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Abstract

Omega-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid, docosapentaenoic 
acid and docosahexaenoic acid, display a wide range of beneficial effects in humans and animals. 
Many of the biological functions of PUFAs are mediated via bioactive metabolites produced by fatty 
acid oxygenases such as cyclooxygenases, lipoxygenases and cytochrome P450 monooxygenases. 
Liquid chromatography–tandem mass spectrometry-based mediator lipidomics revealed a series 
of novel bioactive lipid mediators derived from omega-3 PUFAs. Here, we describe recent advances 
on omega-3 PUFA-derived mediators, mainly focusing on their enzymatic oxygenation pathway, and 
their biological functions in controlling inflammation and tissue homeostasis.
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Introduction

Omega-3 polyunsaturated fatty acids (PUFAs), including ei-
cosapentaenoic acid (EPA), docosapentaenoic acid (DPA) 
and docosahexaenoic acid (DHA), display a wide variety of 
effects favorable for a healthier life. A  large number of epi-
demiological studies and clinical trials suggest a beneficial 
relationship between omega-3 PUFA consumption and re-
duced inflammatory symptoms (1). Furthermore, genetic 
evidence obtained by fat-1 (a Caenorhabditis elegans gene 
encoding omega-3 fatty acid desaturase) transgenic mice 
revealed that a higher omega-3 to omega-6 PUFA ratio in 
tissues confers anti-inflammatory and/or tissue-protective 
phenotypes (2).

Many of the biological actions of PUFAs are mediated via 
bioactive lipid mediators produced by fatty acid oxygenases 
such as cyclooxygenases (COXs), lipoxygenases (LOXs) 
and cytochrome P450 monooxygenases (CYPs) (3, 4). For 
example, omega-6 arachidonic acid (AA) is released from 
membrane phospholipids in response to inflammatory stimuli, 
and subsequently converted into eicosanoids such as pros-
taglandins (PGs), leukotrienes (LTs) and lipoxins (LXs) in a 
COX- and LOX-dependent manner (Fig. 1). Omega-3 PUFAs 
such as EPA, DPA and DHA are also available at sites of in-
flammation for enzymatic conversion to bioactive mediators. 
The anti-inflammatory effect of omega-3 PUFAs is thought to 
occur not only by competing with the formation of eicosanoids 
from AA, but also by providing alternative metabolites with 

less potent activity than that of AA-derived mediators (5–7). 
Recent advances in liquid chromatography–tandem mass 
spectrometry (LC–MS/MS)-based lipidomics uncovered a 
novel series of lipid mediators derived from omega-3 PUFAs 
(8, 9). Emerging evidence suggests that uncontrolled inflam-
mation may contribute to a progression to chronic inflamma-
tory states, including cardiovascular diseases, autoimmune 
diseases, fibrosis and cancer (10, 11). Understanding the 
molecular mechanisms of how elevated omega-3 PUFA levels 
control inflammation and tissue homeostasis will lead to a new 
class of therapeutic applications. In this review, we describe 
recent advances in the understanding of how omega-3 PUFAs 
are metabolized into bioactive mediators, as well as their func-
tional roles in controlling inflammation and tissue homeostasis.

Bioactive mediators derived from omega-3 PUFAs: 
specialized pro-resolving mediators

In response to tissue injury or microbial infection, polymorpho-
nuclear leukocytes (PMNs) are recruited to the site of injury. 
Locally accumulated PMNs execute phagocytosis of bacteria 
and/or cellular debris to clear the site of injury. Consequently, 
monocyte-derived macrophages are recruited to the injured 
site to carry out efferocytosis (phagocytosis of apoptotic 
PMNs and cellular debris) and to therefore promote the reso-
lution of acute inflammation (3). Resolution of inflammation 
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560  Function of omega-3 fatty acid-derived mediators

is an active, well-orchestrated process governed by specific 
cell types and soluble mediators, including PUFA-derived 
lipid mediators (3, 8, 12).

