle (1980) and Kemp and lLong (1980)) is that each agent
believes its rivals will follow a particular time path of rates of extraction,
regardless of its own actions. An alternative Cournotesque assumption (used
by Sinn (1981)) is that each firm believes that, regardless of its own
actions, its rivals will extract in such a way as to generate a particular
time path of the stock of the resource. A third possibility (Khalatbari,
1977, Dasgupta and Heal, 1979) is that each firm believes that its rivals
both maintain a given time path of sales and maintain a given time path of
the stock of the resource. The qualitative predictions of the models are

sensitive to the choice of equilibrium concept: the models of Dasgupta and



Heal, Khalatbari, and Sinn predict over-exploitation of the resource, while
the Bolle and Kemp-Long models predict Pareto-optimal extraction rates.
Thus the decision as to whether or not there is a role for government
intervention in common-property markets is dependent upon which equilibrium
concept is thought to be appropriate.

In Section 2, we examine a more general concept of equilibrium for
the dynamic common-property problem by allowing firms to have arbitrary
conjectures about their rivals' reactions. Then many equilibria are
possible, including in particular the three Cournotesque equilibria.

Fellner (1949) criticized Cournot's equilibrium concept because it
required firms' actions to be "right for the wrong reasons': at equilibrium,
the firms act consistently but under incorrect assumptions about their
rivals' reactions. In a formally static model such as Cournot's, this
concept of equilibrium is not unreasonable; if the game is only played
once, the incorrectness of conjectures may not be revealed. In an explicitly
dynamic model, Fellner's criticism has more force. In a dynamic context,
it seems likely that, if conjectures are incorrect, this incorrectness
will be revealed, either during the initial adjustments on the approach to
equilibrium, or by occasional accidental or experimental deviations after
equilibrium has been reached. As an alternative to a dynamic Cournotesque
equilibrium, in Section 3 we define a rational-expectations equilibrium to
be an equilibrium in Which firms' conjectures are locally correct.

The model is developed for the case of a common pool of a rescurce,
to the whole of which each firm in the industry has access. The results
will be compared with results already reported in the literature. Since

many of these existing results refer to the different but related problem



many of these existing results refer to the different but related problem
of oil in a reservoir seeping from one individually-owned property to
another, it is necessary to show that the two problems are indeed comparable;

this is done in Section 4. Section 5 offers concluding comments.

2. Conjectural Equilibria

An industry consisting of n firms (n 2 2) exploits a common pool of
a non-renewable 'resource. As is standard in such models, extraction is
assumed to be costless. There is no entry into or exit from the industry.

Each firm knows the industry's instantaneous demand function P(R), P < o,

n
where R(t) = Z Ri(t) is the total amount extracted and sold at time t and
i=l

Ri(t) is the amount extracted and sold by firm i. Assume, moreover, that
the demand function is isoelastic, so that T = -P/(RF' ) > 0 is constant.
Each firm knows the size of the stock of the resource, S(t). Firm i chooses
an extraction plan seeking to maximize the discounted value of its stream
of future profits. Since the market price, and therefore firm i's profit,
at time t depends upon all the other firms' extraction rates, without some
prediction of its rivals' actions firm i's optimization problem is not well-
defined. Denote firm i's conjecture about the total extraction rate of the

other firms by Rfi(t). Assume firm i's conjectures are of the form
) R, (t) = a(t) + BS(t)

where B 2 0 is constant and a(t) + BS(t) =2 0, The term 2(t) in firm i's
conjectures indicates that firm i believes that, in part, its rivals'

extraction rate is autonomous. The term BS(t) reflects firm i's belief

.
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that a change in the size of the resource stock will cause in a change in
the rivals' extraction rate; P will be called the '"conjectural parameter".
The firm has perfect foresight about the time path of the extraction rate
R-i(t); it has a conjecture about the size of f; and it takes a(t) to be
residual.

Thus firm i believes that the resource stock will change at the
rate

s®(t) = RS (¢)

c
2) = -@®, (&) + &%, (£))
= -(Ri(t) +a(t) + Bs(t)) .
Given S(0) = So > 0, firm i's objective is to choose subject to (2) an

extraction plan Ri(t) with Ri(t) 2 0, to maximize

3) [R@ (£)) R (t) e ar
(o]

where r > 0 is the market rate of interest.
The Hamiltonian is

(4) X, = exp (-rt) [PR°)R; - MR°T .

