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Abstract

Local renin-angiotensin systems exist in various malignant tumor tissues; this suggests that the main effector peptide,
angiotensin II, could act as a key factor in tumor growth. The underlying mechanisms for the anti-angiogenic effect of
angiotensin II type 1 receptor blockers need to be further evaluated. The present study was carried out to investigate the
anti-angiogenic effect of olmesartan alone or in combination with sorafenib, an angiotensin (1–7) agonist or an angiotensin
(1–7) antagonist in Ehrlich’s ascites carcinoma-bearing mice. The tumor was induced by intradermal injection of Ehrlich’s
ascites carcinoma cells into mice. Tumor discs were used to evaluate the microvessel density; the serum levels of vascular
endothelial growth factor (VEGF) and serum insulin-like growth factor I (IGF-I); and their intratumoral receptors, VEGF
receptor-2 and IGF-I receptor, respectively. All parameters were determined following the treatment course, which lasted for
21 days post-inoculation. Monotherapy with olmesartan and its combination with sorafenib resulted in a significant
reduction in microvessel density and serum levels of VEGF and IGF-I, as well as their intratumoral receptors. In addition, the
combination of olmesartan (30 mg/kg) with an angiotensin (1–7) agonist reduced the microvessel density, IGF-I serum
levels and the levels of its intratumoral receptor. In conclusion, olmesartan reduced the levels of the angiogenesis markers
IGF-I and VEGF and down-regulated the intratumoral expression of their receptors in a dose-dependent manner, and these
effects were dependent on the angiotensin (1–7) receptor. These results suggest that olmesartan is a promising adjuvant to
sorafenib in the treatment of cancer.
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Introduction

Angiogenesis is the process by which new capillaries grow from

existing blood vessels[1]. To develop, tumors require the

formation of fresh blood vessels from pre-existing ones[2]. In

many tumor systems, IGF-I, IGF-II and the insulin-like growth

factor receptor-I are over expressed [3]. IGF-I plays a role in the

induction of cell proliferation and tumor angiogenesis, and these

effects have also been attributed to the induction of VEGF [3].

Vascular endothelial growth factors are a group of cytokines that

are involved in essential physiological processes and are aberrantly

expressed in many pathologies. VEGF binds to a tyrosine kinase

receptor known as VEGF receptor-2[4].

The renin-angiotensin system plays an important role in

controlling blood pressure, cardiovascular and renal function

and cell growth [5].The renin-angiotensin system is a hormone

system that is activated when renin is released, resulting in the

cleavage of angiotensinogen into angiotensin I. Angiotensin I is

then converted into angiotensin II and angiotensin (1–7) by

angiotensin-converting enzymes [6]. Local renin-angiotensin

systems exist in various malignant tumor tissues, which suggests

that the main effector peptide, angiotensin II, could act as a key

factor in tumor growth and angiogenesis via the angiotensin II

type 1 receptor [7].

During the progression from normal to malignant phenotypes,

the angiotensin II type 1 receptor is often up-regulated, which

suggests a correlation between the renin-angiotensin system and

tumor progression [8]. Angiotensin II activates neovascularization

via the induction of VEGF release [9]. The Mas1 oncogene

(MasR) represents another rennin-angiotensin system receptor that

binds angiotensin (1–7) peptide[10]. Angiotensin (1–7) can be

produced from AngI or AngII via endo- or carboxy-peptidases

respectively [11] and has apoptotic and anti-proliferative ac-

tions[12]. In addition, angiotensin (1–7) inhibits the growth of

vascular smooth muscles both in vitro and in vivo, and this effect is

blocked by the angiotensin (1–7) receptor antagonist [D-Ala7]-

Ang-(1–7) (A-779 peptide) [13].

Sorafenib, a multi-kinase inhibitor taken orally, has been shown

to suppress tumor growth by inhibiting serine/threonine kinases,

such as c-RAF, platelet-derived growth factor receptor, fms-like

tyrosine kinase 3, Ret, proto-oncogene c-Kit and the receptor

tyrosine kinases VEGF receptors 2 and 3 [14]. Sorafenib has been

used to treat renal cell carcinoma [15], but it results in an
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increased risk of hypertension[16], bleeding, skin reactions on the

hands and feet and arterial thromboembolism [16,17].

