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Abstract A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome
problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and
institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF)
to address these needs. This paper brings together a wide range of those community members to describe the format
itself – OME-Zarr – along with tools and data resources available today to increase FAIR access and remove barriers
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in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging
domain — the file format that underlies so many personal, institutional, and global data management and analysis
tasks.
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Introduction
Open sharing and availability of scientific data is one of the key hallmarks of scientific practice in the 21st century. In
2016 Wilkinson and colleagues provided guidelines for making scientific data findable, accessible, interoperable, and
reusable (FAIR) that provide a foundation for future scientific discoveries through data integration, reanalysis and the
development of new analytic tools (Wilkinson et al. 2016). In the case of biological and biomedical imaging
(collectively, “bioimaging”), making data “FAIR” means that quite large and heterogeneous datasets are fully available
for routine data integration and re-use by the global scientific community. The size, complexity and heterogeneity of
bioimaging data present several impediments towards that goal, the most immediate of which are the specification
and construction of data formats that can meet the requirements of FAIR data (Könnecke et al. 2015).

Any format must support both the pixel measurements that are the core of bioimaging data as well as relevant imaging
metadata. Specifications that enable storage of experimental, acquisition, and analytic metadata are necessary. The
implementation of metadata specifications must be both flexible and scalable to handle the large and heterogeneous
volumes of analytic metadata generated, for example the definition of the segmentations and annotations on individual
cells and tissues that are quite common in biological imaging workflows. Critically, the set of formats available to end
users must support local data storage (laptops, desktop computers, etc.) as well as cloud-based storage that is
becoming more heavily used as dataset volumes grow.

Previously, the Open Microscopy Environment (OME) developed OME-TIFF as an open source file format in
bioimaging. Accompanied by reference software implementations, OME-TIFF is primarily for use in fluorescence
imaging workflows and has recently been updated to enable whole slide imaging technologies (Besson et al. 2019).
This format combines the fundamentally 2D TIFF format with metadata cast in XML in the TIFF header. Its structure
makes it appropriate for many applications, where the plane-based access pattern is appropriate.

For bioimaging applications that require large non-planar access to volume data, e.g., arbitrary slicing from
user-defined angles, a more sophisticated “chunking” of the data is required that defines how data is stored in
accessible and reasonable subsections. This means that large, multi-Gigabyte up to Petabyte bioimaging datasets are
not accessed all at once but can be accessed in reasonably sized planes or sub-volumes. In the case of TIFF, the
chunk is a tile of the 2D plane allowing data access across time-lapse series or 3D volume. N-dimensional formats like
HDF5 provide much more flexibility and allow chunking across different dimensions chosen by the user. While TIFF
and HDF5 are well established, the chunking strategies depend on fast random access to the entire file that is
common in laptops, desktop machines and large cluster file systems, but is not provided by large scalable
cloud-based object storage.
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Over the last few years, a new data format, Zarr, has been developed for the storage of large N-dimensional typed
arrays in the cloud. The Zarr format is now heavily adopted across many scientific communities from genomics to
astrophysics (Miles et al. 2023). Zarr stores associated metadata in JSON and pixel data in individually referenceable
“chunk”-files, providing a flexible, scalable method for storing multidimensional data. In 2021, OME published the first
specification and example uses of a “next-generation file format” (NGFF) in bioimaging using the Zarr format (Moore
et al. 2021). The first few versions of this format, OME-Zarr, focused on developing functionality that tests and
demonstrates the utility of the format in bioimaging domains that routinely generate large, metadata-rich datasets –
high content screening, digital pathology, electron microscopy, and light sheet imaging.

The discussions necessary to arrive at these specifications have also presented an opportunity to build a coherent
development community under the OME-NGFF umbrella, combining a growing range of use cases and requirements
with an open, transparent, but technically valid development process. The result has been a thriving community based
on open development and open source principles (Rueden et al. 2019). This open, collaborative approach has been
essential to tackle the addition of complex additional metadata to OME-Zarr. This was important as neither TIFF nor
HDF5 has specifications for many of the derived data types that are generated in an analysis workflow, e.g., regions of
interests (ROIs), labels and other derived data which are crucial in modern analysis workflows. In most cases
accessory files are generated to handle these limitations but as data volumes grow, these create additional problems
for management and linkage of data. Using the established development process, this functionality was first formally
adopted into the OME-NGFF specification, then added to the OME-Zarr implementation, but can equally be applied to
other formats like HDF5 (“Hierarchical Data Format”) in the future.

In this paper, we review the current status of the OME-Zarr format and focus on tools that are now available to users
for creating, accessing, and visualizing data stored in OME-Zarr (Fig. 1). This report is timely as we have seen a rapid
expansion in tools that support OME-Zarr since the first publication. We also report on the growth of adoption of
OME-Zarr in public data repositories. This survey by active members of the OME-NGFF community is meant to
provide an update on the status of the ecosystem that has grown around the format and the development community
that is developing and releasing tools that can be used by the broader bioimaging community.

Fig. 1 A common format enables a diverse set of use cases via a consistent API. A wide range of modalities can be
converted into a common representation that can be equally accessed by the tools described below. This format can
be used to download entire datasets for local processing or for streaming to applications for interactive viewing. Data
shown includes (A) idr0076 (Ali et al. 2020), (B) idr0101 (Payne et al. 2021), (C) idr0077 (Valuchova et al. 2020), (D)
S-BIAD548 (Lim et al. 2023), (E) S-BIAD217 (P. de Boer et al. 2020), and (F) S-BIAD501 (Igarashi et al. 2015).
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Growth of a compatible solution
The development of a common format is not a light undertaking. Historical approaches to address challenges of scale
most often offer a problem-specific and highly-optimized solution, and do not generalize to the wider bioimaging
community, reducing interoperability and re-use of datasets and software. Bespoke formats are often incompatible and
require significant time and compute resources spent in data wrangling, and generally reduce the amount of FAIR data
that is available to scientists. Without a formal body to declare such specifications or dedicated funding to produce a
single solution for users, work is left to the community to discuss and implement with the available resources. The
larger the community consensus, the more tools can be adapted with the agreed upon solution. In turn, the lives of the
users in their daily activities become easier. Our work on OME-Zarr to date shows an example of how community
consensus and investment can achieve concrete progress towards FAIR data formats and tools.

The initial work to support OME-Zarr focused on three applications: plugins for napari (napari-ome-zarr) and Fiji
(MoBIE) for desktop visualization and analysis, and a web browser based on the Viv-library (Vizarr). Each new
specification was implemented in these applications in order to prevent bias towards a single platform. This was the
state of the ecosystem for the initial release at the end of 2021: good coverage and the ability to get work done, but
insufficient adoption to consider the format mature.

In the intervening year, the number of released tools that work with OME-Zarr has increased significantly and the
amount of data available is growing similarly. This trend is also visible in domains outside of bioimaging with institutes
like NASA preparing for releases of their data in Zarr-based formats as part of their “Year of Open Science”1 (Durbin,
Quinn, and Shum 2020), (Ramachandran, Bugbee, and Murphy 2021). The NGFF community finds itself in a very
exciting phase. There is now a cloud-optimized, chunked format that functions as a common API for both desktop,
cluster, and web-based tools as well as national and international repositories. Institutes and repositories are working
towards publishing all their data in a common format. For users, this means that many of their most common
scalability issues can be addressed by a solution that currently exists.