Under the assumption of an interior solution, necessary conditions are,

from aﬂi/BRi =0,

R
(5) A = PREQA - ?;'5)’
where
(6) 1> R /R,

Also, from O(exp(-rt) hi)/at = - aﬂilas, and from (1),

7) A - oTA = - 184 (Rc)Ri - Al

Let X denote x/x. Then, by the use of (5), (7) becomes



(8) A =r o+l +—L
R,
R
The transversality condition is .
) lim exp(-rt) Ki(t)s(t) =0
L

which requires, because of Ai 2r (from B 2 0, (6), and (8)),3

(10) 1lim S(t) = O.

oo

Conditions (2), (5), (7), and (10) determine firm i's extraction path Ri(t)'
Each firm is assumed to make its decision about Ri(t) in this way.

In a conjectural equilibrium, firm i's conjecture about the total of its

rivals' extraction paths Rfi(t)’ must be equal to the rivals' actual total

extraction path found as the solutions to such maximization problems :

R_i(t) = Z R.(t). Thus in equilibrium Rfi(t) = R—i(t) for all t ¢ (0,x). =
jA g
We consider only symmetric equilibria, so that in equilibrium .

R/Ri = n. Condition (6) therefore becomes

(11) T > 1.
1
= 1 - is constant; hence, in
Clearly R/Ri n implies that ( UR/Ri) s ¢ 5 R

equilibrium, (5) and (8) imply

(12) R/M =4,

so that

(13) R = -p

where

1) p = Mr+BA + D

o

Since (2) and (10) imply that S(t) = J R(r)dr and since, because of 3),
t

[e ]
j R(T)dr = R(t)/p we find that,
t

(15) §=-R/S =-p .
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This equation also implies that p/n = Ri/S for all i, that is, that p/n is

the single firm's actual rate of extraction per unit of stock.

In an equilibrium, the transversality condition (9) becomes

(16) lim exp(-rt)hi(o) exp (tp/M)S(0) exp(-pt) =0
=

when use is made of (12), (13), and (15). Inserting p from (14), and after

some manipulations, we can write this as

) W+@-1) BA + o > 0.

Given, from (6), Tn > 1, and given B 2 0, (17) is satisfied if and only if
either
(182) M=21

or

T
1
@-MA + =)

(18b) 1< n<1landp<

The crucial result of this model is contained in equation (14); the

right-hand side of this will be called the extraction function. Rewrite

(14) as
19) p=a+bp
where
a=Te >0
= 1
b =M + =) > 0.

Thus, in equilibrium, the unit rate of extraction chosen by all firms, p,
is a linear, increasing function of 3, the conjectural parameter. The
faster the firms expect their rivals to extract the resource, the faster
they will choose to extract the resource themselves. As will be shown,
this self-fulfilling-prophecy aspect can generate instability in common-

property markets.



How does the oligopolistic industry's extraction rate compare with
the socially optimal extraction rate? The Hotelling rule states that, for
Pareto-optimal allocation in the absence of extraction costs and uncertainty,
the price of the resource should increase at the rate of interest; that is,
5 = r. With constant price elasticity of demand, this implies
(20) S = -Tr.
The conjectural parameter B determines whether or not the market
outcome is optimal. Suppose B = 0. Then, from (20) and (15), the
equilibrium rate of extraction is the socially optimal rate. The intuition
is that, with this particular value of B, the optimizing firm behaves as
if it had well-defined property rights. It believes its rivals maintain
a given extraction path independently of its own actions. In effect there
is a given quantity of the resource available for it to extract; there is
no need to speed up its extraction process in order to preclude extraction
by its rivals. The results of Bolle and Kemp and Long correspond to this case.
Suppose B > 0; this means that the firm believes that, of every unit
of the resource it leaves unextracted, part will be extracted by its rivals.
Then, because b > 0, the extraction function (19) shows that p > Tr and hence
§ < -Tr. There is over-extraction (as predicted by Khalatbari and Sinn
for a special case in which B is a technologically-determined positive constant).