Ehrlich’s ascites carcinoma (EAC) is an undifferentiated

carcinoma [18]. It has high transplantable capability, no-

regression, rapid proliferation, short life span, 100% malignancy

and does not have tumor-specific transplantation antigen

(TSTA)[19]. EAC resembles human tumors and is used in many

studies as experimental model to study the antitumor or anti-

angiogenic activities of drugs or natural compounds [18,20,21].

The objective of the current study was to further elucidate the

anti-angiogenic effect of olmesartan, an angiotensin II type 1

receptor blocker, and to examine the impact of concurrent

administration of an angiotensin (1–7) agonist or an angiotensin

(1–7) antagonist on the anti-angiogenic effect of olmesartan.

Additionally, the study sought to test whether olmesartan could

potentiate the anti-angiogenic effect of sorafenib in mice bearing

Ehrlich’s ascites carcinoma. This aim was achieved by determining

the serum levels of IGF-I and VEGF, as well as the intratumoral

expression of their receptors.

Materials and Methods

Animals
Female Swiss albino mice, weighing 20–30 g, were purchased

from the Modern Veterinary Office for Laboratory Animals

(Cairo, Egypt). Mice were housed in polyethylene cages under

controlled laboratory conditions (2561uC temperature, constant

relative humidity and normal dark/light cycle). Food and water

were provided ad libitum. All experimental protocols were

approved by The Animal Care and Use Committee at the Faculty

of Pharmacy, Suez Canal University.

Drugs and chemicals
Olmesartan medoxomil was purchased from Daiichi Sankyo

Pharmaceutical Co. (Tokyo, Japan) and was dissolved in

dimethylsulfoxide (DMSO; Sigma-AldrichH, MO, USA). Sorafe-

nib tosylate was purchased from Bayer AG (Leverkusen,

Germany). (D-Ala7)-angiotensin I/II (1–7) trifluroacetate salt (A-

779 Peptide, angiotensin [1–7] antagonist) and angiotensin I/II

(1–7) trifluroacetate salt (Angiotensin [1–7] agonist) were pur-

chased from Bachem AG (Bubendorf, Zurich). Rabbit polyclonal

antibodies against mouse VEGF receptor type-2 were purchased

from Bio SB (Santa Barbara, California, USA). Monoclonal

antibodies against mouse CD31 and IGF-I receptors were

purchased from Thermo Fisher ScientificH (Fremont, USA). 3,

39-diaminobenzidine (DAB) was purchased from Sigma-AldrichH

(MO, USA). All other chemicals were supplied in analytical grades

from commercial sources.

Induction of solid tumors in mice
Ehrlich’s ascites carcinoma is used as ascites or as a solid form

[21] and easy to grow in suspension in the peritoneal cavity of

mice. Further, EAC suspension contains homogeneous free tumor

cells so it has a transplantable capacity for certain quantitative

tumor cells to another mouse [21,22]. Finally, EAC cell line is

easily prepared, grown and safe model for in-vivo experiments

[19,22].

The Ehrlich’s ascites carcinoma cell line was purchased from

the Tumor Biology Department, National Cancer Institute, Cairo

University (Cairo, Egypt). The Ehrlich’s ascites carcinoma cells

were prepared under aseptic conditions. The viability of the

Ehrlich’s ascites carcinoma cells was tested using Trypan blue dye

exclusion technique [23]. Ehrlich’s ascites carcinoma cells were

suspended in normal saline; each 0.1 mL of this diluted suspension

contained 2.5 million Ehrlich’s ascites carcinoma cells. At the first

day of the experiment, mice were inoculated intradermally with

0.1 mL of the Ehrlich’s ascites carcinoma suspension bilaterally on

the lower ventral side.

Experimental design
Ninety mice were randomly divided into nine groups, ten mice

each. Group I: normal mice that were injected with normal saline

(0.1 mL/mouse, i.d.) at the first day of the experiment on the

lower ventral side and then treated with saline (5 mL/kg/day,

p.o.) starting from day 8 until the last day of the experiment. One

week after inoculation with the tumor cells (day 8), tumor growth

was confirmed and therapeutic regimens were launched as follows.

