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Genomes and transcriptomes are now typically sequenced by individual laboratories but analyzing them often remains chal-

lenging. One essential step in many analyses lies in identifying orthologs—corresponding genes across multiple species—

but this is far from trivial. The Orthologous MAtrix (OMA) database is a leading resource for identifying orthologs

among publicly available, complete genomes. Here, we describe the OMA pipeline available as a standalone program

for Linux and Mac. When run on a cluster, it has native support for the LSF, SGE, PBS Pro, and Slurm job schedulers

and can scale up to thousands of parallel processes. Another key feature of OMA standalone is that users can combine their

own data with existing public data by exporting genomes and precomputed alignments from the OMA database, which

currently contains over 2100 complete genomes. We compare OMA standalone to other methods in the context of phy-

logenetic tree inference, by inferring a phylogeny of Lophotrochozoa, a challenging clade within the protostomes. We also

discuss other potential applications of OMA standalone, including identifying gene families having undergone duplica-

tions/losses in specific clades, and identifying potential drug targets in nonmodel organisms. OMA standalone is available

under the permissive open source Mozilla Public License Version 2.0.

[Supplemental material is available for this article.]

The sequencing revolution is yielding a flood of genomes and tran-
scriptomes, with thousands already sequenced and many more
underway (Pagani et al. 2012). A powerful way of characterizing
newly sequenced genes is to compare them with evolutionarily
related genes—in particular, with orthologs in other species
(Dessimoz et al. 2012; Sonnhammer et al. 2014; Forslund et al.
2018). In this way, experimental knowledge from model organ-
isms can be propagated to nonmodel organisms. Elucidation of
orthology and paralogy relationships is also essential to recon-
struct species trees, to better understand the mechanics of gene/
genome evolution, to study adaptation, or to pinpoint the emer-
gence of new gene functions (Gabaldón and Koonin 2013).

The importance of determining orthology has led to the de-
velopment of many inference methods and associated databases
(for review, see Altenhoff andDessimoz 2012). Some of the best es-
tablished orthology resources include eggNOG (Huerta-Cepas
et al. 2016b), Ensembl Compara (Zerbino et al. 2018), InParanoid
(Sonnhammer and Östlund 2015), MBGD (Uchiyama et al.

2012), OrthoDB (Zdobnov et al. 2017), OrthoMCL (Chen et al.
2006), PANTHER (Mi et al. 2017), PhylomeDB (Huerta-Cepas
et al. 2014), and OMA (Altenhoff et al. 2018).

Key distinctive features of OMA are the high specificity of its
inference pipeline (Altenhoff and Dessimoz 2009; Boeckmann
et al. 2011; Linard et al. 2011; Afrasiabi et al. 2013), the feature-
rich web and programmatic interfaces, large size and taxonomic
breadth of its precomputed data (currently 2167 genomes), its reg-
ular update schedule of two releases per year, and its sustained de-
velopment over the last 13 yr. The algorithms underlying theOMA
pipeline have been described and validated in multiple publica-
tions (Dessimoz et al. 2005, 2006; Roth et al. 2008; Altenhoff
et al. 2013; Train et al. 2017). The quality of OMA is corroborated
by a recent community benchmarking study, which highlighted
the high specificity of orthologs predicted by the OMA pipeline
(Altenhoff et al. 2016).

With genome and transcriptome sequencing rapidly becom-
ing a commodity, there is an increasing need to analyze custom
user data. Here, we present OMA standalone, an open-access soft-
ware implementation of the OMA pipeline for Linux and Mac
(http://omabrowser.org/standalone). We first outline some of the
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key features of OMA standalone. In the second part, we demon-
strate the usefulness of OMA standalone in the context of species
tree inference, by comparing its performance with state-of-the-art
alternatives on the challenging Lophotrochozoa phylogeny.

Results

We first highlight the defining features of OMA standalone, then
turn to the phylogeny of Lophotrochozoa, which we infer from
orthologs inferred by OMA in comparison with alternative
methods.

OMA standalone software

OMA standalone takes as input the coding sequences of genomes
or transcriptomes, in FASTA format. The recommended input type
is amino acid sequences, but OMA also supports nucleotide se-
quences. With amino acid sequences, users can combine their
own datawith publicly available genomes from theOMAdatabase,
including precomputed all-against-all sequence comparisons (the
first and computationally most intensive step), using the export
function on the OMA website (http://omabrowser.org/export).

OMA standalone produces several types of output (also sum-
marized in Fig. 1):

1. Pairwise orthologs and their subtypes (one-to-one, one-to-
many, many-to-one, many-to-many orthology). These ortho-
logs are useful when comparing pairs of species or to identify
orthologs to specific genes of interest.

2. OMA groups. These are sets of genes for which all pairs are in-
ferred to be orthologous. These groups are inferred as cliques
(fully connected subgraphs) of pair-
wise orthologs. These groups are not
necessarily one-to-one orthologs,
but, being inferred without assuming
a species tree, they are particularly
useful to identify marker genes for
phylogenetic reconstruction.

3. Hierarchical orthologous groups
(HOGs). These groups are defined for
every internal node of the (rooted)
species tree; each HOG contains the
genes that are inferred to have de-
scended from a common ancestral
gene among the species attached to
that internal node. Consider, for in-
stance, gene ADH1, which duplicated
within the primates (Carrigan et al.
2012): At the level of the last primate
common ancestor, all genes that
have descended from the ancestral
ADH1 belong to the same HOG.
However, at the level of the common
ancestor of all the great apes, because
ADH1 had at this point already du-
plicated into ADH1A, ADH1B, and
ADH1C, these ancestral genes define
three HOGs. A brief video tutorial on
HOGs is available at https://youtu
.be/5p5x5gxzhZA. The HOGs are
stored in the standard OrthoXML for-
mat (Schmitt et al. 2011).