The larger is the conjectural parameter 8, the greater is the degree of over-

extraction.



3. Rational -Expectations Equilibrium

In the last section it was shown that, corresponding to the infinity
of possible conjectures about rivals' reactions, there are infinitely many
dynamic equilibria. 1In this section it is asked whether adopting a stronger
equilibrium definition, requiring conjectures to be rational in a sense
about to be made precise, reduces the number of possible equilibria.

In the perfect foresight equilibrium, conjectures are correct at a
point, in that the actual rate at which any firm sees its rivals extracting
the resource, S(t)p(n-1)/n, is the same as the rate it conjectured for
them, a(t) + BS(t). A stronger notion of equilibrium requires that conjectures
be correct not only at the equilibrium point but also for some range around
it. Suppose the size of the resource stock changes by some small amount AS
(perhaps because new information becomes available). Then, given the
conjectures B, a new perfect foresight equilibrium will be established wherg
each firm observes its rivals' rate of extraction to increase by ASp(n - 1)/n.
Hence p(n - 1)/n is the actual marginal rate of extraction on the part of i's
rivals. Now define a rational-expectations equilibrium to be such that

p(n-1)/n = B, or equivalently
@) p=Rg,

Thus at a rational-expectations equilibrium, the actual marginal rate of ex-
traction is equal to the conjectural marginal rate of extraction. Equation
(21) is represented in Figure 1, which also shows the graph of the extraction
function (19). 1If a rational-expectations equilibrium exists, it must be char-
acterized by the point of intersection of the two lines. The location and the
existence of this intersection point depend upon the elasticity of the market

demand curve. Elementary manipulations show
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=
(22) N<1epS

where b & T[1 + 1/(Tn-1)] is the slope of the extraction function as given
by (19).

Consider firstly the case 1 2 1. Here, according to (22), the line
depicting the extraction function (19) is at least as steep as the line
given by (21). Since, from (19), the extraction function has a strictly
positive intercept, this implies that the two lines cannot intersect in
the range where p > 0, that is, where the total extraction per unit of
stock is positive. The latter, however, is required by the transversality
condition (19) in connection with equation (15).

Suppose, instead, that 1/n< TN< 1. For this case, (22) clearly ensures
that there is a point of intersection with p > 0. But again.this point does
not satisfy the transversality condition. To see this, note from (18b)
that in the case of 1< 1 the transversality condition requires
B< Te/{[1-M[L + 1/(aN1)]}. Equations (19) and (21), on the other hand,
imply that the point of intersection is characterized by
T

1

n —————
n-1 na + nT1

(23) p =

Elementary algebra shows that (18b) and (23) are incompatible.

Thus any outcome in which the conjectural marginal extraction rate 2]
and the actual marginal extraction rate p(n-l)/n coincide does not satisfy
the transversality condition of the individual firm. No rational-expectations
equilibrium exists.

A rational-expectations equilibrium is a natural end-point for a
disequilibrium adjustment process in which firms adjust their conjectures

in the light of their observations of their rivals' actual behavior. To

]

i1
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demonstrate the implications of the non-existence of such an equilibrium,
consider the firm's reactions to new information. If the system is in a
perfect foresight equilibrium then, in the absence of exogenous disturb-
ances, the divergence between the actual marginal rate of extraction
p(n-1)/n, and the conjectural parameter B is not revealed. Suppose,
however, there is new (public) information which causes the estimate of
the size of the resource stock to be revised by some small amount. Now,
given the conjectures, a new equilibrium path will be established and
each firm will learn that4 p(n-1)/n > B; that is, that its conjecture
about the rivals' marginal extraction rate was too conservative. This new
information will cause it in some way to revise upwards its conjectural
parameter . According to the extraction function (19) a new equilibrium
with a higher rate of extraction p per unit of stock is achieved. From
(19) and (22),

(24) g-é-&flp] =y Fraf .