Group II: mice treated with DMSO (5 mL/kg/day, p.o.), and

served as the EAC-control group. Group III: mice treated with

sorafenib (30 mg/kg/day, p.o.) [24]. Group IV-VI: mice treated

with olmesartan (3, 10 or 30 mg/kg/day, p.o.), respectively [25].

Group VII: mice treated with a combination of sorafenib (30 mg/

kg/day, p.o.) and olmesartan (30 mg/kg/day, p.o.). Group VIII:

mice treated with olmesartan (30 mg/kg/day, p.o.) and the

angiotensin (1–7) agonist (30 mg/kg/day, i.p.) [26]. Group IX:

mice were treated with olmesartan (30 mg/kg/day, p.o.) and the

angiotensin (1–7) antagonist (A-779 peptide) (3.3 mg/kg/trice

weekly, i.p.) [27]. In general, olmesartan and sorafenib were

administered daily by gastric gavage in a volume of 5 mL/

kg.Whereas, the angiotensin (1–7) agonist or the angiotensin (1–7)

antagonist were administered intraperitoneally. All treatments

were launchedon day 8 and continued for 21 days (a three-week

therapeutic period).

Collection of serum samples and dissection of tumor
discs
At the end of the experiment (day 28), blood samples were

withdrawn from each mouse from the orbital sinus under light

ether anesthesia. Blood samples were allowed to stand for 30 min

at room temperature and then, centrifuged at 10006g for 10 min.

Serum samples were separated and stored at 220uC until used for

ELISA assays. After that, mice were sacrificed by cervical

dislocation and tumor discs were dissected, weighed and fixed in

10% phosphate-buffered formalin. All paraffin-embedded tissues

were sectioned at 4 mm and prepared for hematoxylin and eosin

(H&E) staining and for immunohistochemical staining of CD31,

IGF-I receptors and VEGF receptors-2.

Determination of serum IGF-I and VEGF
Serum IGF-I and VEGF levels were determined using enzyme-

linked immune sorbent assay (ELISA) kits purchased from Biorbyt

Ltd. (Cambridge, England) and Sun Red Biotechnology Company

(Shanghai, China), respectively. The color intensity was measured

at 450 nm using a microplate reader (Metertech, M960).

Histopathological examination, immunohistochemistry
and image analysis
Sections were fixed in a 65uC oven for 1 h. Then, the slides

were placed in a Coplin jar filled with 50 mL Triology (Cell

MarqueH, CA-USA) working solution, and the jar was securely

positioned in an autoclave. The autoclave at 120uC and

maintained for 15 min; after which, the pressure was released,

and the Coplin jar was removed and the slides were allowed to

cool. After that, sections were washed and immersed in TBS to

adjust the pH; this wash step was repeated between each step of

the immunohistochemical procedures. Excess serum was drained

and 2 drops of the rabbit monoclonal CD31 primary antibody,

Olmesartan Exhibited Anti-Angiogenic Activity
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1:50 in phosphate buffered saline (PBS) (Thermo ScientificH,

Fremont, USA), the ready to use mouse monoclonal antibodies for

the IGF-I receptors (Thermo ScientificH, Fremont, USA) or the

rabbit polyclonal VEGF receptor-2 antibodies (1:80 with PBS, Bio

SB, Santa Barbara, California, USA) were added to each slide.

Then, slides were incubated in a humidity chamber for 1 h.

Next, biotinylated secondary antibodies were applied to each slide

for 20 min, followed by a 20 min incubation period with the

enzyme conjugate. DAB chromogen was prepared and 3 drops

were applied to each slide for 2 min. After that, the DAB was

rinsed off, and the slides were counter stained with Mayer’s

hematoxylin. Finally, cover slipping was performed and the slides

were examined under a light microscope (Olympus CX21, Japan).