By using LC–MS/MS-based lipidomics, a series of spe-
cific pro-resolving mediators (SPMs) derived from omega-3 
PUFAs were identified (8, 9). They included EPA-derived 
resolvins (E-series resolvins: RvE1–E3; Fig. 2), DHA-derived 
resolvins (D-series resolvins: RvD1–D6; Fig. 3), protectins 
(PD1 and PDX; Fig. 3) and maresins (MaR1 and MaR2; Fig. 3). 
Moreover, sulfide conjugates for tissue regeneration, namely 
resolvin conjugates in tissue regeneration (RCTR1, RCTR2 
and RCTR3), protectin conjugates in tissue regeneration 
(PCTR1, PCTR2 and PCTR3) and maresin conjugates in tissue 
regeneration (MCTR1, MCTR2 and MCTR3), were identified 
(Fig. 3). Biosynthesis of MCTRs begins with 14-lipoxygenation 
of DHA to yield 13,14-epoxy-maresin, and subsequent enzy-
matic insertion of glutathione at  the C-13 position by LT C4 
synthase or glutathione S-transferase mu 4 to form MCTR1 
(13, 14). MCTR1 is then converted to MCTR2 by the second 
enzyme, γ-glutamyl transferase, to remove a γ-glutamyl group 
from MCTR1, followed by conversion to MCTR3 by the third 
enzyme, dipeptidase, that cleaves a cysteinyl–glycinyl bond 
of MCTR2 (14, 15). In contrast, RCTR and PCTR are gener-
ated via 17-lipoxygenation of DHA and may undergo further 
enzymatic conversion in a similar way as in the case of pre-
cursor formation of RvDs (7,8-epoxy-17-hydroxy-DHA) and 
PDs (16,17-epoxy-protectin) (16). Then, they are processed 
to conjugate with glutathione to yield RCTRs and PCTRs (16, 
17). Also, DPA-derived SPMs were referred to as RvD1n-3 

DPA, RvD2n-3 DPA, RvD5n-3 DPA, PD1n-3 DPA, PD2n-3 DPA, MaR1n-3 DPA, 
MaR2n-3 DPA, MaR3n-3 DPA and 13-series resolvins (RvT1–T4; Fig. 
4).

Their biological actions are mediated through various 
types of cells such as PMNs, macrophages, dendritic cells, 
eosinophils, innate lymphoid cells, CD4+ T cells, CD8+ T 
cells, γδ T cells and B cells (8, 9, 18). Of note, several sul-
fide conjugates have unique bioactivity of promoting tissue 
regeneration in planaria possibly through extracellular sig-
nal-regulated kinase-mediated regulation of gene expres-
sion pathways (13), in addition to inhibiting PMN infiltration, 
stimulating phagocytosis of bacteria and efferocytosis of 

apoptotic cells in leukocytes (Fig. 3). The in vivo activity of 
omega-3 PUFA-derived mediators in controlling inflamma-
tion and its resolution has been best characterized in murine 
acute inflammation models (8, 12, 19). In zymosan-induced 
sterile peritonitis, RvE1 and PD1 promoted the resolution of 
inflammation by limiting excessive PMN infiltration, activat-
ing macrophage efferocytosis and enhancing the egress 
into draining lymph nodes of leukocytes containing engulfed 
zymosan (12, 19–21). In addition, RvD1 and RvD5 signifi-
cantly reduced the number of bacteria in blood and peri-
toneal exudate in Escherichia coli-inoculated mice, possibly 
through macrophage phagocytosis-stimulating activity (22).

Furthermore, SPMs also impact on several disease mod-
els such as colitis (23), sepsis (24, 25), lung injury (26), 
myocardial infarction (27), liver ischemia–reperfusion injury 
(28), cancer (29), allergic dermatitis (30), psoriasis (18) and 
experimental autoimmune disorders (31). In the skin disease 
models, RvE1 attenuated dendritic cell activation, which may 
inhibit an accumulation of CD4+ or CD8+ T cells in the drain-
ing lymph node as well as of IL-17-producing γδ T cells in 
the inflamed skin (18, 30). Moreover, in experimental auto-
immune encephalitis, RvD1 suppressed autoreactive T-cell 
immune responses by decreasing polarization to Th1 and 
Th17 while increasing Treg (31). Notably, a recent in vitro study 
demonstrated that RvD1, RvD2 and MaR1 not only attenu-
ated Th1 and Th17 polarization, but also enhanced Treg gen-
eration in human CD4+ T cells (32). This evidence supports 
the notion that SPMs serve a wide range of beneficial effects 
in not only acute inflammation associated with innate immune 
responses, but also chronic inflammation associated with 
adaptive immune responses (Figs 2–4). Furthermore, sev-
eral unique functions of SPMs have been described, includ-
ing autophagy and inflammasome regulation, indicating their 
pleiotropic roles in regulating inflammation and maintaining 
tissue homeostasis (Fig. 3) (33, 34).