This means that any change in the conjectural marginal rate of extraction
translatesinto a larger, equal, or smaller change in the actual marginal
rate of extraction as the absolute elasticity of demand is larger than, equal
to, or smaller than unity, respectively. If 7< 1, then, with a sequence
of exogenous disturbances, both rates approach each other. However, as shown
above, hefore they coincide the perfect foresight equilibrium ceases to
exist. If T 21, new information always causes there to be an equal or in-
creased discrepancy between.conjectured and actual marginal extraction rates;
new information results in ever faster extraction.

In Figure 1, the arrows depict this process for the particular case
in which firms conjecture that their rivals®' reactions to extra stock will be

the same as their actual reaction at the last observation (with T = 1).
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The non-existence of a rational-expectations equilibrium means that
every possible equilibrium corresponding to conjectures of the form (1) is
unstable in the sense that it is based on misapprehensions by firms about
their rivals' behavior: new information will cause firms to revise upwards
their conjectures about their rivals' rates of extraction. This is true in
particular of the equilibrium in which extraction occurs at the socially

optimal rate (the B =0 case).

4. Relationship to Seepage Models

The model developed above describes a common-property problem in
which each firm has access to the whole pool of the resource. Comparisons
were made with the results of the problem of Kemp and long (1980), Khalatbari
(1977), and Sinn (1981) in which the firms own separate 0il wells between
‘which there is seepage. It remains to show that the two problems are indeed
comparable.

Suppose there are n symmetrically-placed oligopolists owning resource

stocks of sizes Sl,...,Sn, from which they extract at the rates Rl""’Rn'

n n n n th
let S = Z2S,,R = s S_ i= 2 8S,, R_ 1= Z R,. O0il seeps between the i
ja1 4 j-l Y j=1 j=1
57‘1 J#H

well and the others5 at a rate which is proportional to the difference between

the size of the ith stock Si and the average size of all the other stocks,

S_i/(n -1). Then the single firm's decision problem can be formulated as

(25) max [ PR (£)) R, (t) exp(-rt)dt
R, o
subject to i
: 5_, (®)
(26) §4(8) = -R;(£) +s(7 7 - 8;(t))
.1 (8

7) si(c) (t) + s(S (t) - e

10

e
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§_;(®)

(28)  RD,(E) = e(e) + 6(S (E) - =) +¥S_g () ,

where 5, (0) =§_;(0)/(-1) =S /n >0, Rc_i(t), R (£), 5, (t), S_;(t) 2 0.
Equations (26) and (27) describe the seepage law, where s > 0 is the seepage
parameter. Equation (28) expresses firm i's conjectural hypothesis about

the extraction plans of its rivals: vy reflects firm i's conjecture that

its rivals will extract at a rate dependent on the size of their stocks;

and 6 represents firm i's conjecture that its rivals will extract immediately

th firm's holdings to its

a fraction &/s of the net inflow of oil from the i
rivals' holdings. Themodel (25), (26), (27) and (28) reduces to the Kemp-
Long model if 6 = y = 0, to the model of Sinn if § = s, and to that of
Khalatbari6 if 6 = s and in addition n = =,

To relate this seepage model to the model studied in this paper,
first note that (26), (27) and (28) can be rewritten with S and S_i as

state variables, instead of S =8 -8_

i and S-i’ becausge Si i:
29) S(t) = -R(t)
(30) S _, () = R_ () +5[S(t) - §5_ ()n/(@-1)]
(1) R_ (€)= e(t) + 85(t) +5_, (t)(y- &a/(a-1)).

Consider now the Kemp-Long case y = § = 0. This is the same as the
problems (1), (2) and (3) with B = 0, except for the additional differential
equation (30). However, the costate variable of S-i(t) is zero since, given
S(t), a change in S-i(t) could not change the present value of firm i's
profits. Hence the marginal conditions for firm i's decision problem are the
same, namely (5) and (7). Only if S-i(t) > s(t) [which would imply Si(t) < 0]
could S-i(t) affect firm i's decision problem; however, in a symmetric

equilibrium, Si(t) = Sj(t), this possibility need not be considered. Thus
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in equilibrium S-i(t) is an irrelevant state variable in firm i's decision
problem and hence the Kemp-Long model is a special case of the model
considered in Sections 2 and 3.

