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Ollivier-Ricci Curvature-Based 
Method to Community Detection in 
Complex Networks
Jayson Sia  , Edmond Jonckheere   & Paul Bogdan  

Identification of community structures in complex network is of crucial importance for understanding 
the system’s function, organization, robustness and security. Here, we present a novel Ollivier-Ricci 
curvature (ORC) inspired approach to community identification in complex networks. We demonstrate 
that the intrinsic geometric underpinning of the ORC offers a natural approach to discover inherent 
community structures within a network based on interaction among entities. We develop an ORC-based 
community identification algorithm based on the idea of sequential removal of negatively curved edges 
symptomatic of high interactions (e.g., traffic, attraction). To illustrate and compare the performance 
with other community identification methods, we examine the ORC-based algorithm with stochastic 
block model artificial networks and real-world examples ranging from social to drug-drug interaction 
networks. The ORC-based algorithm is able to identify communities with either better or comparable 
performance accuracy and to discover finer hierarchical structures of the network. This opens new 
geometric avenues for analysis of complex networks dynamics.

Community structures are inherently found in diverse complex networks from technological, biological to social 
networks. As such, identifying these communities can reveal valuable information regarding the network’s func-
tion, structure and organization, and vulnerability. Depending on the type of the network, these communities 
can represent anything from related web pages in the Internet1, functional and chemical pathways in drug-drug 
interaction networks2, to affiliations in social networks3,4, to name a few. The community detection of complex 
networks is an active area of research; however, some consider this an ill-defined problem with no universally 
accepted definition of what constitutes a “community” nor clear guidelines in assessing its performance. As such, 
there have been various proposed algorithms utilizing different concepts from edge betweenness, label propaga-
tion, to graph modularity.

In this work, we propose a novel geometric approach in network community identification by using the 
Ollivier-Ricci curvature5 (ORC) concept. The notion of curvature, as in Riemannian geometry, quantifies how 
geodesic paths converge (ORC > 0) or diverge (ORC < 0). The ORC is a coarse version of this concept, and its 
application to graphs reveals local topological structure and geometry via optimal transport. The ORC captures 
the notion of network flows of shortest paths via the Wasserstein’s distance formulation wherein a negatively 
curved edge is a “bottleneck”, along which traffic is intense in a scheme that minimizes the “cost” of transferring 
“commodities”, while, positively curved edges contribute to transport of “commodities” along with many other 
edges. Thus, positively curved edges are “well connected”, since none of them are essential for the proper transport 
operation; therefore, positively curved edges naturally form a “community”. On the other hand, negatively curved 
edges could be interpreted as “bridges” between communities and cutting them would isolate the network flow 
between communities. In this context, a “community” is defined as a robust transport of information within the 
community. Robust means that if some edges are cut information is still going to flow. As an example, for a social 
network, one hears news not just from one single source but from many different sources. On the other hand, 
information transfer across communities is more problematic since it relies on these “highway” links that could 
fail if these connections were removed. The ORC is also recently being applied as a tool in various research areas 
such as in wireless networking6,7, quantum computation8,9 as well as robustness analysis of complex networks10,11.
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Results
Ollivier-ricci curvature as a natural metric to discover hierarchies in graphs. The Ollivier-Ricci 
curvature (ORC) captures two fundamental properties of the structure of complex networks: First, the ORC 
associated with each edge of the network encodes its shortest path characteristics6. Second, the ORC provides 
information about the frequency of triangles, characterized by the clustering coefficient, within a neighborhood 
of two adjacent vertices12,13 (for mathematical details on how we estimate the ORC for a weighted graph see 
Methods and Section 2 in Supplementary Information). Starting from these premises, in this work, we aim to 
address the following questions: Can the ORC help us discover the underlying hierarchical functional character-
istics of a complex network? Can the ORC curvature provide algorithmic hints towards solving the hard problem 
of community identification?