The stained slides were examined to identify the areas of high

neovascularization. In each section, the ten most vascular areas

were chosen. The photomicrographs were examined using the

Image J1.45 F image analysis system (National Institute of Health,

USA) to determine the optical density of the immunostaining. All

histopathological examinations were performed by an experienced

pathologist who was blinded to the experimental groups.

Statistical Analysis
Results were collected, tabulated and expressed as mean 6

S.E.M. Data were analyzed using one-way analysis of variance

(ANOVA) followed by Bonferroni’s post-hoc test. All statistical tests

were performed using the Statistical Package for Social Sciences,

version 19 (SPSS Software, SPSS Inc., Chicago, USA) and the

differences were considered significant when P,0.05.

Results

Tumor weight
At the end of the experiment, monotherapy with sorafenib

(30 mg/kg), olmesartan (3, 10 or 30 mg/kg) or their combination

reduced the tumor weight, compared to the EAC-control mice

(Fig. 1A). Concurrent administration of the angiotensin (1–7)

agonist with olmesartan (30 mg/kg) reduced the tumor weight,

compared to either the EAC-control group or olmesartan (30 mg/

kg) group. Meanwhile, concurrent administration of the angioten-

sin (1–7) antagonist with olmesartan (30 mg/kg) reduced the

antitumor effect of olmesartan; the tumor weight in this group was

different from the EAC-control group, olmesartan (30 mg/kg)

group and angiotensin (1–7) agonist group (Fig. 1B). These results

Figure 1. Effect of sorafenib and olmesartan on tumor weight in EAC- bearing mice. A) Effect of sorafenib (30 mg/kg), olmesartan (3, 10 or
30 mg/kg) and their combination on tumor weight in EAC-bearing mice. B) Effect of concurrent administration of an angiotensin (1–7) agonist
(30 mg/kg/day, i.p.) or an angiotensin (1–7) antagonist (3.3 mg/kg/trice/week, i.p.) and olmesartan on the tumor weight of EAC-bearing mice. EAC:
Ehrlich’s ascites carcinoma. Values are expressed as the mean 6 S.E.M. anddata were analyzed using one-way ANOVA followed by Bonferroni’s post-
hoc test atP,0.05. *Significantly different from the EAC-control. DSignificantly different from sorafenib monotherapy. NSignificantly different from
olmesartan (3 mg/kg) group. JSignificantly different from olmesartan (10 mg/kg) group.$Significantly different from olmesartan (30 mg/kg)
group.eSignificantly different from the combination of olmesartan and angiotensin (1–7) agonist.
doi:10.1371/journal.pone.0085891.g001

Olmesartan Exhibited Anti-Angiogenic Activity
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indicated that the anti-angiogenic effect of olmesartan was

mediated, at least in part, through the activation of the angiotensin

(1–7) receptor.

Serum level of IGF-I and VEGF
The serum level of IGF-I was greater in the EAC-control mice

compared to the normal mice. Various pharmacological treat-

ments reduced the serum level of IGF-I compared to the EAC-

control group. Further, treatment with a combination of

olmesartan (30 mg/kg) and sorafenib significantly reduced the

serum level of IGF-I compared to each monotherapy (P,0.05,

Fig. 2A). In contrast, concurrent administration of the angiotensin

(1–7) agonist with olmesartan (30 mg/kg) reduced the serum level

of IGF-I compared to monotherapy with olmesartan (30 mg/kg)

(P,0.05, Fig. 2B).

Comparing the serum level of VEGF on day 28 highlighted a

significant increase in the EAC-control group compared to the

normal group. Sorafenib or olmesartan (3, 10 or 30 mg/kg), dose

dependently, reduced the serum level of VEGF compared to the

EAC-control group. In contrast, the combination of olmesartan

(30 mg/kg) and sorafenib reduced the serum level of VEGF

compared to the corresponding monotherapies (P,0.05, Fig. 3A).

Concurrent administration of the angiotensin (1–7) agonist with

olmesartan (30 mg/kg) reduced the serum level of VEGF

compared to the olmesartan monotherapy (30 mg/kg). In

contrast, concurrent administration of angiotensin (1–7) antagonist

with olmesartan (30 mg/kg) increased the serum level of VEGF

compared to the olmesartan (30 mg/kg) group (P,0.05, Fig. 3B).