At the highest level, an OME-Zarr is a single bioimaging container for multiple image acquisitions as well as derived
data. The versatility of the format stems in part from the underlying data format, Zarr2, and in part from the OME-NGFF
community-defined specifications that are encoded in the metadata of the Zarr format, enabling use-cases across
bioimaging domains. The development of Zarr features and new specifications is accelerating, but already they
provide the features necessary to remove roadblocks to daily work.

“Big Data”
OME-Zarr has been designed for performant reading and writing of large image data. This begins by storing the arrays
of data in individual N-dimensional chunks. Since pixels that are shown together in viewers are stored together, they
can be loaded more quickly. In a lightsheet dataset, for example, a 3-dimension region of 128x128x64 pixels might be
colocated in a single atomic object. The current specification3 supports up to 5 dimensional images (time point,
channel, z, y, x). In the forthcoming 0.5 specification, this constraint will be relaxed to allow N-dimensional arrays.

To reduce file sizes and transfer times, Zarr supports compression of each of the chunks. The compression algorithm
(e.g., GZIP or Blosc (Alted 2010)) and its parameters can be configured transparently at the storage layer. The size of
chunks is configurable allowing users to choose the optimal setting for a given use case to achieve a fine balancing
between file size, number of files, and overall read and write speed for specific access patterns.

To allow smooth Google Maps-style zooming into large images, OME-Zarr supports storage of image chunks at
multiple resolution levels. Viewers can load data at the appropriate resolution level (i.e., level of detail), which enables
efficient access to data even from remote storage. Furthermore, many processing steps can be executed more
efficiently on smaller representations of the data.

3 https://ngff.openmicroscopy.org/0.4
2 https://zarr.dev/
1 https://nasa.github.io/Transform-to-Open-Science/year-of-open-science/
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Transparent organization
Another key characteristic of OME-Zarr is the ability to organize multiple such multi-dimensional pyramids into a
hierarchy and attach metadata at each level of that hierarchy. This is achieved with Zarr “groups” which contain Zarr
arrays and other groups in a hierarchical fashion. Metadata can be attached to each group and array separately in
human-readable JSON files. These features of the Zarr format enable storing related data together, maintaining
provenance information. For example, a raw image, its deconvolution, and even its segmentation can all be grouped
together with the metadata defining a consistent interpretation of the data.

Fig. 2 By making use of an annotated hierarchy of arrays, OME-Zarr can represent complex relationships between
images, capture the multiple resolutions of an image pyramid, and provide tunable chunk size and compression all
within a single abstraction layer that can be saved as a directory of files on disk or shared remotely. (A) Each level of
nested directories provides a different level of abstraction: the top-level directory can represent an entire 1 Terabyte
plate with more than 100,000 pixels in the X and Y dimensions, while the lowest level directory represents individual
chunks of N-dimensional data as small as 1 Megabyte. (B) In the example shown, a concatenation of low-resolution
images produces a 2560 pixels x 1822 pixel representation of the entire plate, followed by similar examples of how
many pixels must be loaded by a client at each zoom level.

Collections of images
With these combined capabilities, complex, data-rich collections can be constructed to support diverse applications.
The high-content screening (HCS) specification, for example (Fig. 2), defines multiple levels of hierarchy for storing a
plate, each of its wells and each of the fields of that well as a separate image pyramid. Similarly, segmentations,
known in other domains as “annotations”, “regions-of-interest” or “segmentation maps”, can be stored as labeled
images beside the raw image that was segmented. Multi-modal datasets that represent multiple acquisitions on the
same sample can be stored along with location information so that the images can be overlaid on one another for
visualization without changing the original underlying data.

Next steps
OME-NGFF specifications are being regularly proposed, discussed, and implemented by the community to more
accurately capture bioimaging data. For example, a specification for tables that annotate label images will be added in
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the upcoming 0.5 version. Based on the heavily-used AnnData table (Virshup et al. 2021), the objective of the label
table specification is to store measurements and annotations on instances in a label image, including numeric values,
categorical values (e.g., strings), sparse arrays (e.g., touch matrices to encode neighborhood relationships), and
dense arrays (e.g., centroid coordinates). An early prototype of this idea from HuBMAP visualizes CODEX imaging
and segmentation data in combination with segmentation centroids and clustering results simultaneously with the
Vitessce framework4 (Keller et al. 2021). Other specifications currently under consideration include more complex
transformations to support correlative microscopy, efficient point cloud storage, and the versioning of data and
metadata changes.

Another key next step will be how to support the NGFF model in other storage scenarios. A complementary approach
is to implement the NGFF model in HDF5. Based originally on HDF5, Zarr’s compatible feature set makes the model
transferable, providing users an additional storage option. On the one hand, while the internal structure of monolithic
files like HDF5 are often described by complex binary data structures accessible via libraries, each Zarr chunk can be
referenced via predefined, externally stable paths which provide direct access of all chunk data and metadata at each
hierarchy level and can be listed by standard file browsers. With many storage backends, this strategy enables the
parallel writing of large image datasets, essential for cluster and cloud-based processing. On the other hand, the
potentially large number of files produced by Zarr can create problems on some file systems, generally increasing the
time to list, copy, and delete data.

An upcoming version of Zarr, v3, will support a sharded layout which places a configurable number of chunks into a
single shard file. This reduces the total number of files at the cost of some writing parallelism. A similar feature is
available in HDF5 using “external” files and “virtual datasets” to group many separate files together. Users looking for
the most scalable solution will need to carefully consider the trade-offs, but the use of a common model in both
formats would increase long-term interoperability.

Selection of OME-Zarr Tools
  Many common difficulties in image handling and analysis stem from both a lack of consistency and compatibility
between data inputs and outputs and the resulting siloization of available tools. Without assistance, software
packages are often only able to ensure compatibility with a small portion of formats. A common strategy to deal with
the proliferation of file formats is to translate from one of the many current file formats on the fly. This is how
open-source libraries like Bio-Formats (Linkert et al. 2010) provide access to applications as diverse as Fiji and
OMERO. Translation can contribute significantly to the scalability challenge. Additionally, metadata can get lost during
image translation due to opaque file structures, leaving users to provide most metadata when sharing or submitting to
public resources. Sharing and re-use is complicated by disconnected images. Minimizing the number of file formats
and standardizing the included metadata, in turn, fosters collaboration and stability.

The original release and publication of the OME-Zarr format was accompanied by three tools – one in Java, one in
Python, and one in the web browser – that could be used to visualize and work with OME-Zarr data (Fig. 3). Over the
course of the subsequent year, the number of tools has grown significantly covering additional use cases. Several of
these applications originally developed their own custom format internally in order to achieve the performance they
needed but have now added support for OME-Zarr allowing them to interoperate with one another.

Below we provide an updated list of tools that were known to handle OME-Zarr at the time of writing. This list,
however, will quickly age post-publication. In order to keep track of the software packages which have added support
for OME-Zarr, a registry has been created at https://ngff.openmicroscopy.org/tools. Our list is categorized into three
large, though at times overlapping, categories. We start with the visualization tools that are broadly useful for
interactively working with data. They provide an overview of what is possible with OME-Zarr. Where possible links to
example data have been provided. A list of libraries follows that can be used to automate operations on OME-Zarr.
These are useful especially when building pipelines or automating a workflow. Finally, converters are used to take data
either from other tools or from the original acquisition system and convert it into OME-Zarr, a critical step in adoption if

4 https://vitessce.io
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one does not yet have OME-Zarr data

Fig. 3 The original viewers of OME-Zarr published in Moore et al. 2021, here seen loading a view of the same EM volume of a 6
day old Platynereis larva from (Vergara et al. 2020) available at https://s3.embl.de/i2k-2020/platy-raw.ome.zarr.These three
applications provided broad coverage over the most common bioimaging platforms like Fiji and napari but critically also a web
viewer that could stream data on the fly.