Omega-3 oxygenation pathways: a cause of beneficial 
effects of omega-3 PUFAs?

In the E-series resolvins biosynthetic pathway, EPA is initially 
converted to 18-hydroxy-eicosapentaenoic acid (18-HEPE), 
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(3) Anti-inflammatory effects
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Fig. 1. Anti-inflammatory effects of omega-3 PUFAs. Omega-3 PUFAs exert their beneficial effects by the following mechanisms: (1) substrate 
competition with omega-6 AA, (2) receptor competition and (3) conversion into anti-inflammatory metabolites.
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an omega-3 oxygenated product of EPA, followed by oxygen-
ation via 5-LOX and/or 12/15-LOX present in leukocytes (Fig. 5) 
(35, 36). In addition to being a precursor for E-series resolvins, 
18-HEPE also confers cardioprotective effects in pressure 
overload-induced maladaptive remodeling and heart failure 
(transverse aortic constriction model) (37). 18-HEPE is locally 
produced by bone marrow-derived macrophages recruited to 
heart tissue in response to pressure overload, thereby inhibit-
ing the local activation of fibroblasts and the development of 
cardiac remodeling (37). Also, 18-HEPE restored mitochondrial 
dysfunction, including the decrease in respiration and mem-
brane potential frequently observed during inflammation (38). 
In a cancer model, 18-HEPE inhibited metastasis of B16-F0 
melanoma cells through a decrease in C-X-C motif chemokine 
receptor 4 expression (39). In addition, 18-HEPE reduced 
tumor necrosis factor-α-induced endothelial activation and 
monocyte adhesion by attenuating activation of the nuclear 
factor-κB pathway (40). DHA-derived 20-hydroxy DHA (20-
HDoHE), an omega-3 oxygenated product of DHA, was also 
generated in vivo, and further metabolized to 14,20-dihydroxy 
DHA (14,20-diHDoHE) that blocked PMN infiltration in mouse 
zymosan-induced acute peritonitis (41).

EPA is also converted to epoxy-containing metabolites 
such as 17,18-epoxyeicosatetraenoic acid (17,18-EpETE). In 
general, 17,18-EpETE displays biological activities, while its 
corresponding diol, namely 17,18-dihydroxyeicosatetraenoic 
acid (17,18-diHETE), has less activity. DHA is also metab-
olized to 19,20-epoxydocosapentaenoic acid (19,20-EpDPE) 
with various bioactivities and is further converted to the cor-
responding diol (42). A  dietary intake of omega-3 PUFA-
enriched food represented highly elevated EPA-derived 
mediators, including 17,18-EpETE (43). The administration of 
17,18-EpETE, but not of 17,18-diHETE, displayed protective 
activity in a murine gut allergic diarrhea model through inhib-
ition of the degranulation of mast cells, as well as in a dini-
trofluorobenzene-induced dermatitis model via blockade of 
neutrophil mobility (43, 44).

Soluble epoxide hydrolase (sEH), expressed in many tis-
sues, is a cytosolic enzyme with epoxide hydrolase activity 
(45). The administration of an sEH inhibitor or deletion of 
the sEH gene displayed several beneficial effects in various 
murine inflammatory disorders, including diet-induced 
hepatitis (46, 47) as well as lipopolysaccharide- or bleomy-
cin-induced lung injury (48, 49), along with the significant 

Name Structure Function

RvE1

Inhibits PMN infiltration (20, 68)
Enhances phagocytosis-induced PMN apoptosis (69)
Promotes macrophage efferocytosis (20, 70)
Reduces pro-inflammatory cytokines (71)
Improves dermatits models (18, 30)

RvE2 Inhibits PMN infiltration (72, 73)
Promotes macrophage phagocytosis (72)

RvE3
Reduces PMN infiltration (36, 74)
Inhibits PMN chemotaxis (36, 74)
Prevents preterm birth (75)

18-HEPE

Attenuates fibroblast activation (37)
Inhibits cardiac remodeling (37)
Restores mitochondorial dysfunctions (38)
Inhibits metastasis (39)
Reduces adhesion of monocytes to endothelial cells (40)

17,18-EpETE

Inhibits degranulation of mast cells (43)
Reduces adhesion of monocytes to endothelial cells (40)
Inhibits neutrophil migration (44)
Activates PPAR-  in bronchi (52)
Modulates TRPV4 activity (54)
Reduces inflammatory cytokines (59)