Optical density of immunostaining for IGF-I receptor and
VEGF receptors
At the end of the experiment, treatment with sorafenib (30 mg/

kg) or olmesartan (10 or 30 mg/kg) reduced the optical density for

IGF-I receptor immunostaining in the produced solid tumor

compared to the EAC-control group. In addition, the combination

of olmesartan (30 mg/kg) and sorafenib reduced the optical

density for IGF-I receptor immunostaining (P,0.05, Fig. 4A and

4B). Concurrent administration of the angiotensin (1–7) agonist

with olmesartan (30 mg/kg) reduced the optical density for IGF-I

receptor immunostaining compared to olmesartan (30 mg/kg)

group. However, concurrent administration of the angiotensin (1–7)

Figure 2. Effect of sorafenib and olmesartan on the serum level of IGF-I in EAC- bearing mice. A) Effect of sorafenib (30 mg/kg),
olmesartan (3, 10 or 30 mg/kg) and their combination on the serum level of IGF-I in EAC-bearing mice. B) Effect of concurrent administration of an
angiotensin (1–7) agonist (30 mg/kg/day, i.p.) or an angiotensin (1–7) antagonist (3.3 mg/kg/trice/week, i.p.) and olmesartan on serum level of IGF-I in
EAC-bearing mice. EAC: Ehrlich’s ascites carcinoma. IGF-1: insulin growth factor-1. Values are expressed as the mean 6 S.E.M. and data were analyzed
using one-way ANOVA followed by Bonferroni’s post-hoc test at P,0.05. oSignificantly different from the normal group. *Significantly different from
EAC-control. DSignificantly different from sorafenib monotherapy. NSignificantly different from olmesartan (3 mg/kg) group. JSignificantly different
from olmesartan (10 mg/kg) group.$Significantly different from olmesartan (30 mg/kg) group.eSignificantly different from the combination of
olmesartan and angiotensin (1–7) agonist.
doi:10.1371/journal.pone.0085891.g002

Olmesartan Exhibited Anti-Angiogenic Activity
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antagonist with olmesartan (30 mg/kg) increased the optical density

of IGF-I receptor immunostaining compared to olmesartan

(30 mg/kg) group (P,0.05, Fig. 4A and 4C).

Similarly, a difference in the optical density for VEGF receptor

type-2 immunostaining was observed among the study groups

(P,0.05). Olmesartan, dose-dependently, reduced the optical

density for these receptors compared to the EAC-control group

(Fig. 5A). Combining olmesartan (30 mg/kg) and sorafenib

reduced the expression of VEGF receptor type-2 compared to

the EAC-control group or compared to the corresponding

monotherapies (Fig. 5B).

Further, concurrent administration of the angiotensin (1–7)

agonist with olmesartan (30 mg/kg) reduced the optical density for

VEGF receptor type-2 immunostaining compared to EAC-control

group. In contrast, concurrent administration of the angiotensin

(1–7) antagonist with olmesartan (30 mg/kg) increased the

expression of VEGF receptor type-2 in comparison to olmesartan

(30 mg/kg) group (P,0.05, Fig. 5C).

Effect on intratumoral microvessel density
Immunostaining for intratumoral CD31 has been used to

evaluate the degree of tumor angiogenesis as the density of the

microvessels reflecting the degree of angiogenesis. The present

results indicated that the EAC-control group showed the highest

optical density for CD31among the study groups (Fig. 6 A and B).

Monotherapy with olmesartan (3, 10 or 30 mg/kg) produced a

significant, dose-dependent, reduction in microvessel density

compared to the EAC-control group. Similarly, monotherapy

with sorafenib produced a significant decrease in microvessel

density compared to the EAC-control group. The combination of

both olmesartan and sorafenib produced a marked reduction in

the optical density of CD31compared to the EAC-control, as well

as to the corresponding monotherapies (Fig. 6B). Moreover,

concurrent administration of the angiotensin (1–7) agonist with

olmesartan (30 mg/kg) reduced the microvessel density compared

to the EAC-control group as well as to olmesartan (30 mg/kg)