For the model of Sinn (and of Khalatbari when n = ®), § = s. From
(30) and (31), é-i(t) and hence S_i(t) are independent of S(t): the time
path of the stocks of the resource under the properties of i's rivals is
exogenous to firm i's decision problem. Hence firm i conjectures its rivals'
rates of extraction are Rii(t) = a(t) + BS(t) where B = § and
a(t) =e(t) + S_i(t)(y - 8n/(n-1)). For this case also, the seepage model
is a special case of the model of Sections 2 and 3.

A third situation in which the seepage model and the common-pﬁol
model coincide is when y = 6n/(n -1). Then (31) reduces to (1) and again
S-i(t) is an endogenous but irrelevant state variable in firm i's decision
problem. 1In this case, firm i conjectures that its rivals react only to
the size of the total resource stock and not to its distribution over the
properties. Given this conjecture, firm i's own decision depends only on
the total resource stock; the conjecture is self-confirming.

Figure 2 illustrates the possible equilibria for the seepage model.
Possible equilibria lie along the line representing the extraction function
(19): 1line EAB for the case of a finite number of firms and line DAC for
the perfect-competition case. The outcomes described in the literature are
special cases of this model: point A represents the Kemp-Long solution
(6 =B =y =0), point B the Sinn solution (§ = B = s), and point C the

Khalatbari solution (6§ = B =38, n = ®),

ie

o
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5, Concluding Comments

When oligopolists exploiting a common-property resocurce are allowed
to have non-trivial conjectures about their rivals' actions, infinitely
many equilibria are possible, including in particular the Cournotesque
equilibria previously analyzed in the literature. Conjectures have a
self-confirming property: the faster a firm expects its rivals to extract
the resource, the faster it will itself extract. There exists no equi-
librium in which conjectures are locally correct. A consequence of this
is that new information about the size of the resource stock will always
cause the discrepancy between actual and conjectured reactions to widen;
new information will upset any equilibrium and cause the speed of extraction
to increase. In particular, there will be a tendency to move away from
the socially optimal equilibrium.7

The oligopoly problem described above is an example of a differential
game. It therefore should be pointed out that the equilibrium concept used
in this paper is not one of the concepts usually used in differential-game
models; rather, it bears a closer resemblance to the notion of conjectural-
variations equilibrium from static oligopoly theory. The closed-loop and
open-loop solutions of differential games (see Starr and Ho [1969] for defini-
tions) are both special cases of conjectural equilibria as defined in Section 2
above. The open-loop equilibrium involves strategies which do not depend
on the current size of the stock of the resource; it corresponds in this paper
to the case p = 0; that is, the socially optimal equilibrium. A closed-loop
equilibrium would occur in this model when the planned extraction rate is the
same as the actual extraction rate at all time-points and for all possible
sizes of the stock. The rational-expectations equilibrium defined in Section 3

above is a local approximation to a closed-loop equilibrium; since no
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rational-expectations equilibrium exists, the analysis of Section 3
constitutes a proof that no closed-loop equilibrium in linear strategies
exists in this model.

The model suggests that there is a Presumption that a common-property =

resource will be inefficiently extracted and therefore that there is scope

Itd

for government intervention. However, there are infinitely many equilibria,
none a rational-expectations equilibrium, most resulting in over-extraction,
but one resulting in socially optimal extraction. The gsize of the disto:tion
is unpredictable; thus no rectifying system of taxes can be calculated. In
contrast to economists' usual prescriptions, quantitative controls seem

in this case to be superior to taxes and subsidies. For example, prorationing
(fixing a maximum permissible rate of extraction by individual firms) or

compulsory or voluntary unitization (operating the whole pool under a single

.

decision-maker and then distributing the profits among the individual firms:

in effect, collusion among the firms) can ensure that extraction takes place

at the socially optimal rate. These are, in fact, among the methods actu-
ally used in regulating the U.S. petroleum industry: see McDonald (1971,
Chs. 9, 10).

1]



17

REFERENCES

Berck, P,, "Open Access and Extinction," Econometrica, 47 (July 1979), 877-882,

Bolle, F., "The Efficient Use of a Non-Renewable Common-Pool Resource Is

Possible But Unlikely," Zeitschrift fllr Nationaldkonomie, 40 (1980),
391-397,

Dasgupta, P, S, and G. M, Heal, Economic Theory and Exhaustible Resources
(Cambridge: Cambridge University Press, 1979).