4. Gene Ontology annotations. OMA standalone annotates the
input sequences with Gene Ontology annotations by propagat-
ing high-quality annotations across orthologs (Altenhoff et al.
2015). The annotations are provided in the standard GO
Annotation File Format 2.1 (http://geneontology.org/docs/go-
annotation-file-gaf-format-2.1).

5. Phylogenetic profiling. Orthology is also used to build phyloge-
netic profiling—patterns of presence and absence of genes
across species (Pellegrini et al. 1999). We provide two forms of
output: a binary matrix with species as rows and OMA groups
as columns, indicating patterns of presence or absence of genes
in each group; a count matrix with species as columns and
HOGs as rows, indicating the number of genes in each deep-
est-level HOG (i.e., HOGdefined at the broadest taxonomic lev-
el possible).

6. Species tree. Unless supplied with a (fully or partially resolved)
reference species tree, OMA standalone computes a tree from
the inferred OMA groups using the built-in distance tree proce-
dure MinSquareTree in the programming environment Darwin

(Gonnet et al. 2000). Note that, as with most tree inference
methods, the rooting of the tree tends to be unreliable, so we
encourage users to review and reroot the tree based on other in-
formation, if available.

OMA standalone supports parallel computation of the all-
against-all sequence comparison phase. This phase, which com-
putes Smith–Waterman (1981) alignments followed by pairwise
maximum likelihood distance estimation for all significant pairs
(Roth et al. 2008), is by far the most time-consuming step of
the algorithm. To fully exploit parallelism, alignments are per-
formed using single instruction multiple data (SIMD) instructions

Figure 1. Conceptual overview of the OMA standalone software. Dotted arrows indicate alternative
steps (reference species tree either specified as input or inferred from the data). The species tree inference
step infers a distance tree but can be bypassed by supplying a reference tree.
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(Szalkowski et al. 2008) on multiple cores. OMA standalone
natively supports common cluster schedulers—LSF, SGE, PBS,
and Slurm—and has been successfully run with several thousand
jobs in parallel. Figure 2 shows typical runtimes andmemory usage
for data sets of various sizes.

Application: the phylogenetic relationships within

Lophotrochozoa

Resolving the relationships of ancient lineages is amajor challenge
for molecular phylogenetics. Although some aspects of the phy-
logeny of the major animal clades are well-resolved, the relative
positions of the deeper lying clades are often disputed. The con-
struction of large phylogenomic supermatrices has been themeth-
od of choice for resolving the deepest nodes in the tree of life
(Dunn et al. 2008; Hejnol et al. 2009; Fernández et al. 2014;
Egger et al. 2015).

Fundamental to the analyses of phylogenetic relationships is
the use of sequences that have descended from a single common
gene in their last common ancestor, that is, orthologous sequenc-
es. Ensuring that we correctly infer orthologs is therefore vital if we
are to reconstruct difficult to resolve phylogenies. The limitations
of automated orthology and paralogy prediction methods with re-
gard to phylogenetic analysis have previously been highlighted
(Philippe et al. 2011b); simplistic orthology inference methods
may miss orthologs (Dalquen and Dessimoz 2013) or erroneously
identify paralogous pairs of genes as orthologs as a result of differ-
ential gene losses (Dessimoz et al. 2006).

One notoriously difficult to resolve phylogeny is that of
Lophotrochozoa (Kocot 2016), a clade of animals positioned sister
to Ecdysozoa, within the protostomes, andwhich, for instance, in-
cludes segmented worms and molluscs. Lophotrochozoa contains
about 10 different phyla, each of which is clearly monophyletic,
but the relationships among these phyla are far from clear, with

many different topologies having been supported by different
analyses. The inference is that the phyla are likely to have emerged
in an ancient and rapid radiation resulting in weak phylogenetic
signal for interphylum relationships. These circumstances make
the solving of this problem particularly difficult and mean that
the use of accurately identified orthologs is particularly relevant.

We used OMA standalone to identify orthologous marker
genes among the proteomes of 19 lophotrochozoans and, as out-
groups, four deuterostomes, four ecdysozoans, and three nonbila-
terians, totaling 894,528 input sequences (seeMethods). As a basis
of comparison, we also repeated the analysis using orthology infer-
ence pipelines, on the same data set, based on OrthoMCL (Li et al.
2003), BUSCO (Simão et al. 2015), HaMStR (Ebersberger et al.
2009), and OrthoFinder (Emms and Kelly 2015). Like OMA, these
methods do not require prior specification of a species tree, are
available as standalone programs, and have all been used in phylo-
genetic analyses previously. Species trees were then constructed
using these orthologs with both maximum likelihood and
Bayesian tree reconstruction packages, IQ-TREE (Nguyen et al.
2015) and PhyloBayes (Lartillot et al. 2013), on the resultant super-
matrices. In terms of computational cost, OMA is by far the most
costly of the orthology methods tested, due to its reliance on full
Smith–Waterman (1981) alignments and evolutionary distance
in the all-against-all phase (∼85 k CPU hours). By comparison,
OrthoMCL and OrthoFinder, which rely on BLAST for all-
against-all comparisons, are much faster (∼2 k CPU hours).
Finally, BUSCO (11 CPU hours) and HaMStR (230 CPU hours)
are the fastest, owing to their reliance on predefined hidden
Markov models of the orthologous markers.