group (Fig. 6C). In contrast, concurrent administration of

angiotensin (1–7) antagonist with olmesartan (30 mg/kg) increased

Figure 3. Effect of sorafenib and olmesartan on the serum level of VEGF in EAC- bearing mice. A) Effect of sorafenib (30 mg/kg),
olmesartan (3, 10 or 30 mg/kg) and their combination on the serum level of VEGF in EAC-bearing mice. B) Effect of concurrent administration of
angiotensin (1–7) agonist (30 mg/kg/day, i.p.) or angiotensin (1–7) antagonist (3.3 mg/kg/trice/week, i.p.) and olmesartan on the serum level of VEGF
in EAC-bearing mice. EAC: Ehrlich’s ascites carcinoma. VEGF: vascular endothelial growth factor. Values are expressed as the mean 6 S.E.M. and
analyzed using one-way ANOVA followed by Bonferroni’s post-hoc test at P,0.05. oSignificantly different from the normal group. *Significantly
different from EAC-control. DSignificantly different from sorafenib monotherapy. NSignificantly different from olmesartan (3 mg/kg) group.-
JSignificantly different from olmesartan (10 mg/kg) group.$Significantly different from olmesartan (30 mg/kg) group.eSignificantly different from the
combination of olmesartan and angiotensin (1–7) agonist.
doi:10.1371/journal.pone.0085891.g003

Olmesartan Exhibited Anti-Angiogenic Activity
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in the optical density of microvessels compared to the monother-

apy with olmesartan (30 mg/kg) (P,0.05, Fig. 6C).

Discussion and Conclusion

Angiotensin II has been reported to promote tumor growth and

angiogenesis [9]. Several tumor cell types, such as melanoma,

pancreatic [28], renal [29], breast [30], bladder [31] and prostate

cancers [32], have been reported to express the angiotensin II

receptors. It has been previously reported that the high oxidative

stress produced in EAC model causing chronic hypoxia and tissue

injury [18,33]. This chronic hypoxia increased the density of

angiotensin II type 1receptors [34]. Therefore, EAC model can be

considered as a good target for angiotensin II type 1 receptor

blockers. Angiotensin II type 1 receptor blockade is reported to

have inhibitory effects on many models of angiogenesis [34–37]

and on the growth of microvessels induced by angiotensin

II[38].Therefore, angiotensin II type 1 receptor blockers have

been considered as an anti-angiogenic therapeutic option [39].

Angiotensin II receptor activation is associated with increased protein

tyrosine phosphorylation and activation of the mitogen-activated

protein kinases (MAPK), which leads to the activation of growth

factors and cytokines [40]. Angiotensin II stimulates the phosphor-

ylation of many non-receptor tyrosine kinases, including phospho-

lipase C gamma, Src family kinases and Janus kinase receptors [40].

In addition, angiotensin II influences the activity of receptor

tyrosine kinases, such as endothelial growth factor receptors,

platelet-derived growth factor receptor and insulin-like growth

factor receptor [41].