To address these questions, we consider an artificial complex network obtained through the stochastic block 
model (SBM)14 as seen in Fig. 1a and a real-world social network (the Florentine family15 network) as seen in 
Fig. 1b. For completeness, Fig. 1c,d illustrate the distribution of edge ORCs for larger networks, one artificial 
and one real-world network. From Fig. 1a, we make the following observations: (i) edges within a cluster have 
positive ORC values; (ii) peripheric nodes have zero ORC values; and (iii) edges between clusters have nega-
tive ORC values. Range of values for the edge ORC is [−∞, 1]. For networks with clear community structures, 
especially seen in Fig. 1c,d, the distribution of edge ORC values is clustered into two regions – one region of 
positive and another region of negative edge ORCs. The high concentration of positive edge ORC values corre-
sponds to the intra-community edges while the concentration of negative edge ORC values corresponds to the 
inter-community edges. Along the same lines and as can be seen from Fig. 1(a), the positively curved edges form a 
tight-knit neighborhood of nodes. In contrast, negatively curved edges represent links between tightly connected 
neighborhoods. These observations suggest that a community identification would proceed by incrementally 
removing negatively curved edges, and the absence of such negatively curved edges is a natural stopping crite-
rion. We describe the pseudocode and formal analysis of this ORC-based CI algorithm in Methods section and 
Section 2 of Supplementary Information.

ORC-based CI detects communities in artificially generated networks. To investigate the accuracy 
of the proposed ORC-based community identification (CI) algorithm (see Methods Section), we consider a set 
of artificially constructed complex unweighted networks using the stochastic block model (SBM)14. The SBM 
consists of four parameters, i.e., k represents the size of a community, l denotes the number of communities, and 

Figure 1. (a) An artificial network generated from the stochastic block model (SBM) with the following 
parameters: size per community k = 5, number of communities l = 5, intra-cluster probability pin = 0.8 and 
inter-cluster probability pout = 0.05, with added extra leaf nodes (nodes: 25, 26, 27) to illustrate edges with 
zero curvature, and (b) the Florentine family network with edge ORC values shown for both networks. Edge 
ORC histograms and distribution fit shown for larger networks: (c) 800-node SBM artificial network ((k, l, pin, 
pout) = (40, 10, 0.7, 0.05)) and (d) the American Division IA college football games during regular season of Fall 
2000.
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pin and pout are the probability of creating intra- and inter-community edges between any two nodes. Thus, SBM 
generates a complex network with user-defined community sizes and labels each node accordingly.

Figure 2a shows the mean prediction accuracy surface plot of the ORC-based CI algorithm applied to artifi-
cially generated graphs obtained from the SBM with pin = 0.7 and pout = 0.05, respectively. In this study, we vary 
the number of communities from 2 to 20 and the community size from 5 to 40. From Fig. 2b, we can observe that 
for a fixed number of communities (l), the accuracy improves from 33% for small community sizes to 100% for 
large community sizes. On the other hand, for fixed size per community, there is a degradation in prediction accu-
racy as the number of communities is increased. For completeness, Fig. 2b,c show the accuracy and its confidence 
interval as a function of the community size and the number of communities, respectively.

We compare the ORC-based CI algorithm with the modularity-based Leading Eigenvalue method16 (LEM) 
and edge betweenness4 (EB) based CI algorithms. Figure 3 shows the prediction accuracy for the ORC-, LEM- 
and EB-based CI algorithms. The accuracy of each algorithm measures the percentage of correctly identified 
communities from the set of ground truth communities. More precisely, when a set of nodes identified as a com-
munity matches all the members of a set from the list of ground truth communities, this is considered a correctly 
identified community. The prediction accuracy is obtained as a percentage of the correctly identified communities 
over all ground truth communities. In addition, the results are presented in the context of the SBM detectability 
regime17 which describes the phase transition in the detectability of communities subject to the chosen SBM 
parameters. For cases when the chosen SBM parameters lie in the undetectable regime, the SBM generated graph 
is indistinguishable from a random generated graph and community detection is impossible.

As we vary the size per community while keeping the number of communities and the probability of intra- 
and inter-community edges between any two nodes (pin and pout) constant (see Fig. 3a), we observe the accuracy 
of the ORC-based CI improves significantly for networks with more than 7 communities. The low accuracy for 
sizes k less than 7 is due to the high probability to merge two small-sized communities caused by the addition of 
inter-community edges between the two communities. This observation falls close to the theoretical detectable 

Figure 2. (a) Surface plot of the mean prediction accuracy of the ORC-based community detection method for 
several artificially generated networks using the stochastic block model (SBM) with intra- and inter-community 
edge wiring probability settings: pin = 0.70, pout = 0.05. Prediction mean accuracy with standard deviation bands 
for (b) varying size per community (k) parameter for l = 10 number of communities, and (c) varying number of 
communities (l) parameter for k = 10 size per community.