12-OH-17,18-EpETE

Inhibits PMN infiltration (60)
Attenuates PMN chemotaxis and polarization (60)
Reduces ovalbmin-induced inflammatory cell

accumulation (61)
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Fig. 2. Structures and functions of EPA-derived bioactive metabolites.
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increases in fatty acid epoxides, such as 17,18-EpETE and 
19,20-EpDPE, through the inhibition of corresponding diol for-
mation (50). Co-treatment of adipocytes with 17,18-EpETE or 
19,20-EpDPE and an sEH inhibitor blocked palmitate-induced 
lipid droplet accumulation in vitro (50). This effect of omega-3 
epoxides was suggested to occur through the regulation of 
autophagy and the endoplasmic reticulum stress response, 
which may contribute to prevent high-fat diet-induced obesity 
(50). Moreover, exogenously administered 19,20-EpDPE sup-
pressed vascular endothelial growth factor (VEGF)-induced 

angiogenesis, as well as tumor growth and metastasis in the 
presence of an sEH inhibitor (51).

Emerging evidence has yielded potential target molecules 
for 17,18-EpETE. For example, 17,18-EpETE-activated G 
protein-coupled receptor (GPR) 40 results in the inhibition of 
GTP-bounded Rac formation and subsequent neutrophil mi-
gration in vitro (44). In addition, 17,18-EpETE activates per-
oxisome proliferator-activated receptor gamma (PPAR-γ), a 
nuclear receptor, in human bronchi (52). The administration of 
17,18-EpETE or 19,20-EpDPE also alleviated symptoms in an 

Name Structure Function Name Structure Function

Inhibits PMN infiltration (20, 21)
Promotes macrophage efferocytosis (3, 20)
Regulates T cell migration (3, 21)
Increases C-C chemokine receptor type 5 expression on PMNs (82)
Inhibits production of inflammatory cytokines (83)
Reduces expression of CD11b and CD62L on eosinophils (84)

PD1

Inhibits PMN infiltration (3, 21)
Promotes macrophage efferocytosis (21)
Reduces inflammatory cytokines (76)
Inhibits Th1 and Th17 polarization, enhances Treg generation (32)
Stimulates production of amphiregulin in innate lymphoid cells (87)

MaR1

Decreases inflammation of dextran sulfate sodium (DSS) colitis (23)
Inhibits platelet aggregation (85)
Inhibits PMN activation (86)

PDX

Stimulates macrophage phagocytosis of bacteria and efferocytosis of
apoptotic PMNs (16, 17)
Promotes tissue regeneration in planaria (16, 17)
Limits PMN chemotaxis (17)

RCTR1

Inhibits PMN infiltration (88)
Promotes macrophage efferocytosis (88)

MaR2

Stimulates macrophage phagocytosis of bacteria and efferocytosis of
apoptotic PMNs (17)
Promotes tissue regeneration in planaria (17)
Limits PMN chemotaxis (17)

RCTR3

Stimulates macrophage phagocytosis of bacteria and efferocytosis of
apoptotic PMNs  (16, 17)
Promotes tissue regeneration in planaria (16, 17)
Limits PMN chemotaxis (17)

RCTR2

Stimulates macrophage phagocytosis of bacteria and efferocytosis of
apoptotic PMNs (16)
Promotes tissue regeneration in planaria (16)

RvD1

Inhibits PMN infiltration (3, 12)
Promotes macrophage efferocytosis (3, 12)
Improves experimental autoimmune model (31)
Activates macrophage autophagy (33)
Reduces inflammatory cytokines (76)
Stimulates polarization of macrophage from M1 to M2 (77)
Inhibits Th1 and Th17 polarization, enhances Treg generation (32)
Blocks class switching of naive B cells to IgE-secreting B cells (78)

PCTR1

Stimulates macrophage phagocytosis of bacteria and efferocytosis of
apoptotic PMNs (16, 89)
Promotes tissue regeneration in planaria (16, 89)
Reduces inflammatory cytokines (89)
Limits PMN chemotaxis (89)

RvD2

Inhibits PMN infiltration (3, 12)
Promotes macrophage efferocytosis (3, 12)
Enhances nitric oxide production in endothelial cells (3)
Improves survival rate in sepsis (25)
Inhibits activation of inflammasome in macrophages (34)
Reduces inflammatory cytokines (76)
Inhibits Th1 and Th17 polarization, enhances Treg generation (32)