We first consider the amount of orthology information recov-
ered by the various methods. OMA inferred 2162 orthologous
groups containing 15 or more species (Fig. 3A). By comparison,
the HaMStR pipeline inferred 1241 orthologous groups, the
OrthoMCL pipeline inferred 484 orthologous groups, BUSCO

Figure 2. Resource measurements for various data sets of increasing sizes as total number of protein sequences. The data sets have been sampled from
the public OMA Browser to maintain a constant composition of 20% fungi, 10% archaea, 10% plants, 20%metazoan, and 40% bacteria genomes. (Left)
Runtime of the all-against-all phase (orange) on a single CPU, and the inference of the orthologous pairs and various groups (green). (Right) Peak memory
usage of OMA standalone in gigabytes (GB).
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inferred 384 orthologous groups, and OrthoFinder yielded 1784
groups. Although OMA identifies more orthologous genes than
other methods, it infers fewer larger groups than HaMStR and pro-
duces a less dense data matrix (Supplemental Fig. S1). This differ-
ence in group size distribution is likely to be the result of
different trade-offs in terms of precision (proportion of predicted
orthologs that are correct) and recall (proportion of true orthologs
that are correctly predicted). These trade-offs have been observed
in multiple benchmarking studies (e.g., Boeckmann et al. 2011;
Altenhoff et al. 2016). Indeed, the OMA algorithm is known for
having higher precision but lower recall than most other methods
(Altenhoff et al. 2016).

A priori, the effect of the number of orthologous groups and
completeness on tree inference is not obvious. The effect of miss-
ing data in even large supermatrices has been shown to have a det-
rimental effect on the quality of trees inferred from them (Roure
et al. 2013). Other studies have shown that more complete super-
matrices do not necessarily yield better results (Fernández et al.
2016). The latter study found that when using a stringentminimal
site completeness cut-off, resulting in fewer sites, phylogenetic in-
ference was in disagreement with established classifications of
taxa.

If we consider both the number of sites above aminimumoc-
cupancy rate threshold (i.e., minimum proportion of informative
characters in each site), OMA standaloneyields the largest datama-
trices (i.e., the most alignment columns) with at least 40% or 50%
occupancy, while HaMStR yields the largest data matrices for 60%
and 70% (Fig. 3B).

Using the aligned sets of orthologs identified in the pre-
vious step, we reconstructed species trees using Maximum
Likelihood (IQ-TREE [Nguyen et al. 2015], a model selected with
ModelFinder [Kalyaanamoorthy et al. 2017]), and Bayesian analy-
sis (PhyloBayes, CAT+GTR+G4 [Lartillot et al. 2013]) on superma-
trices that had been filtered to include only alignment columns
with at least 60% site occupancy. In the rest of our analyses, we
chose to infer trees from matrices with a minimum occupancy
rate of 60%, for pragmatic reasons: With higher thresholds, some

methods recover too few sites (e.g., BUSCO yields 7135 positions
only if we require at least 70% occupancy). With a lower cutoff,
the increase in data matrix size renders Bayesian tree inference
analyses prohibitively costly.

With OMA, both the Bayesian tree (using PhyloBayes; Fig. 4)
and the ML tree (using IQ-TREE; Supplemental Fig. S2) had high
branch support values. The Bayesian tree had branch posterior
probabilities of 1 across the tree apart from the Lophotrochozoa
clade, with a posterior probability of 0.82. The ML tree had
bootstrap support of 100 for all but eight of 27 branches. Deutero-
stomes were recovered with full bootstrap support, while Lopho-
trochozoa, with the exception of Rotifera, were recovered with
bootstrap support of 92.

The OMA tree inferred using theML inferencemethod found
that the Rotifera (Adineta ricciae, Brachionus plicatilis) are grouped
with the Nematoda (Caenorhabditis elegans, Pristionchus pacificus),
as part of the ecdysozoans. This is in disagreementwith the current
consensus (Giribet and Edgecombe 2017). In contrast, the tree
constructed using Bayesian inference found the Rotifera to be sis-
ter to the rest of the lophotrochozoans, in agreement with recent
studies (Philippe et al. 2011a; Egger et al. 2015). The discrepancy
in the ML tree is likely due to the long branched Rotifera being at-
tracted to the long branched Nematoda—a problem to which
PhyloBayes under the CAT model has been previously shown to
be more robust (Lartillot et al. 2013).

Both theMLandBayesian trees found the rest of the lophotro-
chozoans to consist of two monophyletic groups. The first group
comprises the Gastrotricha (Mesodasys laticaudatus) and the
Platyhelminthes (flatworms). This relationship is consistent with
recent studies (Dunn et al. 2008; Edgecombe et al. 2011; Struck
et al. 2014; Laumer et al. 2015). Because of their seemingly simple
morphology,withcharacteristics suchashavingnobodycavity,no
respiratory organs, and having only a single opening for both the
intake of nutrients and excretion of waste, they were originally
thought to be among the most basally branching Bilateria, until
molecular studies on18S rDNAsequencedatawas carried out, plac-
ing them within the protostomes (Baguñà and Riutort 2004).

BA

Figure 3. Comparison of amount of orthologous data inferred by the different pipelines. (A) OMA and OrthoFinder infer more orthologous groups than
other methods, whereas the groups inferred by HaMStR are considerably larger on average than for the other methods. (B) The resulting supermatrix has
most sites for OMA, whether the minimum site occupancy threshold is 40% or 50%, and most sites for HaMStR at the 60% cutoff (used for phylogenomic
reconstruction) and 70% cutoff.
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Authors now divide the Platyhelminthes
into the Catenulida, with currently no
known synapomorphies (i.e., no shared
distinctive character), and the Rhabdito-
phora, which has uniting characteristics
such as the presence of lamellated rhab-
dites, a common structure of the epider-
mis (Egger et al. 2015; Laumer et al.
2015). OurML and Bayesian trees corrob-
orated this and found the Catenulida
(Catenulida sp.) to be sister to Rhabdito-
phora (Macrostomum lignano, Echinoplana

celerrima,Microdalyellia schmidtii,Monoce-

lis sp., Schmidtea mediterranea).
Within the Rhabditophora, the

most basal branches of the OMA-inferred
trees are those of the Macrostomorpha
(Macrostomum lignano), followed by the
Polycladida (Echinoplana celerrima), also
in agreement with recent studies (Egger
et al. 2015; Laumer et al. 2015). We also
inferred the Rhabdocoela (Microdalyellia

schmidti) to be the most basally branch-
ing, followed by the Proseriata (Monocelis

sp.) and Acentrosomata (Schmidtea medi-

terranea). This too is in agreement with
recently published phylogenies (Egger
et al. 2015; Laumer et al. 2015).