Figure 3. Prediction accuracy of the ORC-based, LEM and EB CIs on SBMs based on varying size per 
community and number of communities parameters. Intra- and inter-community edge wiring probabilities 
are set to pin = 0.7 and pout = 0.05, respectively. (a) Prediction accuracy as a function of size of communities for 
l = 10 number of communities. (b) Prediction accuracy as a function of number of communities for k = 20 size 
per community.
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regime of k* ≥ 3 for varying sizes per community k and fixed l = 10, pin = 0.7 and pout = 0.05. For sizes of commu-
nity less that 15, the ORC-based CI performs better compared to both LEM and EB methods. There is also a slight 
degradation in accuracy for the LEM- and EB-based CIs after community size greater than 30.

As we vary the number of communities but keeping the size per community and the probability of intra- and 
inter-community edges between any two nodes (pin and pout) constant (see Fig. 3b), we observe the accuracy of 
the ORC-based CI degrades significantly for networks with more than 35 communities. In contrast, the LEM 
demonstrates worse performance as its accuracy degrades significantly for more than 15 communities. Both, the 
ORC- and LEM-based CI reach 50% accuracy for more than 30 communities. The EB-based CI performs the 
worst out of the three CI algorithms. For varying number of community l and fixed pin = 0.7 and pout = 0.05, the 
SBM detectable regime lies in l* ≤ 156.

In short, the ORC-based CI can detect the communities for SBM generated networks even when the commu-
nities are not densely connected and even for small community sizes. However, the accuracy degrades when the 
probability of intra-community edge wiring is less than 0.6 (pin < 0.6) and the probability of inter-community 
edge wiring is greater than 0.04 (pout > 0.04), for fixed size per community and number of communities (k = 20 
and l = 30). In comparison, the accuracy of the LEM-based CI degrades when the probability of intra-community 
edge wiring is less than 0.7 (pin = 0.7) and the probability of inter-community edge wiring is greater than 0.03 
(pout > 0.03). For the chosen (k, l) = (20, 30), the detectability regime lies at > .⁎p 0 35

in
 for constant pout = 0.05, and 

< .⁎p 0 17
out

 for constant pin = 0.7. Simulation results show that the ORC-based CI provides better or comparable 
accuracy with the LEM-based CI (see Section 3 of Supplementary Information for a complete discussion and 
illustration of results which include the prediction accuracy with respect to the intra- and inter-community wir-
ing probabilities pin and pout in the context of the theoretical SBM detectability limit17).

ORC-based method applied to real-world networks. Next, we test the proposed ORC-based CI algo-
rithm to a few real-world network data: Zachary’s Karate Club, American Football games, Political Blogosphere, 
and DrugBank drug-drug interaction network. We compare the obtained results to other popular established 
community detection algorithms.

Zachary’s karate club. Figure 4 shows the network visualization for the Zachary’s karate club which is a tradi-
tional dataset and a standard benchmark in community detection3. The network contains 34 nodes (members) 
and 78 edges (friendships) with an average degree of 4.6. Figure 4a shows the ground truth divided between 
two communities: ‘Officer’ (in red) and ‘Mr. Hi’ (in green). Figure 4b shows the 5 communities identified by the 
ORC-based method. Although there are more communities identified, two sub-communities (marked in shades 
of red) match correctly with the ground-truth subgraph labeled as ‘Officer’ and two sub-communities (marked 
in shades of green) match correctly with the ground-truth subgraph labeled as ‘Mr. Hi’. The fifth community 
identified (nodes 8 and 30) neither falls correctly into either communities and thus can be considered as a clas-
sification error. From the results, the ORC-based method identifies finer hierarchical structures in the network. 
More precisely, it identifies further subdivisions within the known truth labeled communities. Figure 4c,d, on 
the other hand, show that the LEM- and EB-based CI methods identify 4 and 5 communities, respectively. Both 
assign node 8 as part of the larger community associated with ‘Officer’ which is a classification error. In addition, 
the EB-based CI has misclassified node 2, apart from labeling node 9 as a separate single-node community.