The current study was the first to measure the levels of IGF-I

receptor in the EAC solid tumor model. Key et al. [42] noted that

increased levels of IGF-I were associated with an increased cancer

risk. In addition, the up-regulation of the IGF-I receptor and its

cognate ligand IGF-I have been found in a variety of solid human

tumors [43]. Our results agree with the previous results that the

EAC-control group showed high serum levels of IGF-I and a

greater expression of IGF-I receptor in the tumor cells. Further-

more, the angiogenic effect of IGF-I was evident as IGF-I was

reported to induce tumor angiogenesis via the induction of VEGF

[3]. In agreement, our results demonstrated that olmesartan

(30 mg/kg) reduced the serum level of IGF-I, as well as VEGF. In

addition, activation of the IGF-I receptor was reported to trigger

Figure 4. Immunostaining and optical density of IGF receptor type -I. A) Immunostaining for IGF receptor type-I in the experimental groups.
B) Effect of sorafenib (30 mg/kg), olmesartan (3, 10 or 30 mg/kg) and their combination on the optical density of IGF receptor type-I immunostaining.
C) Effect of concurrent administration of angiotensin (1–7) agonist (30 mg/kg/day, i.p.) or angiotensin (1–7) antagonist (3.3 mg/kg/trice a week, i.p.)
and olmesartan on the intratumoral level of IGF receptors type-I. Photomicrographs are captured at 2006 magnification. EAC: Ehrlich’s ascites
carcinoma. Values are expressed as the mean 6 S.E.M. and analyzed using one-way ANOVA followed by Bonferroni’s post-hoc test at P,0.05. *
Significantly different from EAC-control. DSignificantly different from sorafenib monotherapy.NSignificantly different from olmesartan (3 mg/kg)
group. JSignificantly different from olmesartan (10 mg/kg) group.$Significantly different from the olmesartan (30 mg/kg) group.eSignificantly
different from the combination of olmesartan and angiotensin (1–7) agonist.
doi:10.1371/journal.pone.0085891.g004

Olmesartan Exhibited Anti-Angiogenic Activity
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the activation of the Ras–Raf MAPK and PI3K–protein kinase B

pathways that converge with the VEGF production pathway [44].

In the current study, serum level of VEGF was high in the EAC-

control group and this could be attributed to hypoxia induced in

the tumor and the subsequent induction of the expression of

VEGF and its receptor. Similarly, it has been reported that

hypoxia inducible factor 1 alpha (HIF-1a) increased the expression

of VEGF in experimental carcinogenesis [45]. Treatment with

olmesartan (10 and 30 mg/kg) reduced the serum VEGF and

down-regulated the expression of VEGF receptor-2 in the tumor

discs. Similar to olmesartan, candesartan was reported to inhibit

VEGF production and decrease prostate cancer growth [46].

Consistently, Rakusan et al. [34] reported that angiotensin II type

1 receptor-dependent angiogenic effects involve the activation of

growth factors, such as VEGF, and inflammatory pathways. The

combination treatment of olmesartan (30 mg/kg) and sorafenib

significantly reduced the serum VEGF level compared to

monotherapies, and this pointed to the potentiating effect of

olmesartan on the anti-angiogenic effect of sorafenib.

Angiogenesis, the development of new blood vessels from pre-

existing vasculature, is a prerequisite to tumor growth and its

metastatic spread. Microvessel density reflects inter-capillary

distance; it is influenced by both angiogenic and non-angiogenic

factors. Microvessel density is considered to be a powerful

candidate for prognosis [47] and many experimental studies used

immunostaining for CD31 to determine microvessel density

[33,48–52]. In the current study, microvessel density, as indicated

by CD31 immunostaining, the combination therapy produced a

greater reduction in microvessel density compared to monother-

apies; this indicates that the greater tumor inhibition exerted by

the combination therapy was, at least in part, attributed to the

combined anti-angiogenic effect of both drugs. Similar to the

current results, microvessel density was reported to be reduced in

prostate cancer cells treated with angiotensin II type I receptor

blockers; this indicates that these drugs inhibit the vascularization

of prostate cancer cells [46]. The loss of VEGF expression in a

tumor results in a dramatic decrease in vascular density and

vascular permeability [53].

Figure 5. Immunostaining and optical density of VEGF receptor type -2. A) Immunostaining for VEGF receptor type-2 in the experimental
groups. B) Effect of sorafenib (30 mg/kg), olmesartan (3, 10 or 30 mg/kg) and their combination on the optical density of VEGF receptor type-2
immunostaining. C) Effect of concurrent administration of angiotensin (1–7) agonist (30 mg/kg/day, i.p.) or angiotensin (1–7) antagonist (3.3 mg/kg/
trice/week, i.p.) and olmesartan on the intratumoral levels of VEGF receptors type-2. Photomicrographs are captured at 2006magnification. EAC:
Ehrlich’s ascites carcinoma. Values are expressed as the mean6 S.E.M. and were analyzed using one-way ANOVA followed by Bonferroni’s post-hoc at
P,0.05. *Significantly different from the EAC-control. DSignificantly different from the sorafenib monotherapy.NSignificantly different from olmesartan
(3 mg/kg) group. JSignificantly different from olmesartan (10 mg/kg) group.$Significantly different from olmesartan (30 mg/kg) group.eSignificantly
different from the combination of olmesartan and angiotensin (1–7) agonist.
doi:10.1371/journal.pone.0085891.g005
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The current data highlighted that concurrent administration of