The second monophyletic group
foundwithin the rest of Lophotrochozoa
contains the Annelida (Lumbricus ru-

bellus, Helobdella robusta, Capitella sp.),
segmented worms, the Mollusca (Bio-
mphalaria glabrata, Lymnaea stagnalis,
Lottia gigantea,Mytilus californianus, Sepia
officinalis, Chaetopleura apiculata), the
largest marine phylum, and Nemertea
(Cerebratulus sp.), also known as ribbon
worms or proboscis worms, to form the
Trochozoa (Dunn et al. 2014). However,
there is disagreement on the positioning
of these clades within the group (Dunn
et al. 2008; Struck and Fisse 2008; Struck
et al. 2014; Laumer et al. 2015). Both tree
reconstruction methods find the Gastro-
poda (Lottia gigantea, Lymnaea stagnalis,
Biomphalaria glabrata) to be sister to
the Bivalvia (Mytilus californianus). Both
methods also found the Annelida to
be sister to (Mollusca +Nemertea), with
high support (posterior probability of 1
and bootstrap of 96).

In contrast, on this lophotrocho-
zoan data set, trees obtained from other
orthologypipelines hadmore unresolved
nodes and/or more discrepancies with
the literature (Fig. 4; Supplemental Table
S1; Dunn et al. 2008; Kocot et al. 2011;
Egger et al. 2015; Laumer et al. 2015; Tel-
ford et al. 2015; Kocot et al. 2017).

The BUSCO Bayesian tree had
slightly less support throughout than
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Figure 4. Comparison of trees obtained using PhyloBayes with the CAT-GTR-G4 model from the dif-
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that are at odds with the literature are in red; otherwise they are displayed in gray (posterior probabili-
ty < 0.95) or else in black. Only posterior probabilities below one are displayed. Please note that the
PhyloBayes tree computed fromHaMStR data did not converge after 900,000 CPU hours and thus should
be interpreted with caution.
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the OMA tree, although it only had one branch with support of
less than pp=0.80. The relationship between the Proseriata,
Rhabdocoela, and the Acentrosomata agrees with the OMA
Bayesian tree, as does the relationship between the Gastrotricha
and the Platyhelminthes. However, the BUSCO tree indicates
Gastropoda to be paraphyletic with high support (pp= 0.99),
with Lottia gigantea more basally branching to the Bivalvia and
the rest of the Gastropoda. This is in contrast to both the OMA
tree and other studies (Dunn et al. 2008; Struck et al. 2014). The
BUSCO tree found the Nemertea as sister to (Annelida +
Mollusca), with a support value of pp=0.89. This is in disagree-
ment with the current consensus and the OMA tree (Dunn et al.
2008; Struck et al. 2014; Laumer et al. 2015).

The HaMStR tree had high support throughout but differed
markedly from the OMA tree. The HaMStR method placed Sepia

officinalis, Mytilus californianus, and Chaetopleura apiculata in a
clade together, sister to the Gastropoda. This is in disagreement
with Kocot et al. (2011) and the OMA trees, which place the Poly-
placophora (Chaetopleura apiculata) to be the most basally branch-
ing, followed by the Cephalopoda (Sepia officinalis), with the
Bivalvia sister to the Gastropoda. The Bayesian tree also fails to re-
cover Trochozoa, placing the Annelida with the (Platyhelminthes
+Gastrotricha), as opposed to full support found in the OMA
tree. One caveat with the Bayesian HaMStR tree is that the tree re-
ported is unconverged (even after 22,230 iterations); thus, we can-
not rule out that some of these differences might ultimately
disappear. However, the ML tree also shows substantial dis-
agreement with the OMA tree and the literature (Supplemental
Table S1).

TheOrthoMCL trees had themost issues, with the lowest sup-
port values. Deuterostomes, comprising a well-established rela-
tionship between the chordates and the Ambulacraria (Philippe
et al. 2011a), are paraphyletic in the Phylobayes tree, which places
chordates (Ciona intestinalis, Homo sapiens)more basally branching
than the Ambulacraria (Strongylocentrotus purpuratus, Saccoglossus

kowalevskii), with the latter sister to the Protostomes with pp=
0.75. Rotifera were incorrectly placed as sister to (Gastrotricha+
Platyhelminthes) with full support. This is in disagreement with
both the OMA tree and recent studies. The tree was able to correct-
ly infer the (Mollusca+Nemertea) relationship with full support.
Within the Mollusca, in contrast to the OMA tree, the Bayesian
tree inferred Sepia officinalis to be the most basally branching,
with Chaetopleura apiculata and Mytilus californianus forming a
clade sister to the rest of the Mollusca. However, this has low sup-
port with pp=0.66 for the Bayesian tree.

The OrthoFinder Bayesian tree was less supported than the
OMA tree, with three values below pp=1. The Nemertea were
found to be sister to (Annelida +Mollusca), in contrast to the
OMA Bayesian tree. The ML tree was also weakly supported, with
nine branches with less than full support and six below bs =80.
The Rotifera were found to be sister to Platyhelminthes, as part
of a clade with the Gastrotricha. This is in disagreement with re-
cent analysis, which places them as sister to the rest of the lopho-
trochozoans. The phylogeny of the Mollusca differed from the
OMA tree, with Chaetopleura apiculata and Sepia officinalis inferred
as sister to one another, with bs = 44, which were in turn sister to
(Bivalvia +Gastropoda).