Figure 4. Zachary’s Karate Club. (a) Shows the ground truth divided between two communities: ‘Officer’ (in 
red) and ‘Mr. Hi’ (in green). (b–d) Show the communities detected (color-coded) using the ORC-, LEM- and 
EB-based CI methods.
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American college football games 2000. Figure 5a shows the network visualization for the network of American 
football games between Division IA colleges during regular season of Fall 20004. The colleges are grouped 
together and color-coded according to their football college conference memberships (e.g. Pac-10, Big-12, etc.). 
The twelve college football conferences are considered as the ground truth communities. The network contains 
115 nodes (colleges) and 613 edges (games) with an average degree of 10. The ORC-based method is able to detect 
twelve college communities which is also the same number as compared to the list of ground truth football con-
ferences. As seen in Fig. 5b, the ORC-based CI is able to assign all members of 8 out of 12 communities together. 
If we consider per-node classification accuracy, the ORC-based method incurred 11 misclassified nodes (9.5% 
misclassification). On the other hand, as seen in Fig. 5c,d, the LEM- and the EB-based CIs are able to identify 
8 and 10 college communities, respectively, which are both less than the number of ground truth communities. 
The per-node classification accuracies are 41 and 19 misclassified nodes translating to 35.7% and 16.5% misclas-
sifications, respectively. In addition, the EB-based CI has identified both ground truth communities “Mountain 
West” and “Pacific Ten” as one community while the LEM-based CI, in addition to this, has also merged both 
ground truth communities “Big East” and “Mid-American” as one. Thus, among the three CI methods used, 
the ORC-based CI performed the best in terms of both correct identification of ground truth communities and 
per-node community assignments.

Interesting to note that ground truth communities labelled as ‘Independents’ (Notre Dame, Utah State, etc.) 
and ‘Sun Belt’ (Arkansas State, Idaho, etc.) have no clear community assignments according to three CI methods 
used. Closer inspection shows that there are very low intra-community links among the members, thus it can be 
argued that the “Independents” and “Sun Belt” are not really a community in the strict-sense. As another example, 

Figure 5. Network of American football games (Division IA) during regular season Fall 2000. (a) Each node 
represents a college color-coded according to its football conference membership (ground truth). (b–d) Nodes 
are color-coded according to the communities identified by the (b) ORC-, (c) LEM-, and (d) EB-based CI 
methods, respectively.
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Texas Christian is misclassified to “Western Athletic” by all three CI methods but the ground truth assignment 
is “Conference USA”. Visual inspection of the network shows that Texas Christian has more edge connections 
(games) with the colleges belonging to the “Western Athletic” compared to those belonging to “Conference USA” 
which explains the misclassification.

Political blogosphere 2005. Figure 6 shows the network visualization for the 2005 Political Blogosphere1 which 
is a network of blog directories labelled according to a blog's political leaning (left/liberal or right/conservative). 
Considering only the largest connected component, the network contains 1222 nodes (web URLs) and 16714 
edges with an average degree of 27.35. Node truth labels indicate political leanings (0 - left/liberal (52.05%); 1 
right/conservative (47.95%)). Links between blogs were automatically extracted from a crawl of the front page of 
the blog. Data on political leaning comes from blog directories with some blogs labeled manually based on the 
incoming and outgoing links and posts around the time of the 2004 presidential election. The ORC-based method 
is able to find 146 communities. The top two largest identified communities have sizes 448 and 400 while the rest 
of the 144 communities have sizes less than 1% of the network size (size 10). Since we know that there are only 
two ground truth communities, we did preferential attachment of the smaller-sized communities to either of the 
two largest components based on the inter-community ORC. We identified communities with size 662 (54.17%) 
for left/liberal and 560 (45.83%) for the right/conservative after preferential attachment of the smaller-sized com-
munities. On the other hand, the LEM-based CI is able to identify two communities with community sizes 677 
(55.4%) for left/liberal and 545 (44.6%) for right/conservative. For this dataset, the ORC-based CI performed 
better than the LEM-based CI in identifying the communities based on the binary ground truth labels.

Drug-drug interaction. We also analyze the community structure of drug-drug interaction networks obtained 
from DrugBank 4.1 database18 which was demonstrated as an efficient method for drug repositioning2. The 
network visualization is shown in Fig. 7. Considering only the largest connected component from the dataset, 
the network contains 1162 nodes (drugs) and 11685 edges (drug interactions) with an average degree of 20. 
Figure 7a,b show the communities identified by the ORC- and LEM-based CIs, respectively. The ORC-based CI 
initially identifies 120 communities of which 101 of them have sizes smaller than 1% of the network size. Setting 
this 1% threshold size limit, we can apply preferential attachment based on the inter-community ORC to merge 
back these small-scale communities to the larger identified communities. The 19 communities identified by the 
ORC-based CI are color-coded as shown in Fig. 7a. On the other hand, the LEM-based CI is able to identify 4 
communities as shown in Fig. 7b. Comparing the results from Udrescu’s paper2, the ORC-based CI matches 
closely the topological clusters generated based on the energy-model layout algorithm Force Atlas 2, albeit the 
ORC-based CI identifying 19 communities compared to the 9 labeled topological clusters. Visual inspection of 
Fig. 7a shows that the ORC-based CI identifies sub-clusters within the topological clusters.