Fellner, W. J., Competition Among the Few (New York: Knopf, 1949).

Gordon, H, S., "Economic Theory of a Common-Property Resource: The Fishery,"
Journal of Political Economy, 62 (April 1954), 124-142,

Hartwick, J. M., "Learning About and Exploiting Exhaustible Resource Deposits
of Uncertain Size," mimeo, Queen's University, August 1981,

Hoel, M., "Extermination of Self-Reproducible Natural Resources Under
Competitive Conditions," Econometrica, 46 (January 1978), 219-224,

Kemp, M, C. and N, V, Long, "Resource Extraction Under Conditions of
Common Access," in M, C. Kemp and N, V, Long (eds.), Exhaustible
Resources, Optimality, and Trade (Amsterdam: North-Holland, 1980).

Khalatbari, F., "Market Imperfections and the Optimum Rate of Depletion
of Natural Resources," Economica, 44 (November 1977), 409-414,

Lewis, T. R, and R, Schmalensee, "On Oligopolistic Markets for Nonrenewable

Natural Resources," Quarterly Journal of Economics, 95 (November 1980),
475-491,

'McDonald, S. L., Petroleum Conservation in the United States: An Economic
Analysis (Baltimore: Johns Hopkins Press, 1971).

Sinn, H.-W,, "Resource Depletion, Seepage Losses, and Oligopoly: A Cournot
Model of the 0il Market," mimeographed, University of Mannheim, 1981,

Starr, A, W, and Y. C, Ho, "Further Properties of Nonzero-Sum Differential

Games," Journal of Optimization Theory and Applications, 3 (January 1969),
207-219,

Stiglitz, J, E., "Monopoly and the Rate of Extraction of Exhaustible Resources,"
American Economic Review, 66 (September 1976), 655-661.

Weinstein, M. C. and R. J. Zeckhauser, "The Optimal Consumption of Depletable

Natural Resources," Quarterly Journal of Economics, 89 (August 1975),
371-392,

Weitzman, M, L., "Free Access vs Private Ownership as Alternative Systems for
Managing Common Property," Journal of Economic Theory, 8 (June 1974),

255 ‘334 o




.y

18

FOOINOTES

*
This research was initiated when McMillan was visiting the University
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1See for example Berck (1979), Dasgupta and Heal (1979, Ch, 3),

Gordon (1954), Hoel (1978) and Weitzman (1974),

2Isoelastic demand ensures that there is no distortion due to
oligopoly power when the commodity is sold on the market; see Stiglitz (1976)
and Weinstein and Zeckhauser (1975). On the oligopolistic distortions
with non-constant elasticity in a model with no common-property aspect, see
Lewis and Schmalensee (1980).

3This is the point at which it is necessary to assume B 2 0 (that is,

each firm believes that part of every unit of the resource it leaves unextracted
will be extracted by its rivals). If B could be negative, (10) would not
follow from (9).

4From the discussion in the preceding paragraphs, it is clear that

the firm will never observe p(n-1)/n < B.
51t is not necessary to consider separately the other (n-1) stocks
th

because the i~ firm's decision does not depend upon the way the resource

is distributed among its rivals; it is thus sufficient to consider the
aggregate variables S-i’ R ;e
6Strictly speaking, this approach is not compatible with Khalatbari's

model, since in that model it is implicitly assumed that firm i conjectures

that the whole seepage inflow from the ith firm's holding to its rivals'
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holdings is immediately extracted by its rivals but not sold on the market
(see Kemp and Long (1980, pp. 131-132)). This assumption is innocuous
only in the limiting case of n - ® (Sinn, 1981); henceforth we will interpret

Khalatbari's result as describing the case of perfect competition.

7This model, by assuming each firm sells the resource immediately
it extracts it, ignores the possibility that the firm might stockpile the
resource after extraction., On the importance of storage in exhaustible-

resource models, see Hartwick (1981),
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Figure 1

The Extraction Function and the Process of

Revising the Conjectural Parameter
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Figure 2

The Relationship to Seepage Models
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