The different datamatrices used to build phylogenies span an
almost 10-fold difference in terms of informative sites. To better
understand the potential impact of these differences, we sought
to compare the quality of trees obtained frommatrices subsampled
to similar sizes, still on the lophotrochozoan data set. From each of

the sets of orthologous groups produced by each method, a num-
ber of orthologous groups were selected at random, without
replacement, but nevertheless ensuring that every species was
represented at least once. For this analysis, which required the re-
construction of many species trees, we used IQ-TREE under the
WAG+ I model—which we found to be a reasonable trade-off
between speed and accuracy. To gauge the accuracyof the resulting
trees, we compared them with a partially resolved reference tree
derived from the literature (see Supplemental Table S1). We
observed that the lower accuracy of trees reconstructed from
BUSCO and OrthoMCL is not solely due to the lower number of
orthologous groups they infer: The resulting trees were less accu-
rate even when we considered the same number of groups for all
methods (Fig. 5). More generally, the analysis shows the merit of
includingmore orthologous groups, as formostmethods this leads
to an increase in tree accuracy.

Discussion

OMA standalone enables researchers to infer high-quality ortho-
logs among genomes or transcriptomes, on public and in-house
data. It runs on a wide range of hardware, from a single computer
to large clusters with thousands of parallel processes.

A key application ofOMA standalone lies in the identification
of genome-wide orthologous marker sequences to infer difficult
species phylogenies. On the lophotrochozoan data set, compared
with other approaches, OMA yielded more orthologous informa-
tion for phylogenetic species tree inference and resulted in better
resolved trees, which are also more consistent with the existing lit-
erature. BUSCO finds orthologs by comparing sequence data to a
predefined set of genespresent in at least90%of the species in a giv-
en data set. This relies on preexisting knowledge of orthology rela-
tionships in a set of reference species, in this case, the species
present in theMetazoa data set. Therefore, the number of ortholo-
gous groups is limited to 843. Similarly, HaMStR relies on prede-
fined core orthologs, which in our case were obtained from a

Figure 5. Accuracy of trees reconstructed with varying number of
orthologous groups, on the lophotrochozoan data set, using IQ-TREE
with a WAG+ I model. Each point is obtained by averaging over results ob-
tained from 50 random group subsets of varying size, drawn without re-
placement. Even if all methods are downsampled to have the same
number of groups, trees obtained from OMA are consistently among the
most accurate ones (measured in terms of the Robinson-Foulds distance
to a partially resolved reference tree) (see Methods). Error bars depict
one standard error on each side.
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high-profile previous study of the Annelida phylogeny (Weigert
et al. 2014b). One advantage of such predefined sets is that phylo-
genetically uninformative or misleading genesmight have already
been excluded. The downside is that the number of orthologous
groups is limited to 1253 orthologous groups. OMA is advanta-
geous in this regard because it infers orthologs across potentially
all protein sequences. This may in part explain why OMA stand-
alone has been adopted in other phylogenomic studies, such
as for centipedes (Fernández et al. 2014), arachnids (Sharma et
al. 2014; Fernández and Giribet 2015), assassin flies (Dikow et al.
2017), scorpions (Sharma et al. 2015), spiders (Garrison et al.
2016), flatworms (Egger et al. 2015; Laumer et al. 2015), tapeworms
(Tsai et al. 2013), Spiralian (Marlétaz et al. 2019), or Archaea
(Williams et al. 2017).

Our comparison also has methodological implications for
phylogenomic studies. These studies are typically greatly con-
cerned about the impact of the evolutionary model on tree infer-
ence (e.g., Song et al. 2012), as well as that of taxon sampling
(e.g., Dunn et al. 2008), but the impact of orthology inference
methods has not nearly been as commonly investigated. Our com-
parison of orthology methods on the lophotrochozoan data set
highlights the considerable impact orthology inference can have
on phylogenetic tree inference. Thus, a more systematic investiga-
tion of the impact of orthology inference on phylogenetic tree in-
ference may be required to resolve the most vexing phylogenetic
questions, such as that of the ctenophore placement (Pisani et al.
2015, 2016; Whelan et al. 2015, 2017; Halanych et al. 2016;
Feuda et al. 2017).

One drawback of the current OMA algorithm is its high com-
putational cost compared to the other methods. It would be possi-
ble to replace the costly Smith–Waterman alignments by fast
heuristics such as DIAMOND (Buchfink et al. 2015) or MMSeq2
(Steinegger and Söding 2017). However, currently about half of
the time spent in the all-against-all phase is to compute pairwise
evolutionary distances, which would still be needed—thus fast
heuristics would only provide a 2× speed-up to the OMA pipeline
at best. Instead, we see potential in avoiding the computation of
some pairs altogether by exploiting the transitivity property of ho-
mology (Wittwer et al. 2014).

The comparative analysis has some limitations. First, the tax-
on sampling is far fromoptimal, with several clades, such as the ro-
tifers, suffering from long branches. Since we started this study,
more lophotrochozoan genomes have become available; their in-
clusion would likely improve the resolution of the trees. Second,
while running and comparing five orthology inference methods
onadata set ofnearly900,000 sequences already represents amajor
undertaking, other orthologymethodswould be interesting aswell
—in particular, tree-based approaches that require no prior species
tree knowledge (Yang and Smith 2014; Huerta-Cepas et al. 2016a).

Beyond species tree inference, OMA can also be used to pin-
point the emergence of gene families in evolution, an approach
that is sometimes referred to as phylostratigraphy (Domazet-Lošo
et al. 2007). Conventional approaches work by considering all
the genes annotated in a species of reference and performing
BLAST searches against increasingly distant sets of taxa. The point
at which no homolog can be found is inferred to immediately pre-
cede the emergence of the gene. However, such an approach does
not differentiate between orthologs and paralogs and thus has a
limited resolution in terms of subfamilies. Alternatively, it is possi-
ble to extract more fine-grained information from reconciled gene
trees—i.e., gene trees with internal nodes labeled as speciation or
duplication nodes (Vilella et al. 2008; e.g., Huerta-Cepas et al.