Visualization

AGAVE

AGAVE5 (Fig. 4) is an open source native application for doing high quality GPU rendering of multichannel volume
data. It uses a photorealistic path tracing algorithm to produce images with lighting and shadows, allowing greater
detail and higher interpretability of spatial relationships within the data. AGAVE is implemented in C++ with OpenGL
and runs on Windows, MacOS and Linux. OME-Zarr support is implemented through the tensorstore library, described
below. AGAVE provides a memory estimate and allows selection of the multiresolution level and slice ranges in the
XYZ dimensions. Future work in AGAVE will include the ability to combine OME-Zarr data from multiple data sources
and improvements for more quantitative viewing such as display of physical units, voxel intensities, and a 2D slice
display mode.

5 https://www.allencell.org/pathtrace-rendering.html
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Fig. 4 Advanced GPU Accelerated Volume Explorer (AGAVE) displaying a downsampled level from a multi-terabyte mouse brain
OME-Zarr data set. The number of pixels actually loaded is displayed at lower right.  The full resolution data is 47310 x 20344 x
18471 which consumes about 33TB. The ability to quickly access multiresolution data makes low latency interactive visualization
possible.

ITKWidgets
ITKWidgets (Fig. 5) provides interactive widgets to visualize images, point sets, and 3D geometry on the web (Matt
McCormick et al. 2022). The development of ITKWidgets was motivated by the need for interactive insights into
N-dimensional scientific datasets, such as three-dimensional, multi-channel bioimages. ITKWidgets is a component of
the Insight Toolkit (ITK), an open source, cross-platform suite of libraries and tools for N-dimensional spatial analysis
and visualization (Matthew McCormick et al. 2014).

Designed for web-first visualization and large-scale data, ITKWidgets is built on universally deployable technologies
and the OME-NGFF and ITK data models. ITKWidgets communicates with Google CoLab, Jupyter Notebooks,
JupyterLab, and JupyterLite with ImJoy, a modern remote procedure communication library and plugin interface for
biomedical computing in the deep learning era (Ouyang et al. 2019). ITKWidgets is available as a Python package or
the client-side viewer application can be loaded by visiting its webpage. In Python, NumPy, PyImageJ, PyTorch, the
Visualization Toolkit (VTK), ITK, Xarray, Zarr, and Dask data structures are transformed on-demand to multiscale
OME-Zarr. In the browser, ITKWasm will generate a multiscale OME-Zarr on-demand from common bioimaging file
formats (Matthew McCormick 2022). In Python, a simple view command accepts datasets for interactive exploration.
In the client-side application, a local dataset can be selected or a shareable URL with the dataset and rendering
parameters can be generated.

With a focus on supporting registration (alignment), ITKWidgets is recommended for the comparison of datasets.
Spatial metadata on multi-dimensional raster images along with associated point-based volumetric data, geometries,
and annotations are supported to understand their relationship in space. Additionally, this provides a foundation for the
creation of spatial transformations that define or improve on the alignment of datasets. ITKWidgets is particularly
focused on providing elegant renderings to elucidate insights from volumetric information. Advanced rendering
capabilities, such as light scattering, are supported. Intuitive and efficient interactive widgets are available to select
rendering parameters, such as color maps and opacity transfer functions. The rendering system leverages OME-Zarr
chunked, multiscale architecture to automatically load the optimal amount of data for a selected volumetric region by
accounting for the current system's hardware capabilities.

The user interface is customizable via vanilla HTML/CSS/JavaScript or web frameworks such as React.js or Vue.js,
and the ability to present simplified versions of current interfaces and transparently integrate the viewer into larger
applications is improving. This flexibility enables integrations into custom applications such as TensorBoardPlugin3D,
a plugin for TensorBoard to support the development of deep learning models on 3D images (Major and McCormick
2022). Scalability will be achieved through bolstered OME-Zarr data model support.
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Fig. 5 ITKWidgets rendering an OME-Zarr for IDR 0062A in Jupyter.

MoBIE/BigDataViewer
MoBIE (Fig. 3) is a Fiji plugin (Schindelin et al. 2012) for the exploration of big (possibly remote) image data sets
(Pape et al. 2022). The development of MoBIE was initiated in 2018 at EMBL Heidelberg in order to solve the
challenge of browsing and publicly sharing a large CLEM data set consisting of one high-resolution TB sized 3D
volume EM data set, cell and tissue segmentations of the EM data, tables with segmentation annotations, and around
200 registered lower resolution LM images (Vergara et al. 2020) and is still in daily use across the institute.

The main usage of MoBIE is to continuously browse complex image data sets from the moment they are produced up
until publication. A typical workflow is to use other applications for image and data analysis and add the output of
those applications (segmentations and tables) into the corresponding MoBIE project for visual inspection, exploration
and quality control. An exception is the possibility to perform semi-manual image registration directly within MoBIE by
means of an integration with the BigWarp Fiji plugin (Bogovic et al. 2016).

MoBIE is a desktop application written in Java that heavily relies on BigDataViewer (Pietzsch et al. 2015) for image
rendering and the N5 library6 for (remote) image I/O. It supports viewing local (file-system) and remotely (S3) hosted
OME-Zarr image data as well as HDF5 and the eponymous N5 multi-scale image data format. In addition to simply
viewing OME-Zarr images in Fiji, the main usage and feature of MoBIE is the ability to structure potentially thousands
of images into a “MoBIE project” and define and configure useful views into that dataset. An important application of
those features are “MoBIE views” that can be configured to conveniently browse the raw data associated with figures
in publications.

In the future, MoBIE will support interactive deep-learning based image segmentation by means of an integration with
the BioImage Model Zoo (Ouyang et al. 2022). It will also be shipped as a conda package for opening images,
segmentations and tables from the command line. This will support the visual inspection of the output of image
segmentation and feature extraction algorithms. Another planned feature is the  rendering of the HCS specification of
OME-Zarr as a plate layout.

6 https://github.com/saalfeldlab/n5
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napari
napari (Fig. 3) is a multi-dimensional data viewer written in Python (Sofroniew et al. 2022). Many different types of
data can be viewed and annotated in napari including multi-dimensional images, point clouds, polygons, tracks, and
meshes. napari can be scripted using its Python API, used interactively via interactive environments such as IPython
(Perez and Granger 2007) and Jupyter notebooks (Granger and Pérez 2021), and launched from the command line.
While the core napari package is focused on interactively viewing and annotating data, it can be extended to other use
cases via custom scripts or through the plugin interface.

OME-Zarr data can be viewed in napari via the ome-zarr-py library7 and the napari-ome-zarr plugin8. Users can load
OME-Zarr datasets through the command line interface or via the Python API. Datasets can be loaded from both local
and remote data sources. Local OME-Zarr files can also be loaded via drag & drop. Developers can use the
ome-zarr-py library to load datasets and add them to the viewer via the Python API. The Fractal framework uses Dask
lazy loading with the napari-ome-zarr plugin and the experimental napari asynchronous loading feature (under
development, NAP-49) to interactively view 2D multichannel datasets from 100s of GBs to 1TB in size (see Fractal
section below).