an angiotensin (1–7) receptor agonist along with olmesartan

potentiated the antitumor activity of the latter. However,

concurrent administration of the receptor blocker diminished the

effect of olmesartan. In agreement, mice treated with angiotensin

(1–7) showed reduced tumor cyclooxygenase 2 activity, suggesting

that the heptapeptide may decrease the production of proin-

flammatory prostaglandins to inhibit tumor growth. Furthermore,

the same study showed that angiotensin (1–7) inhibited the

proliferation of lung cancer cells in vitro and reduced the serum-

stimulated growth of three human lung adenocarcinoma cell lines

[54]. The current results agree well with these findings; the

combination of olmesartan (30 mg/kg) with the angiotensin (1–7)

agonist reduced the serum level of VEGF and the expression of its

receptors in the tumor discs, whereas addition of the angiotensin

(1–7) antagonist (A-779 peptide) blocked this effect. These results

indicated that the anti-angiogenic effect of olmesartan was, at least

in part, dependent on angiotensin (1–7) receptors. Angiotensin (1–

7) was reported to reduce tumor size by diminishing the blood

supply to the tumor cells, thereby leading to tumor death [55].

The anti-tumor effect of olmesartan was confirmed in the

present study where treatment with olmesartan reduced the tumor

weight, assuming that this was linked to the angiostatic effect of

olmesartan which resulted in tumor growth impairment. At the

same time, the combinations of olmesartan (30 mg/kg) with the

angiotensin (1–7) agonist reduced the tumor weight. However, the

anti-tumor effect of olmesartan was reduced by the angiotensin (1–

7) antagonist while the agonist potentiates it. These results suggest

that the anti-angiogenic effect of olmesartan is mediated through

the angiotensin (1–7) receptors. It was reported that sorafenib

induced apoptosis in in cancer models process [56–58]. Similarly,

angiotensin II type 1 receptor blockers induced apoptosis in

experimental models [59–61]. Therefore, apoptosis may be a

common mechanism underlying the anti-tumor effect of sorafenib

and olmesartan in the treatment of cancer.

In conclusion, the present results showed that olmesartan

(30 mg/kg) potentiated the anti-angiogenic effect of sorafenib-

through inhibition of IGF-I, VEGF and their receptors- leading to

greater anti-tumor activity. The anti-angiogenic effect of olme-

sartan was, at least in part, mediated through the angiotensin (1-7)

Figure 6. Immunostaining and optical density of CD31 expression. A) Immunostaining for CD31 in the experimental groups. B) Effect of
sorafenib (30 mg/kg), olmesartan (3, 10 or 30 mg/kg) and their combination on the optical density of CD31 immunostaining. C) Effect of concurrent
administration of angiotensin (1–7) agonist (30 mg/kg/day, i.p.) or angiotensin (1–7) antagonist (3.3 mg/kg/trice/week, i.p.) and olmesartan on CD31

expression. Photomicrographs are captured at 2006magnification. EAC: Ehrlich’s ascites carcinoma. Values are expressed as the mean 6 S.E.M. and
were analyzed using one-way ANOVA followed by Bonferroni’s post-hoc test at P,0.05. *Significantly different from EAC-control. DSignificantly
different from sorafenib monotherapy. NSignificantly different from olmesartan (3 mg/kg) group. JSignificantly different from olmesartan (10 mg/kg)
group.$Significantly different from olmesartan (30 mg/kg) group.eSignificantly different from the combination of olmesartan and angiotensin (1–7)
agonist.
doi:10.1371/journal.pone.0085891.g006
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receptor. Therefore, the present study highlighted the beneficial

role of olmesartan as an adjuvant medication to sorafenib in the

treatment of cancer. This combination could be of choice as

sorafenib was reported to increase blood pressure in cancer

patients [16] and prescribing an antihypertensive remedy might be

essential in some patients.
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