2014)—but this is computationally demanding and there is a
lack of tools to perform such analyses on custom data.

By inferring high-quality hierarchical orthologous groups,
OMA standalone provides a way to map gene emergence, gene
duplication, and gene loss onto species phylogenies. For instance,
OMA standalone has been used to contrast gene families that have
expanded and contracted in the common ancestors of echolocat-
ing and nonecholocating bats. The emergence of echolocation co-
incides with a decrease in chemosensory genes, while secondary
loss of echolocation coincides with an increase in chemosensory
genes (Tsagkogeorga et al. 2017). The hierarchical orthologous
groups inferred by OMA standalone can be further analyzed using
the iHam visualization tool and the pyHam Python library (Train
et al. 2018).

Orthology is also key to integrating biological knowledge
among model and nonmodel species. Particularly when dealing
with deep timescales, it can be challenging to identify genes with
or without orthologous counterparts. By reconstructing fine-
grained orthology between mice and protostomes, OMA stand-
alonecould identifynewdrug targets forneglected tropical diseases
(Tsai et al. 2013). With such diseases, which disproportionately af-
fect poorer people, it can be challenging to developnewmedicines.
To accelerate drug development in such cases, drug repurposing
hasbeen suggestedwherebyanalreadyexisting andapprovedmed-
icine, or awell-researched lead, is used to combat neglected tropical
diseases (Ekins et al. 2011). As a first-pass bioinformatic identifica-
tion of drug targets in four newly sequenced tapeworm genomes,
OMA standalone was used to identify orthologs of known human
drug targets (Tsai et al. 2013): Human genes targeted by drugs
were retrieved from various databases, and their orthologs in tape-
worms were inferred using OMA standalone. To identify targets
likely to be essential across animals, orthologs present in both
mice and nematodes were also identified: If both mice and nema-
tode orthologs had knock-out phenotypes, we inferred that the
orthologous groupwas essential across animals. Togetherwith oth-
er indicators, such as gene expression data, wewere able to rank ev-
ery gene in these largelyunexplored genomes for their suitability as
a drug target andassociate lead compounds to them.As drugs could
exhibit off-target effects onparalogs, the analysis focusedonortho-
logs,which tend to be functionallymore conserved (e.g., Altenhoff
et al. 2012). The importance of investigating orthologs was illus-
trated by the drug Praziquantel, which is efficient against adult
tapeworms but not against the more dangerous larval form (Nogi
et al. 2009). Praziquantel targets one particular voltage-gated calci-
umchannel subunit.UsingOMAstandalone,wecould identify the
precise subunit ortholog in tapeworms and show that it is not ex-
pressed in the larval form, thereby providing a plausible explana-
tion for the drug’s low efficacy.

To conclude, orthology inference is a key step in integrating
biological knowledge across multiple species. OMA standalone is
a versatile orthology inference softwarewith a proven track record.
Contrary to some of the orthology methods considered in this
study, it was designed from the onset with species tree inference
inmind, though it has since been applied for a broad range of oth-
er applications. The OMA standalone software implementation
has been continuously improved and maintained over the past
5 yr, undergoing two major and 25 minor releases—in the course
of which a considerable number of bugs were identified and
fixed (https://omabrowser.org/standalone/release_notes.txt). We
intend to keep developing andmaintaining it. For support enquir-
ies or bug reporting, we encourage users to use the biostars.org fo-
rum using the keyword “oma” (https://www.biostars.org).
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Table 1. List of input parameters of OMA standalone

Parameter Meaning Default

InputDataType Type of input sequences. This can be set either to ‘AA’ for amino acid sequences or ‘DNA’ for
nucleotide sequences

AA

OutputFolder Folder to which the output is written. At each run, the content of this folder will be
overwritten. Don’t store any important files in it. The OutputFolder must not contain any
spaces.

Output

ReuseCachedResults If you want to recompute everything from scratch every time the script is run, set this to false. True
AlignBatchSize In the all-against-all phase, each genome pair is split in smaller chunks of AlignBatchSize

protein comparisons. The larger this number, the longer each unit runs, and the fewer files
get produced. This allows to adjust the frequency of milestone steps (e.g., in case of
computer crash) or to process few but large genomes with many CPUs efficiently.

1,000,000

MinScore Alignments that have a score lower than MinScore will not be considered. The scores are in
Gonnet PAM matrices units.

181

LengthTol Length tolerance ratio. If the length of the effective alignment is less than
LengthTol × min[length(s1), length(s2)], then the alignment is not considered.

0.61

StablePairTol During the stable pair formation, if a pair has a distance provable higher than another pair
(i.e., StablePairTol standard deviations away), then it is discarded.

1.81

VerifiedPairTol Tolerance parameter for the detection of differential gene losses using a third genome. The
larger the tolerance, the more liberal the algorithm assigns orthologous relations. A detailed
description is provided in Dessimoz et al. (2006).

1.53

MinSeqLen Any sequence that is less than MinSeqLen amino acids long in regular genomes is not
considered.

50

UseOnlyOneSplicingVariant Enables/disables the filtering on a single representative splicing variant. If enabled, OMA
selects the variant that has the most homologous matches with all other genomes.
Orthology inference is then only based on this variant. If disabled, alternative splicing
variants will usually be inferred as paralogs.

True

StableIdsForGroups Enables/disables the generation of stable identifiers for OMA groups (and Hierarchical Groups
if the top-down algorithm is selected). The identifier consists of a prefix to determine the
type of the group (‘OMA’ or ‘HOG’) and a subsequence of the amino acid sequence
uniquely present in this group. The computation of these IDs might require a substantial
amount of time. The IDs are stored in the OrthoXML files only (Schmitt et al. 2011).