Neuroglancer
Neuroglancer (Fig. 6) is an open source web-based visualization tool for multi-dimensional volumetric data. Originally
designed for visualizing petabyte-scale volume electron microscopy datasets of brain ultrastructure, it is now widely
used to visualize scientific imaging data in many different application areas, including connectomics, lightsheet
functional calcium neuroimaging, fMRI and high-throughput screening. Key functionality includes:

● scalable to petabyte and larger datasets through the use of multi-resolution data streaming for OME-Zarr and
other chunked formats

● cross-section views at arbitrary oblique angles
● rendering of segmentations and meshes
● arbitrarily many datasets may be displayed tiled side-by-side, or overlaid as separate "layers"
● mapping from stored data to displayed RGBA values may be customized through user-defined "shader"

functions that can be edited directly within the tool, and these shaders can make use of user-defined UI
controls such as sliders and checkboxes

● experimental volume rendering support
● supports Zarr data served from arbitrary HTTP servers, as well as Google Cloud Storage (GCS) and Amazon

S3

Neuroglancer is built using WebGL and relies on advanced GPU rendering and compression techniques to achieve
high performance despite the limitations of the web platform. As a web-based tool, Neuroglancer is particularly
convenient for collaborating on datasets; users can share particular views of a dataset simply by sharing a URL. As a
purely client-side web application, Neuroglancer can be used directly from the official hosted instance, or it can be
deployed to any static file web server. There is also a Python package (`neuroglancer` on PyPI) that allows for full
interaction with the viewer state from Python, defining of custom key and mouse bindings that invoke Python
callbacks, and also allows Neuroglancer to display in-memory NumPy arrays, as well as arrays from other packages
such as tensorstore, zarr-python, Dask and h5py that provide a similar NumPy-like interface. The Python package can
be used both in standalone Python programs and shells and also from Jupyter notebooks, and provides a convenient
way to quickly build ad-hoc data analysis and proofreading tools.

9 https://napari.org/stable/naps/4-async-slicing.html
8 https://github.com/ome/napari-ome-zarr
7 https://github.com/ome/ome-zarr-py
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Fig. 6 Neuroglancer rendering the same OME-Zarr from IDR 0062A as Fig. 5

Validator
The ome-ngff-validator (Fig. 7) is a web-based tool for validating and inspecting OME-Zarr data. It uses schema files
(in the JSON schema format) for validating the JSON data of OME-Zarr, and uses zarr.js for loading image data
chunks. Providing the community with an easy way to validate their data is an important part of promoting the adoption
of OME-Zarr. When newly developed tools are exchanging data in this format, it is essential to know whether the data
complies with the Zarr specification. It is also useful to be able to browse and inspect the data in order to troubleshoot
any issues with creation or reading of the format.

A web-based tool is convenient for users as they do not need to install any software, and it also means that they can
share a URL that shows their data in the ome-ngff-validator10. This improves the ability of the community to discuss
and work with public OME-Zarr files.

10 e.g.
https://ome.github.io/ome-ngff-validator/?source=https://uk1s3.embassy.ebi.ac.uk/idr/zarr/v0.4/idr0062A/6001240.zarr
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Fig. 7 OME-NGFF Validator validating the same image from IDR 0062A on the left, and on the right providing a summary of the
size of the data as well as providing a quick visualization of a single plane.

Viv
Viv is an open-source library for WebGL-based 2D multiscale, multi-channel, image rendering with the ability to handle
3D fixed-resolution volumes as well. Separation of rendering and data-loading implementations in Viv allows the
library to provide functionality for fetching data directly from multiple open-standard data formats. OME-TIFF and
OME-Zarr images can be loaded using Viv and directly rendered on the GPU. Viv is built using deck.gl, a high-level
API for WebGL that simplifies building interactive spatial (i.e., Cartesian coordinate-based) and geospatial data
visualizations. In deck.gl parlance, Viv simply provides “layers” that can be composed with other layers or operations
to create complex visualizations. As a result, developers using Viv can take advantage of the wider ecosystem around
deck.gl that includes custom layers, modes of interactivity, mathematical operations, and shaders. This flexibility was
core to the design of the Viv API, as end-users can extend the provided layers or define custom data loaders

Viv was initially motivated by the need of members of the HuBMAP consortium to display high resolution, multi-modal
(i.e., overlaid) images within the HuBMAP data portal (e.g., http://vitessce.io/#?dataset=neumann-2020). Working
within the constraints of limited engineering resources, the data portal development team aimed to avoid running and
maintaining server-side pre-rendering infrastructure. Further, FAIR data access principles were paramount to the
creation of the data portal. The development of Viv enabled rendering images within a web page, thereby enabling the
data portal server-side infrastructure to be as simple as a static file server or a cloud object storage system. Adoption
of FAIR data access principles in the consortium motivated the implementation of data loaders for open-standard
formats. Viv was recently featured in Nature Methods (Manz et al. 2022) and has since been adopted by other
consortia including the Kidney Precision Medicine Project (KPMP) (I. H. de Boer et al. 2021) as well as the Galaxy
Project (Galaxy Community 2022) to address data sharing and visualization challenges. Wellcome Sanger Institute in
collaboration with Newcastle University is working on a human whole embryo project that leverages different spatial
technologies to create a holistic view of human embryo at the single cell level. Vitessce, which is built on top of Viv, is
used for visualizing both the single cell sequencing and imaging data simultaneously that are saved as OME-Zarr.

In addition to the bioimaging rendering challenges that Viv addresses in production, it has also served as a testbed
and mechanism to prototype new data standards. Vizarr11 (Fig. 3) is a bioimaging visualization tool built using Viv that
served as one of the first implementations of a reader and renderer for the HCS metadata standard in OME-Zarr12.

12 https://www.openmicroscopy.org/2020/12/01/zarr-hcs.html
11 https://github.com/hms-dbmi/vizarr
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Using Viv as the core rendering library, Vizarr is able to simultaneously render hundreds of images from an HCS
dataset. The design of Viv as a UI-agnostic library that separates rendering from data loading means that it will remain
possible to quickly develop or adapt existing applications to the evolving and increasingly flexible OME-NGFF
specification.

webKnossos
webKnossos is an open source platform to visualize, share and annotate very large image datasets collaboratively
(Boergens et al. 2017). webKnossos was originally developed to distribute 3D image datasets of a few hundred
gigabytes to students for annotation. It features segmentation tools to generate label masks for manual analysis or as
training data for deep learning-based analysis. Combined with mesh rendering features, webKnossos can visualize
large-scale segmentations. Additionally, webKnossos features efficient skeleton annotation tools for creating neuron
traces. In many labs, webKnossos has become the primary hub to store all image datasets in a common place for lab
members and external collaborators to access.

webKnossos works best for very large 3-dimensional image data, such as EM, MicroCT and fluorescence. It facilitates
collaboratively annotating and visualizing data. Users can:

● visualize very large 3D datasets,
● manually segment or skeleton data efficiently,
● proof-read automatic segmentation,
● share data with collaborators,
● manage data in one place with access restrictions, and
● stream data through an OME-Zarr-based API or use a Python library to enable interoperation with other tools.

webKnossos (Fig. 8) is a web-based application, allowing users to store all data in one place and access it from
wherever you are, no matter the size of the data, like a Google Drive for large microscopy images. The server
component stores all the image and annotation data as well as user settings. In addition to server-stored image data,
remote datasets stored in OME-Zarr can also be accessed from HTTP, S3 and GCS sources. webKnossos uses GPU
rendering for high-performance visualization of the data. Users can access webKnossos through a browser without
the need for additional installations. The easiest way to use webKnossos is to open an account on webknossos.org. It
is free for limited storage. Alternatively, there are a Docker-based setup and commercial private hosting services
available.