Discussion
The study of community identification in complex networks is an important and challenging open area of 
research. Many diverse systems can be represented into networks many of which have inherent community struc-
tures. The network abstraction offers a simpler way of looking at a system’s individual elements as nodes and 
their interactions as edges. In addition, the inherent community structures within networks convey information 
regarding the system’s function, hierarchy and organization. In the past decade, there have been numerous algo-
rithms4,16 proposed to solve the problem of community identification each having its own advantages and limi-
tations. Our proposed ORC-based approach offers a new way to tackle the community identification problem by 
utilizing the geometric concept of curvature applied to discrete graphs.

From simulations, the ORC-based CI is able to identify communities from the SBM-generated artificial net-
works with either better or comparable performance accuracies as compared to the LEM- and EB-based CIs. In 

Figure 6. Political Blogosphere 2005 (Nodes = 1222, edges = 16714, average degree = 27.35). Network 
visualization shows the ground truth communities (green - right/conservative, red - left/liberal).
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addition, we also observe that the ORC-based CI performs well in identifying community structures for diverse 
real-world networks ranging from social to drug-drug interaction networks. For example, the ORC-based CI 
results for the drug-drug interaction network matches closely the identified topological clustering as compared 
to the LEM-based modularity method. As seen from the American football and the drug-drug interaction net-
work examples, the LEM-based CI tends to underestimate the total number of communities. One limitation of 
modularity-based methods is that it has a resolution limit that may prevent it from detecting clusters that are 
comparatively small compared to the graph as a whole19. Contrary to this, the ORC-based CI tends to see the 
finer subdivisions in the network structures (i.e. identifying “communities within communities”) based on the 
local topology as quantified by the edge Ollivier-Ricci curvature. Thus, the ORC-based CI tends to identify more 
communities compared to the number of ground truth communities.

Since the proposed ORC-based CI stems from the idea of successive removal of negatively curved edges, the 
ORC-based CI will not perform well for networks that have an almost tree-like topology (i.e. graphs that have 
very few cycles/triangles). This is because tree-like networks have negatively curved edges forming a majority. As 
a consequence, the ORC-based CI will divide the network into several small communities, thus highly overes-
timating the number of communities. There are a couple of ways to see this limitation: First, one can argue that 
tree-like community structures are not considered as a community in the strict-sense since the community mem-
bers have very few connections among one other. Thus, labelling such communities is considered an ill-defined 
problem. Second, if the number of communities is known in the first place, preferential attachment heuristics can 
be applied to re-attach these small-scale communities back to form larger communities.

In conclusion, the ORC-based CI offers a novel alternative solution to the problem of network community 
identification. Since the algorithm utilizes the geometric concept of network curvature, the ORC-based CI per-
forms particularly well for networks with internally densely-connected community structures. For community 
structures that are sparsely connected, the ORC-based CI will tend to overestimate the number of communities 
as it identifies the finer community structure. Preferential attachment heuristics can be applied to merge back 
these small-scale communities to the larger communities. This preferential attachment portion of the algorithm 
can be further explored as a future work especially for CI problems with both known and unknown number of 
communities.

Methods
ORC-based community detection algorithm. We propose the following community detection algo-
rithm which utilizes the concept of Ollivier-Ricci curvature on graphs. The algorithm can be divided into the 
following steps: (1) calculate the ORC for all edges in the network, (2) remove the most negative ORC edge, (3) 
re-calculate the edge ORC only for those affected nodes/edges due to prior edge removals, (4) check if all edge 

Figure 7. Drug-drug interaction dataset obtained from the DrugBank v4.1 database. Node layout is based on 
generated topological clusters using Gephi31 software with energy-model layout algorithm Force Atlas 2. Nodes 
are color-coded according to the communities identified by the (a) ORC- and (b) LEM-based CI methods, 
respectively.

Algorithm 1. Ollivier-Ricci Curvature based method for Community Detection
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curvatures are non-negative, otherwise repeats steps 2 and 3 until condition is satisfied, and (5) perform prefer-
ential attachment of isolated graph components if either the number of communities or the minimum accepted 
community size is known. The pseudo-code of the algorithm is seen in Algorithm 1.