PCTR2

Promotes tissue regeneration in planaria (13, 15)
Stimulates leukocyte phagocytosis of bacteria and macrophage

efferocytosis of apoptotic PMNs (13, 15)

RvD3

Inhibits PMN infiltration (79)
Reduces inflammatory cytokines (79)
Restores barrier function of epithelial cells (79)
Attenuates inflammation in peritonitis and arthritis (79)

PCTR3 Stimulates macrophage phagocytosis of bacteria and efferocytosis of
apoptotic PMNs (16)

RvD4

Reduces PMN infiltration (80)
Promotes macrophage phagocytosis and efferocytosis (80)
Enhances fibroblast efferocytosis (80)
Protects from peritonitis and skin inflammation (80)

MCTR1

Promotes tissue regeneration in planaria (15)
Stimulates leukocyte phagocytosis of bacteria and macrophage

efferocytosis of apoptotic PMNs (15)

RvD5 Stimulates PMN phagocytosis (22)
Protects against E. coli infection (22)

MCTR2

Promotes tissue regeneration in planaria (13, 15)
Stimulates leukocyte phagocytosis of bacteria and macrophage

efferocytosis of apoptotic PMNs (13, 15)

RvD6 Produced during coagulation process in the presence of adenosine
deaminase (81)

MCTR3

Inhibits PMN infiltration (41)

4-HDoHE Activates PPAR-  (90)

14,20-diHDoHE

Promotes antibody-mediated immune response (93)
Promotes macrophage phagocytosis (94)
Reduces inflammation in DSS-induced colitis (94)
Reduces obesity-associated inflammation (95)
Prevents hyperalgesia with adjuvant-induced arthritis (96)

14,21-diHDoHE
Enhances wound healing (91)
Promotes production of VEGF and IL-10 in macrophages (92)
Reduces hyperglycemia-induced ROS generation in macrophages (92)

17-HDoHE

19,20-EpDPE
Limits palmitate-induced lipid droplet accumulation (50)
Inhibits tumor growth and metastasis (51)
Surpresses VEGF-induced angiogenesis (53)
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Fig. 3. Structures and functions of DHA-derived bioactive metabolites.
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Name Structure Function

Produced in the peritoneal exudate (97)

Improves mouse survival during bacterial
infection (99)
Enhances macrophage phagocytosis of

bacteria, production of reactive oxygen species,
and efferocytosis of apoptotic PMNs (99)
Reduces activation of the inflammasome (99)

RvD5n-3 DPA

Ameliorates DSS-induced colitis (98)
Inhibits neutrophil-endothelial cell adhesion (98)

PD1n-3 DPA

PD2n-3 DPA
Reduces adhesion molecule expression

(simultaneously treatment with PD1n-3 DPA) (97)

MaR1n-3 DPA

Reduces cytokine levels (97)
Inhibits PMN chemotaxis and adhesion to

endothelial cells (97)
Enhances macrophage phagocytosis (97)

MaR2n-3 DPA

RvT3

RvD1n-3 DPA

Reduces cytokine levels (97)
Inhibits PMN chemotaxis and adhesion to

endothelial cells (97)
Enhances macrophage phagocytosis (97)

RvD2n-3 DPA

RvT4

RvT1

RvT2

MaR3n-3 DPA

OH
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Fig. 4. Structures and functions of DPA-derived bioactive metabolites.
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age-related macular degeneration model, possibly through 
a PPAR-γ-dependent mechanism (53). 17,18-EpETE incorp-
orated with plasma membrane phospholipids may modu-
late the activity of the transient receptor potential (TRP) V4 
channel, a polymodal ion channel involved in vasodilation, 
by changing the mechanical properties of the membrane en-
vironment (54). GPR40, PPAR-γ and TRPV4 are expressed in 
various immune cells, suggesting their contribution in regu-
lating various inflammatory responses (44, 55–58).