webKnossos is a mature software and in routine use for more than 10 years. It gained support for OME-Zarr in 2022
and implements many features of the format. OME-Zarr datasets can be imported via URL and (optional) credentials.
OME-Zarr data is read on the backend with on-the-fly re-chunking and additional webKnossos-managed access
controls. Additionally, all data in webKnossos is accessible as OME-Zarr data to be used in other tools via
token-protected dynamic URLs. Therefore, the software can be used as a central hub for teams to manage OME-Zarr
datasets. webKnossos is actively developed by a dedicated development team with monthly releases. Today, most
users are from the Volume EM community, especially EM connectomics and cell biology. However, light microscopy
users are also well-represented. In upcoming versions, webKnossos will add support for image transformations,
multi-modal datasets, and time-series data as well as the ability to run AI-based segmentations and to show segment
statistics for quantitative analysis. Updated roadmap information is available under https://webknossos.org/roadmap.
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Fig. 8 webKnossos loading an EM volume of a 6 day old Platynereis larva from (Vergara et al. 2020) with a manually added
segmentation. The web accessible version is accessible at https://wklink.org/6422.

website-3d-cell-viewer (and volume-viewer) from AICS
The Allen Institute for Cell Science is an open science organization, interested in producing results, data, and code
that can be shared with the world. Volumetric microscopy data sets are presented for interactive exploration through
the Cell Feature Explorer13, a web-based application. As with so many microscopy efforts, ever larger and larger data
sets are the norm. As an early part of transitioning storage and processing to the cloud, the interactive 3D viewer
component of Cell Feature Explorer has been extended to read OME-Zarr data.

The core of the viewer component is called volume-viewer which implements all of the data loading and 3D rendering,
using WebGL and Typescript. The front end, called website-3d-cell-viewer, is a reusable React component that has
also been published as a standalone viewer14 and embedded in a Jupyter notebook plugin15.

This viewer is optimized for multichannel data and works well with volumetric data where the xy resolution is higher
than z. The standalone version of the viewer supports OME-Zarr through a url query parameter. The OME-Zarr
support uses Zarr.js16. In its first implementation, only TCZYX data is supported, only from publicly accessible http(s)
urls, and as of this writing only loads the lowest multiresolution level for memory constraints.

16 https://github.com/gzuidhof/zarr.js/
15 https://pypi.org/project/nbvv/
14 https://allen-cell-animated.github.io/website-3d-cell-viewer/
13 https://cfe.allencell.org
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Coming enhancements include more general data loading as well as user interface for selection of multiresolution
level and time. There is also work being done to be able to produce shareable urls that capture all viewer settings.

Fig. 9 Allen Cell Volume Viewer displaying a multichannel fluorescence image of gene edited hiPSC cells via a downsampled level
of an OME-Zarr converted from the dataset found at https://cfe.allencell.org/?dataset=variance_v1

Beyond
More analysis tools leveraging the libraries to create derived datasets and produce quantitative insights into OME-Zarr
data are already planned. For example, the BigStitcher (Hörl et al. 2019) toolchain which currently relies on a custom
XML/HDF5 format will gain support for OME-Zarr, making it easier to parallelize distributed access for HPC and avoid
additional file conversion. This is particularly important for very large datasets and means that NGFF will be natively
exported by BDV in Fiji. Work on this is underway in the bigdataviewer-n517 and bigstitcher-spark18 repositories. At the
time of writing, BigStitcher has support for large file export and limited direct support of OME-Zarr datasets via the
bigdataviewer-omezarr module19. This module provides a transient bridge between the current XML-based dataset
definition and OME-Zarr images until native support is implemented. It allows multiple images stored in one NGFF
dataset to be defined as separate view setups in BDV/BigStitcher (Fig. 10). Other tools such as RS-FISH (Bahry et al.
2022) for spot detection and STIM for visualizing and reconstruction of spatial transcriptomics datasets (Preibisch,
Karaiskos, and Rajewsky 2022) are currently being extended to support OME-Zarr and other formats. Additionally,
registration tools that generate the developing spatial transformation specification are planned to enable quantitative
comparison of compatible datasets.

To track these developments, the community will maintain https://ngff.openmicroscopy.org/tools for finding the status
of other new and exciting developments.

19 https://github.com/bigdataviewer/bigdataviewer-omezarr
18 https://github.com/PreibischLab/BigStitcher-Spark
17 https://github.com/mobie/bigdataviewer-n5
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Fig. 10 Example application of BigStitcher’s interest point based registration on one of the first “exaSPIM” light-sheet
microscope datasets acquired at the Allen Institute for Neural Dynamics (sample 609281, available at the link in Table
2). The overlapping regions of two tiles are shown in BDV at their nominal (left) and aligned (right) locations. This
large scale NGFF dataset consists of 54 tiles with dimensions of 24576 x 10656 x 2048 voxels (about 1 TB raw size)
each.

Libraries
Behind most of the visualization tools above and many other applications are various OME-Zarr capable libraries that
can be used in a wide variety of situations. Workflow systems like Nextflow or Snakemake can use them to read or
write OME-Zarr data, and the same is true of machine learning pipelines like Tensorflow and PyTorch. Where
dedicated widgets like ITKWidgets are not available, these libraries can make use of existing software stacks like
Dask and NumPy to visualize the data in Jupyter Notebooks or to perform parallel analysis.

Python
ome-zarr-py, available on PyPI, was the first implementation of OME-Zarr and is at the time of writing considered the
reference implementation of the OME-NGFF data model. All changes to the specification are implemented in the
library, though it does not provide significant high-level functions. Instead, several libraries have been built on top.
aicsimageio is a popular Python library for general 5D bio data loading. In addition to loading OME-Zarr data,
aicsimageio provides the OmeZarrWriter using ome-zarr-py under the hood. In this way, format conversion is possible
by loading data with aicsimageio and immediately passing the Dask array to OmeZarrWriter, though improvements in
the metadata support are needed.

Fractal20 is a framework to process high-content imaging data at scale and prepare it for interactive visualization.
Fractal is focused on processing images in the OME-Zarr format and saving results in forms of images, label images
and feature tables back into OME-Zarr, while keeping orchestration of these processing steps cluster friendly via
slurm21. It allows users to build workflows to process images in OME-Zarr files at the TB scale to segment images and
make measurements. As a result, large-scale OME-Zarr image datasets can be processed by Fractal and then
browsed interactively across pyramid levels in viewers like napari22 (Fig. 2). Fractal is in its early stages and currently
contains workflows to be controlled from the command line interface. A web client to build workflows and manage the
processing is currently being built.

22 https://www.youtube.com/watch?v=DfhRF1OW5CE
21 https://slurm.schedmd.com/documentation.html
20 https://fractal-analytics-platform.github.io
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C++
TensorStore is an open source C++ and Python library that provides a unified, high-performance interface for
accessing a variety of array formats, including Zarr. In addition to use with scientific imaging data, it is also used to
store and load checkpoints of massive machine learning models with hundreds of billions of parameters. Supported
underlying storage mechanisms include: arbitrary HTTP servers (read-only); local and network filesystems; and
Google Cloud Storage. It supports safe, concurrent write access from multiple machines, without the need for a
separate lock server, through the use of optimistic concurrency. While it does not yet specifically support OME-Zarr
multiscale metadata, it can be used to read and write individual scale levels as Zarr arrays. Specific abstractions for
multi-resolution data, along with support for OME-Zarr multiscale metadata, is planned.

Java
For supporting reading OME-Zarr data with Bio-Formats in Java, the OMEZarrReader has been developed. Once
installed, this plugin allows opening OME-Zarr images from any application that currently makes use of Bio-Formats
plane-based API. This includes ImageJ or RBioFormats for accessing OME-Zarr data in R.