Complexity. The time complexity of the proposed ORC-based community detection algorithm boils down to the 
calculation of the edge ORC of the network. The time complexity to compute the ORC for each edge is essentially the 
Wasserstein distance computation complexity based on linear programming. Practical run time complexity using 
network (transportation) simplex algorithm20 was shown to be super-cubic. Interior-point or Orlin’s algorithms have 
complexity of O(V3 log V), with V as the total number of vertices in the Wasserstein distance sub-problem21,22 (Note 
that V depends on twice the average degree of the network typically with V N  and V E). In the worst case, 
cycling through each network edge and re-calculating all existing affected edges lead to O((EV) · V3 log V)). Strategies 
can be utilized to improved the computation complexity of the proposed algorithm either via a wavelet EMD 
approximation21 of the Wasserstein distance or an ORC bounds analysis12,23. The Wasserstein distance computation 
can be improved from O(V3 log V) to O(V) via the wavelet EMD approximation leading to an overall time complex-
ity of O(EV2) for the proposed algorithm. More information regarding the time complexity of the proposed 
ORC-based CI and its code implementation are provided in Section 2 of the Supplementary Information.

Foundation of differential geometry. Fundamental in the process of extending geometry in the Euclidean 

plane to geometry on a surface ⊂ 3  is the intuitive idea of projecting the ordinary derivative X c t( ( ))
d

dt
 of a tan-

gent vector field X, defined along a curve c, on the tangent space to the surface, leading to the concept of Levi-Civita 
connection

∇ =






 ∈ .X P

d

dt
X c t T S: ( ( ))c T c t( )c t( )

The covariant derivative ∇CX of the vector field X along the vector field C (not necessarily the tangent to a curve) 
in a Riemannian manifold  is a formalization of the intuitive geometric concept of restricting the differential to 
the tangent space, subject to the additional conditions of symmetry, ∇CX = ∇XC, linearity relative to C, the prod-
uct rule relative to scalar multiplication of X and compatibility with the Riemannian metric, viz., 

= ∇ + ∇ X c t Y c t X Y X Y( ( )), ( ( )) , ,
d

dt c c .

A vector field X is said to be parallel to itself along the curve →c: [0, 1] , if it satisfies the partial differential 
equation ∇ =X 0c . Under such conditions, X(c(1)) is said to be a parallel displacement of X(c(0)). This formal definition 
calls into question by how much this parallel displacement differs from the ordinary Euclidean one. A nonvanishing 
curvature is precisely symptomatic of such discrepancy. But the immediate problem is that X(c(0)) and X(c(1)) lives in 
different tangent spaces and are difficult to compare. One way to go around this difficulty—challenged by the Ollivier5 
concept of curvature—is to bring X(c(1)) back to Tc(0) by another parallel displacement along an extension of c to a 
closed curve. To somewhat simplify the problem without sacrificing generality in our Ollivier-Ricci curvature objec-
tive, assume the curve c and the vector field X live in a 2-dimensional tangent bundle span{X, Y}. Then

∠ =X c X c c K X Y( ( (1)), ( (0)) Area( ) ( , ), (1)

where K(X, Y) is the sectional curvature, a curvature where the parallel displacement is restricted to a 
2-dimensional facet. Precisely,

=
−

K X Y
R X Y X Y

X Y X Y
( , )

( , ) ,

,
,

2 2 2

where

= ∇ ∇ − ∇ ∇ + ∇R X Y( , ) Y X X Y X Y[ , ]

is the fundamental curvature operator.

Connection with wireline networks and diffusion processes. Wireline networks in general send packets along 
optimal paths, along geodesics in Riemannian language. Note that a geodesic is only locally length ∫γ =

γ
 ds( )  

optimal, as formally the geodesic is defined such that its tangent is parallel to itself, γ∇ =γ  0, where the geodesics 

is parameterized by arc length and γ = γ: d s

ds

( )
. Motivated by network outages where optimal paths have to be 

quickly recomputed, the nominal geodesic γ is embedded in a family of geodesics, γp, p ∈ (−ε, +ε) with γ0 = γ. 

The Jacobi field γ=
=

J s s( ): ( )
d

dp p
p 0

, quantifying the variation of geodesics, satisfies the equation

γ∇ ∇ + = .γ γ  J K J J( , ) 0 (2)

Under uniform curvature K, it is convenient to search a solution of the form J(s) = j(s)W(s), where W(s) is 
orthogonal to γ(s), in which case

+ = .
d

ds
j s Kj s( ) ( ) 0

(3)

2

2
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Clearly, if K < 0, geodesics are diverging, an observation that lies at the foundation of congestion in wireline 
Gromov hyperbolic networks24.