False

GuessIdType Enable/disable guessing of the ID types while generating the OrthoXML file (Schmitt et al.
2011). In this context, we refer to ID type guessing as the task to guessing whether an ID
should be stored in the geneId, protId, or transcriptId tag. If the flag is set to false, the
whole FASTA header is used and stored as is in the protId tag.

False

DoHierarchicalGroups Enables/disables and selects the algorithm to compute the Hierarchical Orthologous Groups
(HOGs). Valid parameters are false, ‘top-down,’ and ‘bottom-up.’ The top-down approach
was the only algorithm until OMA standalone 2.0. The bottom-up approach is as of now still
an experimental feature but will become the default choice in the future.

‘Top-down’

MaxTimePerLevel Define maximum amount of time (in sec) spent by the program for breaking every connected
component of the orthology graph at its weakest link on a given taxonomic level. If set to a
negative value, no time limit is enforced. Once the time limit is reached, OMA will treat the
remaining connected component at the lower level (groups will not span over the deeper
node).

1200

SpeciesTree The hierarchical groups require a (partially) resolved species phylogeny. With the parameter
SpeciesTree, the user can specify a phylogeny in Newick-format, or, by setting the variable
to “estimate,” compute a species tree based on the OMA Groups and use this one.

Estimate

ReachabilityCutoff The cutoff of “average reachability within two steps” defines up to what point a cluster is split
into subclusters. Details on this parameter are explained in Altenhoff et al. (2013). This
parameter applies only to the top-down HOG inference approach. See parameter
DoHierarchicalGroups for additional information.

0.65

MinEdgeCompletenessFraction The cutoff in GETHOGs bottom-up algorithm to make an edge trusted in the orthology graph
among HOGs. This parameter applies only to the bottom-up approach. See parameter
DoHierarchicalGroups for additional information.

0.80

DoGroupFunctionPrediction Compute Gene Ontology function predictions based on the OMA Groups assignments. The
predictions are then stored in a GAF file. Computing these predictions can take a substantial
amount of time. Note: Predictions are based on transferring existing annotations from
genomes. Only genomes exported through the OMA Browser export interface
(https://omabrowser.org/export) have usable functional input annotations.

True

GroupFunctionCutoff Parameter to specify the fraction of genes in a group that need to be annotated with a GO
term in order to propagate the annotation to the unannotated group members. The
parameter ensures that predictions are not propagated too liberally. Note that it requires at
least the specified fraction of genomes to be exported from the OMA Browser.

0.5

CladeDefinition Path to tab-separated file that provides a mapping from the species names to the clade/group
to which annotations should at most be propagated. If set to default, the algorithm infers a
species tree and propagates GO annotations to user genomes only within some predefined
clades. These predefined clades are ‘Amphibia,’ ‘Archaea,’ ‘Arthropoda,’ ‘Bacteria,’
‘Clupeocephala,’ ‘Dictyostelium,’ ‘Fungi,’ ‘Mammalia,’ ‘Nematoda,’ ‘Sauria,’ and
‘Viridiplantae.’ If the parameter is set to false or none, no limitations on the clades are used
to propagate the function annotations.

Default
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Methods

OMA standalone

The list of all parameters of OMA standalone, their meaning, and
default values is provided in Table 1.

Large-scale species phylogenetic reconstruction: Lophotrochozoa

Transcriptome assembly and peptide prediction

We used transcriptomes from seven Lophotrochozoa species pub-
lished in Egger et al. (2015): Mesodasys laticaudatus (Gastrotricha),
Catenulida sp.,Macrostomum ligano, Echinoplana celerrima,Microda-

lyellia schmidtii, Monocelis sp. (Platyhelminthes), and Cerebratulus

sp. (Nemertea). In addition, 12 sets of genomic and transcriptomic
protein predictions from Saccoglossus kowalevskii, Brachionus plica-
tilis, Adineta ricciae, Schmidtea mediterranea, Lumbricus rubellus,
Chaetopleura apiculata, Sepia officinalis, Mytilus californianus, Bio-
mphalaria glabrata, Lymnaea stagnalis, Hydra magnipapillata, and
Amphimedon queenslandica were downloaded from the NCBI
RefSeq repository (ftp://ftp.ncbi.nlm.nih.gov/refseq/).

Quality assessment of sequencing reads was carried out with
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Subsequent to this, it was determined, using PRINSEQ
lite (Schmieder and Edwards 2011), that the first 12 nucleotides
should be trimmed off the 100-bp reads. The assembly of the
trimmed paired reads was done using Trinity v20130225 (Haas
et al. 2013), with the flag ‘‐‐min_kmer_cov 2’, with default param-
eters. Open reading frames (ORFs) were predicted using
TransDecoder (Haas et al. 2013). All ORFs greater than 100 amino
acids were retained. Redundant sequences with higher than 97%
identity at the amino acid level were removed by clustering with
CD-HIT (Fu et al. 2012).

In order to detect the presence of cross contaminations be-
tween the various libraries run on the same flow cell, we used
the CroCo package (Simion et al. 2018). This identified any assem-
bled transcripts with fewer than four read matches, which were
subsequently discarded. Furthermore, this also discarded all tran-
scripts in which the number of reads, from the intended species
matching the transcript, was not at least five times greater than
the number of matches to the transcript, from reads from any of
the other potentially contaminating species.

Additionally, 11 precomputed proteomes for Homo sapiens,
Strongylocentrotus purpuratus, Ciona intestinalis, Trichoplax adhae-

rens, Pristionchus pacificus, Caenorhabditis elegans, Drosophila mela-

nogaster, Acyrthosiphon pisum, Capitella sp., Helobdella robusta,
and Lottia giganteawere downloaded from the OMA database web-
site. The combined set of 30 nonredundant protein sets contained
19 lophotrochozoans, four deuterostomes, four ecdysozoans, and
proteomes from three nonbilaterian animals.