The N-dimensional N5 API supports reading array data and arbitrary metadata using Zarr, HDF5 and the N5 format.
Its associated Fiji plugins23,24 can therefore read pixel / voxel data from OME-Zarr containers, but not its metadata
specification at the time of this writing. The developers have committed to adding OME-Zarr support in the future by
developing a shared implementation with MoBIE. Support for multiple backends makes the N5 API an appealing
choice for extending NGFF support to other, write-optimized storage formats.

Example
An example analysis of a dataset from the Image Data Resource (IDR) (Williams et al. 2017) helps to illustrate the
possibilities available to the end-user from an analysis perspective. A light sheet fluorescence microscopy image
published by McDole et al (idr0044)25 is composed of 2 channels, approximately 1000 z-sections and 500 timepoints.
Each 2D-plane is of dimension 2k x 2k. Numerous z-sections were acquired but the relevant planes are the middle
z-sections. Such data is particularly useful for teaching and training purposes, so it is usually only necessary to access
a limited subset of an image.

In addition to a streamable format like OME-Zarr, two other options are available in order to analyze an image (See
Table 1). One can download the full image. This approach is far from ideal since only a portion of the data is required
for analysis. Additionally, a specific image reader is needed to interpret the data, potentially limiting which analysis
language/framework could be used to perform the analysis. Alternatively, the relevant planes could be retrieved using
the IDR Application Programming Interface (API). The IDR API is very versatile but it complicates the parallelisation of
tasks for users.

To enable OME-Zarr access by all of the tools and libraries outlined above, the images of the study were converted
using bioformats2raw (see converters section) and made available on object storage at EBI. The data was then
analyzed using Dask26, a free and open-source parallel computing library that scales the existing Python
ecosystem.

The nature of OME-Zarr allows the end-user to take full advantage of the Dask library. An analysis task like
segmentation is broken into many individual steps that are run independently. Each step lazily loads the chunk of
the image that it is to work on, and then the result is aggregated.This makes it much more straightforward to
train the next generation of scientists on how to use cloud-computing resources.  Available public resources like

26 https://www.dask.org/
25 https://idr.openmicroscopy.org/webclient/?show=project-502
24 https://github.com/saalfeldlab/n5-viewer
23 https://github.com/saalfeldlab/n5-ij
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Google Colab27 or mybinder28 and publicly accessible data were sufficient for training purposes but the approach
could easily be extended for larger scale analysis.

Download
(via Aspera)

IDR API Access
(via Ice)

OME-Zarr Access
(via S3)

Load subset of image,
e.g., one plane

No, only per file (3s) Yes (7s) Yes (1.5s)

Lazy Loading No No Yes. Use Dask collections:

da.from_zarr(endpoint_url)

Analyzing in parallel No. When downloaded,
each file will need to be
dispatched to each node
and a specific reader for
that format available on
each node (.klb)

Extremely hard due
to the transfer
protocol used
(zeroc-ice)

Yes. Use Dask schedulers:

dask.delayed(analyze)(t, c, z)

Table 1. Comparison of access methods to data stored in the IDR. OME-Zarr provides the fastest and most flexible
access when accessing less than an entire dataset.  A notebook documenting the OME-Zarr access is available at
https://github.com/ome/omero-guide-python/blob/master/notebooks/idr0044_zarr_segmentation_parallel.ipynb.

Converters
For the foreseeable future, datasets will exist in one of the many forms they exist in today. As outlined in (Moore et al.
2021), translating those on the fly brings delays in visualization and analysis that can be solved by performing a single
conversion to OME-Zarr. This process captures all metadata that Bio-Formats is aware of in an open format, and
decouples the user from the version of the vendor software used to capture the data. Several converter tools are
available based on the particular environment you are working in.

Bioformats2raw
Bioformats2raw29 is the original command-line utility to convert various image file formats into OME-Zarr format.
Bioformats2raw offers rich and flexible parameter options, giving the user extensive control over the conversion
process as well as freedom to specify various features of the output Zarr datasets. A few of the interesting input
parameters are the chunk dimensions, the number of resolution levels, the compression algorithm and the number of
workers. Bioformats2raw is capable of reading all proprietary file formats supported by Bio-Formats as well as a select
few file format readers supported only in bioformats2raw, including the 3D-Histech .mrxs format. The input, therefore,
can be single or multiple series as well as high-content screening (HCS) data. The conversion will be performed
according to the respective OME-NGFF specification. Multiscaling is achieved either by creating sub-resolutions
during the conversion process, or by using the existing ones from the input format.

Bioformats2raw is optimal for remote / headless operation and can be conveniently built into pipelines, e.g., by using
workflow management systems, such as Galaxy, Nextflow, Snakemake, etc. that would also facilitate parallel
conversion of batches of image data into OME-Zarr, potentially on HPC clusters. Bioformats2raw can automatically
write an OME-XML metadata to a specific directory in the output Zarr hierarchy. This metadata can then be used by a
complementary package, namely raw2ometiff, to convert the output from bioformats2raw into OME-TIFF.

29 https://github.com/glencoesoftware/bioformats2raw
28 https://mybinder.org/
27 https://colab.research.google.com/
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NGFF-Converter
Glencoe Software’s NGFF-Converter30 (Fig. 11) is an easy-to-use and intuitive graphical user interface (GUI)
application supporting conversion of any of the 160 plus formats readable by Bio-Formats, as well as the additional
readers built into bioformats2raw. By packaging the command line utilities bioformats2raw and raw2ometiff,
NGFF-Converter can convert numerous file formats to both OME-TIFF and OME-Zarr based on the user selection.
NGFF-Converter is approachable for users less familiar with command line utilities while maintaining the flexibility of
tunable parameters as described in the previous section. In addition, NGFF-Converter was developed with batch
processing in mind, supporting the scheduling of multiple conversions with clear visuals of conversion job status.
NGFF-Converter is available for both Windows and MacOS.

Fig. 11 NGFF-Converter GUI showing a sample of input formats being converted to OME-Zarr

Other ways to create OME-Zarr
In addition to using dedicated conversion tools mentioned above, there are other ways to create OME-Zarr. Within the
Fiji ecosystem the MoBIE plugin provides a GUI for creating OME-Zarr. Among its other functionalities, MoBIE can
convert images imported by Fiji into OME-Zarr. The input is imported via Fiji readers, which include Bio-Formats, and
enables immediate visualization and exploration options of the OME-Zarr data. All uploads to webKnossos from all
supported formats are also automatically converted into OME-Zarr, which can be streamed or downloaded for use with
other tools.

Libraries like ome-zarr-py can write numpy and Dask arrays to OME-Zarr according to the OME-NGFF specification.
Where users are already manually handling the reading of the input data and the parsing of the metadata in Python
code, this may be the easiest path to generating OME-Zarr data. Within the Python ecosystem, it is also possible to
“simulate” an OME-Zarr dataset with kerchunk31. This library pre-processes existing data formats like TIFF and HDF5
to generate a JSON file containing all metadata and chunk locations. Support for other file formats can be added if
each chunk can be represented by a combination of path to a file, location in that file, and length of the chunk. Using
this mechanism, it is possible to leave data in a monolithic format but still achieve some of the benefits of OME-Zarr.