Other processes of the diffusion type, that is, such processes as heat diffusion and Heat Diffusion wireless 
networking6,7,25–28 involving the Laplace operator, do not “diffuse” along geodesics, but rather follow some 
thermodynamical-like processes, where the heat kernel exposes the curvature in its Ricci format. The Ricci curva-
ture Ric(X) is the average of K(X, Y) over all facets span{X, Y} containing X.

Note the fundamental difference between wireline-like networking and diffusion. Wireline networking 
involves large-scale optimal paths, whereas wireless networking in both its backpressure and Heat Diffusion 
implementations is driven by strictly local queue backlogs, in the same way as heat diffusion is driven by a strictly 
local temperature gradient.

Towards ollivier-ricci curvature. Contrary to what is usually done, here, we attempt to define curvature by ref-
erence to different tangent spaces, one centered at γ(0), the other at γ(ε). Consider two δ-radius balls Bγ(0), Bγ(ε). 
We establish a correspondence between the two balls as follows: Consider x ∈ Bγ(0) along with =

γ

−X xexp ( )
(0)
1 . 

Displace X parallel to itself along γ from γ(0) to γ(ε) to obtain Y. Define y = expγ(ε)(Y). This establishes the corre-
spondence T x y: . To introduce a transport idea, the ball Bγ(0) is endowed with a probability measure µ0 and 
dµ0(x) is transported to y = T(x) along a geodesic arc [x, y] of length equal to the distance d(x, y).

Invoking the Jacobi field (2 and 3), the distance d(x, T(x)) along the “perturbed” geodesic [x, y] and how it 
relates to the distance d(γ(0), γ(ε) = ε) along the “nominal” geodesic depends on the sectional curvature γK X( , ). 
Therefore, the cost of the transport

∫ µ=
γ

C T d x T x d x( ) ( , ( )) ( ),
(4)B

0
(0)

since it involves an integral over all x ∈ Bγ(0), tacitly involves an integral over all tangent vectors X ∈ Tγ(0)Bγ(0) and 
as such averages γK X( , ) over all X to yield the Ricci curvature γRic ( )(0) .

In 0-curvature, the distance d(x, T(x)) is independent of x and therefore the transport cost is d(γ(0), γ(ε) = ε). 
It remains to see how this distance is affected by the curvature. Define dθ(s) to be the elementary angle swept by 
the normal W(s) to the geodesic under an elementary move ds along such geodesic. Then

∫ε θ= + .
ε

d x T x j s d s( , ( )) ( ) ( )
0

j(s) is the distance between the nominal and perturbed geodesics measured along the normal to the nominal 
geodesic; using (3), it is evaluated as

δ
εδ

δ

= − − − −

≈ − .

j s K s K K s

K s

( ) cosh ( )
2

sinh( )

cosh ( )

Next, we apply (1) to the closed path made up with γ s ds( )0 , j(s + ds)W(s + ds), γ− +δ s ds ds( )  and −j(s)W(s). 
Noting that the left-hand side of (1) is the full discrepancy angle around the closed path while we only need the 
discrepancy along the nominal geodesic, we get

θ = −d d j ds K
1

2
Area( , )

(5)

= − .j s ds K
1

2
( )

(6)

Putting everything together and after an elementary integration, it is found that

ε δ≈


 −



d x T x K( , ( )) 1

1

2
,2

an estimate consistent with that of [5, Prop. 6, Sec. 8].
The above estimate was derived nominally in a negatively curved manifold, but redeveloping the same argument 

with ordinary trigonometry rather than hyperbolic trigonometry would validate it in positively curved spaces.
The above clearly indicates that in negative curvature, the transportation cost from x to T(x) is larger than 

along the nominal geodesic. In positive curvature, the x to T(x) cost is smaller than along γ.
To summarize:

∫

∫

∫

µ γ γ ε

µ γ γ ε

µ γ γ ε

< ⇔ >

= ⇔ =

> ⇔ < .