Orthology inference

For the HaMStR analysis, putative orthologs were determined for
each species using HaMStR v13.1 (Ebersberger et al. 2009) using

the Lophotrochozoa core ortholog reference data set (Weigert
et al. 2014a,b) as required by the HaMStR tool, with default param-
eters. HaMStR was run with the “-representative” option to pick at
most one sequence per species, with all other parameters as
default.

Orthologous groups were inferred by running BUSCO v1.22
(Simão et al. 2015) on the Metazoa data set found at https://
busco.ezlab.org/v1/. We created orthologous groups made up of
the protein sequences which BUSCO deemed to have had com-
plete matches with their own highly conserved genes. At most,
one species containing multiple sequences was allowed per group.
There was only a single occurrence of a group containing more
than one species withmultiple sequences. In this case, we retained
only the longest sequence.

The set of 30 proteomeswere first filtered to remove low-qual-
ity protein sequences using the OrthoMCL script “orthomclFilter-
Fasta.pl” (Chen et al. 2006). The “orthomclFilterFasta.pl” script
filters away poor-quality sequences based on their length and per-
cent stop codons.Default parameterswereused,which retains only
sequenceswith aminimumlengthof 20 characters, and fewer than
10% stop codons. This step resulted in the exclusion of 29 out of
894,528 input sequences (0.0032%). An all-versus-all NCBI BLAST
v2.7.1 was then used with default parameters, in order to find the
similarity score between sequences. Matches with an E-value
<10−6 were retained. Orthologs, in-paralogs, and co-orthologs
were then identified using the OrthoMCL script “Orthomcl-
Pairs.pl” (Chen et al. 2006) before clustering using MCL. An MCL
inflation parameter of 2.2 was used in order to identify clusters.
Each group was required to have at most one species containing
multiple sequences. When more than one sequence from a single
species was present, the longest sequence was selected to remain
in the group, with the others removed.

Putative orthologs were inferred using OrthoFinder v2.2.7,
used in conjunction with BLAST, with default parameters. When
applying the same criteria as for OrthoMCL for generating single
copy orthologs (i.e., at most sequence per species), no orthologous
groups were recovered. As a workaround, within each orthologous
group, we removed all sequences from species that appeared mul-
tiple times.

Phylogenetic inference

Each orthologous group that contained a minimum of 15 protein
sequences, of the 30 total, representing unique species were
aligned using MUSCLE (Edgar 2004), using default parameters.
All spurious sequences, and poorly aligned regions of the multiple
sequence alignments, were then removed using trimAl (Capella-
Gutiérrez et al. 2009), using the -automated1 flag. Supermatrices
were then constructed by concatenating all of the remaining align-
ments, with missing sequences treated as gaps. The final align-
ment was subsequently reduced to only contain sites in which
more than 60% were occupied by amino acids.

Table 2. Best fit model found by ModelFinder

Method IQ-TREE model

OMA LG+ F+G4
HaMStR LG+ F+G4
BUSCO LG+ F+G4
OrthoMCL LG+ F+G4
OrthoFinder LG+ F+G4

Table 3. Convergence of the PhyloBayes runs

Method Num Cycles MaxDiff MeanDiff

OMA 7080 0.297691 0.00522266
HaMStR 22,230 1 0.0175439a

BUSCO 47,281 0.0957351 0.00435825
OrthoMCL 1543 0.104071 0.0548237
OrthoFinder 2260 0.117054 0.00368342

In italics: MaxDiff > 0.3, thus not converged.
aUnchanged for at least 15,000 cycles.
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Species trees were constructed using IQ-TREE, with 1000 ul-
trafast bootstrap replicates (Hoang et al. 2018). Model selection
was determinedbyModelFinder, with a gamma rate of heterogene-
ity, which found the best fittingmodel for each supermatrix (Table
2). We also computed IQ-TREE trees using the C20 mixture model
(site-specific frequencymodel) (Wang et al. 2018), but the support
values were low across all methods (Supplemental Fig. S3), and
thus we decided against using them further in our analyses. In ad-
dition to the maximum likelihood trees, we constructed Bayesian
trees using PhyloBayes MPI v1.5a, using the CAT+GTR+G4mod-
el. Convergence information is provided in Table 3.

Group subsampling analyses

As the number of orthologous groups can depend on the parame-
ters for each of the inference methods, we subsampled the data so
that the supermatrices were of equivalent size. This allows us to as-
sess the quality of each of the groups. For each orthology method,
from the set of predicted orthologous groups with at least 50% of
the species, a number of groups were selected at random, without
repeats, but ensuring that every species was represented in at least
one group. The groups were concatenated in order to construct
supermatrices using the same process mentioned previously,
when constructing full species trees. Species trees were then con-
structed using IQ-TREE, with a WAG+ I model of evolution.
WAG+ I was chosen because, after preliminary tests on a selection
of trees, it was found to give good trees in a relatively short amount
of time. This process was repeated 50 times for each orthology in-
ference method. The number of orthologous groups were 50, 100,
200, and every further 200 up to 2000. When the number of
orthologous groups to select exceeded the total number of orthol-
ogous groups a method inferred (i.e., over 400 groups for BUSCO
and over 600 groups forOrthoMCL, etc.), no further supermatrices
could be constructed.

The Robinson-Foulds distances between the model tree (Fig.
6) and each of the species trees were computed. In order to account
for polytomies, the upper bound for the Robinson-Foulds distance
was calculated. This is achieved by counting eachmissing split as a
contribution to the Robinson-Foulds score, assuming that each
missing split resulted in a conflicting topology. The distance was
normalized by dividing by the maximum possible Robinson-
Foulds score (2·(n–3), where n is the number of taxa).

Software availability

To facilitate reproducibility, we are providing custom Python
script as Supplemental Code. Intermediate and output data of
the Lophotrochozoan phylogenomic analysis are provided as
Supplemental Data.
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