Examples of Shared OME-Zarr Data
Not just individual users or research projects are faced with the issues of format compatibility. Large-scale bioimaging
resources are moving to OME-Zarr to overcome similar challenges. A key benefit of having bioimaging data converted

31 https://github.com/fsspec/kerchunk
30 https://www.glencoesoftware.com/products/ngff-converter/
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into OME-Zarr is the ease of sharing access, which holds across a range of storage options. Several publicly funded
institutions dedicate themselves to providing large-scale infrastructure for sharing biological data and this is often
achieved by providing “S3-like” storage. Another strategy that is emerging is the use of “Public Data” programs
provided by large, commercial vendors like Amazon, Google, and Microsoft to share community-critical datasets. Even
beyond conventional object storage, OME-Zarr provides a mechanism for consistently sharing bioimaging data. This
can be as simple as putting the files on an existing web server or dedicated servers can be installed locally. Below we
discuss several of the ways in which these and other institutions are sharing their data with the OME-Zarr format as
examples of what is possible as well as where you might find existing data today, all summarized in Table 2.

BIA and IDR
An example of an institute providing a large-scale cloud repository is the European Bioinformatics Institute (EBI) who
has done so by investing in object, or “cloud”, storage. The Image Data Resource (IDR) (Williams et al. 2017) and the
BioImage Archive (BIA) (Hartley et al. 2021) are free public digital repositories for biological images hosted at EBI that
are associated with peer-reviewed publications or are of value beyond a single experiment. The BIA strives to provide
hosting for all such publications while the IDR focuses on a selection of reference datasets which are further curated.
They accept submissions of many different image formats to enable easy and fast sharing. However, most of these
formats have issues relating to metadata and to online visualization as discussed above.

The IDR’s need to store data on object storage led OME to begin discussions around a potential NGFF. As early
adopters and implementers, the IDR found that such a file format alleviated many bioimaging bottlenecks at scale.
Multi-terabyte 3D volumes (McDole et al. 2018) and 100 terabyte high-content cell painting screens (Bray et al. 2016),
common to the IDR, can be more reasonably processed and accessed if converted in the repository to OME-Zarr.
Additionally, use of OME-Zarr as a submission format reduced the burden on the curation team to deal with
compatibility of custom formats.

In the BIA, OME-Zarr is chosen as its chunked architecture and available libraries and visualization tools enable
on-the-fly visualization of the data, including 3D images, time series data and images with multiple channels.
Moreover, it can accommodate extensive image level metadata, and has substantial community support.

To enable easier sharing and investigation of long-term solutions, images are converted from selected datasets,
including most machine learning datasets, into OME-Zarr format. The converted representation is stored transiently on
fast, S3 compatible storage. This enables serving the images for on-the-fly visualization in embedded viewers,
visualization by desktop clients that can access OME-Zarr remotely such as napari or MoBIE, and provides fast
access for on-the-fly analysis via Jupyter notebooks. The converted image representations are transient due to the
need to balance resources between cheaper scalable storage for long term archival and fast storage for access to
in-demand datasets. The OME-Zarr converted image representations are currently presented on separate websites,
with plans to integrate these within the primary dataset pages. Images can be displayed using Vizarr, and an option to
view them with the ITK viewer is also provided. As with all submissions, each image representation has a unique URI
therefore the users can access and view them with their favorite online viewers, without the need to download.
Already it is possible to submit datasets that have been converted into OME-Zarr and as this solution matures,
submitters will be encouraged to pre-convert complicated datasets in order to lower the overhead on the curation
teams.

Brain Image Library
Institutes with large scale parallel (HPC) file systems like the Pittsburgh Supercomputing Center, home to the Brain
Image Library32 (BIL), are building tools to share OME-Zarr formatted data without object storage and without
modifying the existing data repository33. Still in early development, these services will make 1000s of whole brain
microscopy datasets, including murine, NHP and human, some expected to be over a petabyte in size, from the BICCN
(BRAIN Initiative Cell Census Network) (BICCN Data Ecosystem Collaboration et al. 2022) and BICAN (BRAIN Initiative
Cell Atlas Network) available in OME-Zarr where appropriate starting this year. To achieve this, microservices will

33 https://github.com/CBI-PITT/BrAinPI
32 https://www.brainimagelibrary.org/
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automatically provide an OME-Zarr representation of the day on the fly to prevent data duplication. These
microservices will enable all of the visualization software described above (Fig. 12) to make use of the data while
permitting the high-performance computing facilities to optimize for their storage requirements. Similar APIs will be
employed locally at BIL to allow HPC computational tools to interface with the data in a standard way, and with
community derived tools developed around OME-Zarr.

Fig. 12 Multiscale OME-Zarr representation of a whole brain dataset34 (~6TB compressed) archived at BIL and visualized over the
internet in napari via the napari-ome-zarr plugin. Data is stored at BIL in an alternative format and is dynamically converted to
OME-Zarr chunk-by-chunk and delivered to clients upon request.

DANDI
DANDI, “Distributed Archives for Neurophysiology Data Integration” is supported by the US BRAIN Initiative as an
open-access data repository for publishing and sharing neurophysiology data including electrophysiology,
optophysiology, and behavioral time-series, as well as images from immunostaining experiments. As datasets get
larger, downloading whole datasets for analysis or visualization becomes increasingly impractical. Thus, DANDI allows
data to be operated on in the cloud using standardized methods and computational servers near the data. It enforces
the organized structure of the Brain Imaging Data Structure (BIDS) and its microscopy extensions (Bourget et al.
2022), with the latest specification35 allowing such data to be stored in the OME-Zarr format. DANDI uses
standardized metadata (JSON, JSON-LD), data organization (BIDS, or BIDS-like subset), and data storage formats
(e.g., OME-Zarr) that allow the metadata to be queried before data access, and data to be accessed partially and at
different resolutions. The archive stores open and embargoed data on Amazon S3 in the US and is supported by the
Amazon Open Data program.  The DANDI API has full programmatic support for uploading and accessing Zarr
objects, and researchers can use the DANDI command line interface tool to upload BIDS organized Zarr data to
DANDI. All datasets are also available as DataLad (Halchenko et al. 2021) datasets from GitHub36 with individual Zarr
objects provided as separate repositories37 and linked to original datasets as git submodules. Since data itself resides

37 https://github.com/dandizarrs
36 https://github.com/dandisets
35 https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/10-microscopy.html#file-formats
34 https://download.brainimagelibrary.org/2b/da/2bdaf9e66a246844/mouseID_405429-182725/
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on the versioned S3 bucket, such DataLad datasets provide access to TBs of OME-Zarr data with unambiguous
versioning.

Fig. 13 An OME-Zarr dataset on DANDI (ID: DANDI:000108). allows multiscale 5D datasets (time, channel, z, y, x), with metadata,
scale, and transformations. A) DANDI:000108 includes multi-slab, multi-stain (NeuropeptideY-NPY, Calretinin-CR, YOYO1) data
that are aligned and the coordinate transforms are stored in the Zarr files, allowing B) on-the-fly visualization and stitching of the
slabs at multiple scales (two shown) using Neuroglancer. C) An html dashboard allows data submitter and any user on the Web to
see the live status: samples+stains uploaded, their quality issues, and multiscale viewing of this 300+ TB dataset.

DANDI allows any researcher to view or compute the data. Lightly pre-processed data and metadata are being made
available via DANDI for the BRAIN Initiative and other projects. Two such datasets were produced by the BRAIN
Initiative Cell Census Network (biccn.org) comprising 370 TB of data. About 60% of a single human brain hemisphere
is available in a dataset with vascular, neuronal, and cellular stains (290 TB; an example 3D slab shown in Fig. 13)
with an additional 65TB from the brains of two other participants. This data can be visualized by anyone on the planet
due to horizontal scalability provided by AWS S3, the use of a streaming data storage format (OME-Zarr), and
interactive visualization tools such as Neuroglancer, ITK-VTK-Viewer, and others described earlier. For the OME-Zarr
data, each such object provides an option to directly open the object in the ITK-VTK-Viewer or for checking using the
OME-Zarr Validator. To optimize data transfer, DANDI recommends OME-Zarr lightsheet imaging data on human
brains to be stored with chunk sizes of (1,1,128,128,128) and with lossless Blosc+Zstd compression.