γ

γ

γ

γ

γ

γ







d x T x d x d

d x T x d x d

d x T x d x d

Ric ( ) 0 ( , ( )) ( ) ( (0), ( )),

Ric ( ) 0 ( , ( )) ( ) ( (0), ( )),

Ric ( ) 0 ( , ( )) ( ) ( (0), ( ))

B

B

B

(0) 0

(0) 0

(0) 0

(0)

(0)

(0)
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From riemannian manifolds to graphs. On a graph G V E= ( , ) endowed with a distance ⋅ ⋅d( , ), we need to 
emulate the Riemannian manifold environment. We identify an edge ij of the graph with the geodesic γ([0, ε]) 
and the graph theoretic neighborhoods i, j  of i and j with the balls Bγ(0), Bγ(ε) centered at γ(0), γ(ε). Discrete 
probabilities µi, µj on i , j  are obvious substitutes for the measures µ0, µε on the balls Bγ(0), Bγ(ε).

The difficulty is to emulate the Riemannian connection resorting only to the graph theoretic distance, or at 
the very least redefine the cost C(T) in (4) in a way that does not involve parallel displacement. Proceeding from

∫ µ=
→γ γ ε γ

C d x T x d xinf ( , ( )) ( ),
T B B B:

0
(0) ( ) (0)

where T is restricted to be one-to-one, the graph theoretic emulation of the above is

 ∑ µ
→
=

∈ ∈

ℓ
֏ℓ

C d k kmin ( , ) ( )
k k

i
i j

i

G
N N

N

In this case, because the cardinalities of i  and j might not be the same, the mapping ֏ ℓk , while 
one-to-many, could be many-to-one. As such, the formula lacks symmetry and cannot be used as a 
Wasserstein-like distance. To remedy this situation, we introduce a transference plan ξ k( , )ij  as a substitute for the 
many-to-many mapping ֏ ℓk , with the added generality that only a piece ξ k( , )ij  of µi(k) is transferred to . The 
above formula hence becomes

G

N N

∑ ξ=
ξ ∈ ∈

 
 

C d k kmin ( , ) ( , )
k k

ij

( , ) ,
ij

i j

with of course the consistency conditions

∑ ∑ξ µ ξ µ= = .
∈ ∈∈

  


k k k( , ) ( ), ( , ) ( )ij
i

k

ij
j

j i 

The curvature concept that emanates from this cost ( ε> < ⇔ < >C ( ) Ric ( )0 ) is very local, around an edge, 
in contradiction with the global Gromov concept. This explains why such concept appears the correct one to 
anticipate performance of backpressure and Heat Diffusion protocols on wireless networks6,7.

Ollivier-ricci curvature on complex networks. The proposed community detection algorithm uti-
lizes the coarse Ricci curvature, referred to as Ollivier-Ricci curvature, in its version designed for complex 
networks. Since the Ricci curvature involves a privileged direction (γ(0) on , edge ij on ), it incorporates 
a generic concept of flow. In the Riemannian model, <γRic 0(0)  means “heavy” flow, in the sense that the 
least cost transport of probability mass takes the geodesic γ path rather than being distributed along the 
perturbed geodesics. In the graph/network context, the ball of mass around i is the set of neighbors of i 
(same for j). Similarly, the idea is to find the best way to transfer the ball of mass around the vertex i to that 
around the vertex j.

Consider a weighted graph ρ(( , ), )V E . On this graph, over each vertex i, we define a probability measure on 

= ∈ ∈k ik: { : }iN V E  as follows:

µ
ρ

ρ
=
∑

∈

=
∈

k ik( ) , if

0 otherwise

i
ik

k i ik( )

E

N

The Ollivier-Ricci curvature with the set of probability measures µ ∈i{ : }
i

 is defined along the geodesic path 
[i, j] as

κ
µ µ

= −i j
W

d i j
([ , ]) 1

( , )

( , )
,

(7)

i j1

where W1(µi, µj) is the first Wasserstein distance between the probability measures µi and µj defined on i  and 

j , respectively, and is defined as

∑µ µ ξ= .
∈ ×

 


W d k k( , ) inf ( , ) ( , )

(8)
i j

k

ij
1

, i j 

The infimum is extended over all “coupling” measure ξ k( , )ij  defined on ×i j   and projecting on the 
first(second) factor as µi(µj). More intuitively, ξ k( , )ij  is called transference plan. It tells us how much of the mass 
of k is transferred to , but it does not tell us anything about the actual path that the mass has to follow. d i j( , ) is the 
usual (distance) metric emanating from the edge weight ρ. The first Wasserstein distance W1 is also referred to as 
the Earth Mover’s Distance (EMD) in computer science applications.

Exact computation of the Ollivier-Ricci curvature can be computed via calculation of the Wasserstein distance 
using linear programming6 and parallel computation29,30.
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