Moreover, studies on the structure-specific role of omega-3 
epoxides or its derivatives revealed that 17,18-EpETE, but no 
other regioisomers (8,9-, 11,12-, 14,15-EpETE), inhibited the pal-
mitate-induced expression of pro-inflammatory cytokines in peri-
toneal macrophages, presumably through the inhibition of c-Jun 
N-terminal kinase phosphorylation (59). Studies on the struc-
ture-specific role of omega-3 epoxide also demonstrated that 
12-hydroxy-17,18-epoxyeicosatetraenoic acid (12-OH-17,18-
EpETE), one of the mono-oxygenated metabolites of 17,18-
EpETE, is formed in vivo and displayed anti-inflammatory activity 
(Fig. 5) (60). The chemotaxis of neutrophils was inhibited in 
vitro by 12-OH-17,18-EpETE, while 17,18-EpETE and 12-HETE 
did not possess this activity (60). The two natural isomers of 
12-OH-17,18-EpETE, namely 12S-OH-17R,18S-EpETE and 
12S-OH-17S,18R-EpETE, were active, while unnatural stereoiso-
mers (12R-isomers) were inactive (60). Similarly, 12-OH-17,18-
EpETE, but not 17,18-EpETE, decreased ovalbumin-induced 
inflammatory cell accumulation in bronchoalveolar lavage fluid in 
an airway inflammation model (61).

Hydroxylation of omega-3 carbon of EPA is reported to 
be catalyzed by aspirin-acetylated COX-2 or microbial CYP 

enzyme to produce 18R-HEPE (Fig. 5) (35). Epoxygenation 
of the olefin double bond of PUFAs is mainly mediated by 
CYPs to yield fatty acid epoxides (Fig. 5) (42). A comprehen-
sive analysis of mouse CYP genes was recently conducted, 
and five isoforms, namely Cyp1a2, 2c50, 4a12a, 4a12b and 
4f18, were identified to confer omega-3 epoxidation of EPA to 
yield 17,18-EpETE (62). DHA was also effectively converted 
into 19,20-EpDPE by these enzymes. Of interest, Cyp1a2 and 
Cyp4f18 displayed high stereoselectivity with quite opposite 
geometry to form 17R,18S-EpETE and 17S,18R-EpETE, re-
spectively. It is reported that 17R,18S-, but not 17S,18R-
EpETE, had  the potential to activate calcium-activated 
potassium (BK) channels expressed in vascular smooth 
muscle cells to exert a vasorelaxation effect (63). These re-
sults suggest that the omega-3 oxygenation pathway may 
hold a key for the beneficial effects of omega-3 PUFAs by 
structure-specific mechanisms in controlling inflammation 
and tissue homeostasis.

Conclusions

Uncontrolled inflammation leads to a chronic inflamma-
tory state, resulting in the progression of refractory disease, 
including autoimmune diseases, obesity, fibrosis and cancer 
(3, 10, 11). The precise determination of the molecular mech-
anisms that control inflammation and the resolution process 
will aid in the development of a new class of anti-inflammatory 
therapies. Omega-3 PUFA-derived specialized pro-resolving 
mediators such as resolvins, protectins and maresins are po-
tential candidates to be developed as new therapeutics (64, 

EPA
18-HEPE

RvE3

RvE1 RvE2

17,18-EpETE 12-OH-17,18-EpETE

CYPs

Pro-resolving effect

Anti-allergic effect

Cardioprotective effect

Anti-inflammatory effect

Aspirin-
acetylated
COX-2

12/15-
LOX

5-LOX

Omega 3-hydroxylation pathway

Omega-3 epoxygenation pathway

Omega-3

Anti-inflammatory effect

Fig. 5. EPA metabolome through the omega-3 oxygenation pathway. 18-HEPE, a common precursor of E-series resolvins, is generated by 
aspirin-acetylated COX-2 from EPA. RvE1 and RvE2 are produced via 5-LOX, and RvE3 is generated via 12/15-LOX. Epoxygenation of omega-3 
double bond is catalyzed by several CYP enzymes to produce 17,18-EpETE, and its secondary product 12-OH-17,18-EpETE which also has 
anti-inflammatory activity. 
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65). Also oxygenation at the site of the omega-3 double bond 
that distinguishes omega-3 PUFAs from other fatty acids may 
play  an important role for the beneficial effects of dietary 
omega-3 PUFAs in keeping human health and tissue homeo-
stasis (4). Therefore, enhancement of this metabolic pathway 
may have therapeutic implications in controlling inflammation 
and related diseases. For example, the use of sEH inhibitor 
and/or stable analogs that enhance the half life of omega-3 
PUFA epoxides in vivo and may be therapeutically useful (50, 
66, 67). Further studies of the biosynthesis, metabolism and 
target molecules (receptors) at the molecular levels would 
help us to understand their physiological importance in main-
taining tissue homeostasis, and also as potential therapeutic 
targets for inflammation and related diseases.
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