HuBMAP
The HuBMAP (“Human Biomolecular Atlas Program”) consortium (HuBMAP Consortium 2019) adopted
open-standard imaging formats and developed novel web-based technologies in order to simplify the server-side
infrastructure traditionally required to support visualization of such a bioimaging resource. Consideration of
infrastructure costs and a commitment to FAIR data access principles led the consortium to adopt OME-TIFF as an
internal standard. In conjunction, members of the consortium developed Viv (Manz et al. 2022) – a client-side
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bioimaging visualization library – to remove a dependency on server-side rendering and enable flexible browsing of
multi-terabyte datasets directly within the HuBMAP data portal website. Currently, HuBMAP is working to adopt
OME-Zarr in order to support a wider diversity of modalities (e.g., large 3D volumes) as well as integrate additional
data types (e.g., segmentations, ROIs, 3D rendering, high-content screening data, and non-image formats like
AnnData) not supported by OME-TIFF. This data will be hosted on the Pittsburgh Supercomputing Center’s hardware.

OpenOrganelle
Another project following this strategy is OpenOrganelle (Heinrich et al. 2021) from the Janelia Research Campus
which hosts all of the datasets listed under https://openorganelle.janelia.org/datasets on AWS. The data is visualizable
in the browser using neuroglancer or via Fiji N5-plugins. The data is currently stored in a precursor to OME-Zarr
known as the N5 format  with “NGFF-compatible” metadata with conversion to OME-Zarr on the future roadmap.

Sanger
Data generated by Wellcome Sanger Institute and Newcastle University are made available on their public S3
buckets. That includes both array-based single cell sequencing data and microscope-based imaging data. The data
conversion was performed via a bespoke data ingestion pipeline which translates every object into OME-Zarr, chosen
to be the default image format for all the data generated from spatial technologies such as Visium, in situ sequencing,
RNAscope, Xenium and Merfish.

Hosting your own
Alternatively there are existing software solutions that expose an object-storage interface to files on disk like Minio38.
The European Molecular Biology Laboratory in Heidelberg is currently hosting all of the reference data for the
development of the MoBIE tool by running Minio on their own hardware. Examples of datasets formatted in OME-Zarr
include https://github.com/mobie/covid-if-project, https://github.com/mobie/htm-test and
https://github.com/mobie/spatial-transcriptomics-example-project. In the README of those repositories, a list of all S3
OME-Zarr URLs can be found which can be opened with viewers other than MoBIE.

Alternatively, dedicated, bioimaging server solutions are available for hosting and serving OME-Zarr data. As
mentioned above, webKnossos makes all datasets accessible in the OME-Zarr format. To import data into
webKnossos a conversion is required, whether automatically on browser upload or manual through filesystem import
to OME-Zarr or WKW, the “webKnossos Wrapper” format. Once imported into webKnossos, datasets can be made
publicly available via the dataset settings. This is an easy way to publish datasets directly from an institutional HPC
storage. A collection of published OME-Zarr data is available at https://zarr.webknossos.org/.

Another possible mechanism for hosting OME-Zarr data is OMERO (Allan et al. 2012). The OMEZarrReader plugin to
Bio-Formats is included in OMERO since version 5.6.5, enabling import of OME-Zarr data into any OMERO including
the IDR. These are stored in OMERO’s internal repository with other file types and appear as images, or in the case of
HCS data plates, in the standard hierarchy. Users can then use the OMERO API or clients (OMERO.figure, QuPath,
or even R) to access the data. To enable OME-Zarr access to end users, services are available which expose an
OME-Zarr compatible endpoint to clients.

Finding datasets
These and other resources are being actively updated. It should be noted that currently, most cases of this are copies
of the main data that are being made available. Some services, however, provide a “view” of data as OME-Zarr,
making it the API that they expose to the world. Finally, several of the repositories mentioned have plans of migrating
all of their existing datasets to OME-Zarr as a common representation for dissemination.

38 https://min.io
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Currently, no central registry exists. Users, however, interested in re-using datasets must nevertheless know where to
start. Table 2 provides starting points for each of the resources that have been described above. An effort is being
made to maintain a central registry at https://ngff.openmicroscopy.org/data to provide an up-to-date list of the available
locations since this article was written. Submissions from the community are welcome. As more OME-Zarr formatted
data becomes available, more tools will be developed.

Catalog Dashboards / Datasets Zarr
Files

Size Storage

BIA Samples https://bit.ly/bia-ome-ngff-samples 90 200GB S3-like

Glencoe https://glencoesoftware.com/ngff TBD TBD TBD

DANDI https://dandiarchive.org/dandiset/000108
https://identifiers.org/DANDI:000108
https://github.com/dandisets/000108

3914 355TB AWS

EMBL-HD https://mobie.github.io/specs/ngff.html 21 TBD Minio

IDR Samples https://idr.github.io/ome-ngff-samples/ 88 3TB S3-like

Neural Dynamics https://registry.opendata.aws/allen-nd-open-data/ 90 200TB AWS

Sanger https://www.sanger.ac.uk/project/ome-zarr/ 10 1TB S3-like

webKnossos https://zarr.webknossos.org 69 70TB Mix

Table 2. List of sources of OME-Zarr data belonging to the authors. These include catalogs and dashboards which will
help the reader discover datasets. An up-to-date version of the table is maintained at
https://ngff.openmicroscopy.org/data and contributions are welcome.

Discussion
Over the last twenty years, the number of bioimaging file formats has been a constant source of confusion and
frustration. While that has often been a struggle that each user manages individually, increasingly data sizes from
more sophisticated hardware and more advanced modalities are leaving users with significant infrastructure burdens
for efficiently converting and sharing their imaging data. Data acquisition systems often design formats specifically for
writing data quickly to timely capture the scale and the breadth of modern experiments. The tension between the
requirements of quickly writing and quickly reading bioimaging datasets force both data providers and consumers to
be aware of the costs of converting, relinking, downsampling, or otherwise modifying datasets for reuse. A one-time
conversion of such “write-optimized” data can lower the overhead of repeated analysis and visualization of the data,
but requires a widely adopted target format. With proper support, a small suite of storage file formats like HDF5, TIFF
and Zarr can cover the essential use cases for optimally achieving the community’s scientific goals as has been
achieved by other projects (e.g., PDB (Berman et al. 2012) and NetCDF (Unidata Ltd 1973)).

The strategy outlined in this paper is to encourage community cooperation towards a common representation.
Increased focus from the community of developers accelerates the features delivered to the user community.
Increases in the expressive power of the format through specifications, the number and ability of available tools, and
data publicly available for end users all motivate further developments in each of the other areas. In turn, this progress
drives the ability of the bioimaging community to better enact the FAIR principles. The growth of OME-Zarr tools,
resources, and specifications, however, should not be taken as a reason to wait on adoption. The opposite is true. The
hope is that more users and more developers will drive further growth, further unifying the bioimaging ecosystem.
Users should identify whether or not the advancements detailed here will simplify and accelerate their scientific
practice, and if so, are encouraged to start using OME-Zarr today. The community is growing and membership is
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open, free and encouraged. User feedback is critical to help make the most FAIR representation of bioimaging data
possible.

Code availability
All code described is available publicly under an open-source license.

Data availability
All data shown in the figures is available publicly under a permissive license.
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