
Review Article

Omega-3 Polyunsaturated Fatty Acids: Structural and
Functional Effects on the Vascular Wall

Michela Zanetti, Andrea Grillo, Pasquale Losurdo, Emiliano Panizon, Filippo Mearelli,

Luigi Cattin, Rocco Barazzoni, and Renzo Carretta

Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy

Correspondence should be addressed to Andrea Grillo; andr.grillo@gmail.com

Received 25 September 2014; Accepted 26 January 2015

Academic Editor: Yong Q. Chen

Copyright © 2015 Michela Zanetti et al.�is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Omega-3 polyunsaturated fatty acids (n-3 PUFA) consumption is associated with reduced cardiovascular disease risk. Increasing
evidence demonstrating a bene
cial e�ect of n-3 PUFAon arterial wall properties is progressively emerging.We reviewed the recent
available evidence for the cardiovascular e�ects of n-3 PUFA focusing on structural and functional properties of the vascular wall.
In experimental studies and clinical trials n-3 PUFA have shown the ability to improve arterial hemodynamics by reducing arterial
sti�ness, thus explaining some of its cardioprotective properties. Recent studies suggest bene
cial e�ects of n-3 PUFAon endothelial
activation, which are likely to improve vascular function. Several molecular, cellular, and physiological pathways in�uenced by n-3
PUFA can a�ect arterial wall properties and therefore interfere with the atherosclerotic process. Although the relative weight of
di�erent physiological and molecular mechanisms and the dose-response on arterial wall properties have yet to be determined,
n-3 PUFA have the potential to bene
cially impact arterial wall remodeling and cardiovascular outcomes by targeting arterial wall
sti�ening and endothelial dysfunction.

1. Introduction

Cardiovascular disease is the 
rst cause of death in the
developed world. Its main feature is the extensive presence
of atherosclerosis, which is anticipated by morphologic
and functional changes involving vessel wall and vascular
endothelium. Impairment of functional properties of the
arteries is strictly related to the morphologic changes in
vessel structure and to the alteration inmechanical properties

[1, 2]. Endothelial dysfunction is characterized by impaired

endothelium-dependent vasodilation and “endothelial acti-
vation,” which is associated with a proin�ammatory and pro-

coagulatory milieu that promotes development and progres-

sion of vascular disease [3, 4]. Cardiovascular risk factors are

closely linked to the development of endothelial dysfunction

and arterial wall sti�ness, which are signi
cant predictors

of cardiovascular risk and mortality [5, 6]. A synergistic

interplay exists among the anatomic structures of the vessel
wall, the vascular endothelium, endothelial-derived factors,

and circulating cytokines, and such interplay promotes the
development of overt atherosclerosis.

Omega-3 polyunsaturated fatty acids (n-3 PUFA) have
shown the potential to bene
cially impact fundamental steps
involved in the development of preclinical atherosclerosis [7].
By targeting arterial sti�ness and endothelial dysfunction,
administration of n-3 PUFAmay prevent atherosclerosis and
cardiovascular disease. A wide range of molecular and phys-
iological pathways are a�ected by n-3 PUFA administration
and are involved in the regulation of arterial sti�ness and
endothelial dysfunction.

�is review will focus on the complex nature of arterial
sti�ness and endothelial dysfunction and on the translational
potential of n-3 PUFA for treating vascular remodeling.

2. Structural and Mechanical Properties of
the Arterial Wall

Arterial wall consists of a complex morphological orga-
nization, with multiple layers designed to maintain the
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fundamental properties of blood carrying and blood pressure
regulation. �is structure is aimed at maintaining the elastic
properties of the arterial wall, which are important for
the physiological vascular function [8]. �e distensibility of
arterial vessels determines the amplitude of pulse pressure
as well as the speed of the propagating pulse wave in the
arterial system. �e loss of elastic properties leads to arterial
sti�ness, a parameter that has been recognized in recent years
as an intermediate endpoint for cardiovascularmorbidity and
mortality, independently of conventional risk factors for car-
diovascular disease [9]. Arterial sti�ening or arteriosclerosis,
which is caused by the loss of the medial arterial load bearing
components of the arterial wall, is pathologically distinct
from the obstructive condition of arteries or atherosclerosis,
usually de
ned as the deposition of lipids, white blood
cells, and calcium in the arterial wall [10], although these
two conditions are closely intertwined [11]. Arteriosclerosis
could directly promote cardiovascular disease, by increasing
pulsatile load on heart, reducing myocardial blood �ow,
damaging small vessels in kidney or brain, and by promoting
atherogenesis through a reduction in shear stress rate. On
the other hand, the presence of atherosclerotic plaques could
mechanically alter the properties of the arterial wall.

�e assessment of arterial sti�ness has been increasingly
used in clinical setting, considering its good predictive value
for cardiovascular events. A large number of studies have
been addressed to understand the mechanisms and factors
in�uencing the development of arterial sti�ness and to report
interventions able to in�uence arterial wall properties [9].
Reducing arterial sti�ness may be useful to reduce incidence
of cardiovascular events and mortality; thus evidence-based
treatments would be clinically important, but currently a
speci
cally designed therapeutic strategy for this purpose
has not yet been de
ned. Dietary habits are well-known
determinants of the vascular changes occurring in the arterial
wall with age, and many studies have focused on the e�ects
of pharmacologic and nonpharmacologic interventions to
modulate arterial elastic properties [12].

3. Effects of n-3 PUFA on Atherogenesis

A large body of evidence demonstrates the substantial bene-

ts of n-3 PUFA in atherogenesis [13]. n-3 PUFA play several
important roles in cellular molecular mechanisms, tissue
metabolism and regulation, and act as pleiotropic agents
on the cardiovascular system [14]. �e mechanisms through
which n-3 PUFA interfere with atherogenesis are therefore
multiple. �eir e�ect on endothelial dysfunction, oxidative
stress, and in�ammation, causing the onset of atherogenesis,
will be discussed in the next section. �e antiatherogenic
e�ect of n-3 PUFA on serum lipid pro
le, with a reduction in
both triglycerides and very-low-density lipoproteins, is well
known and has recently been reviewed [15, 16]. However, it is
unclear as to how many of cardiovascular bene
ts are related
to n-3 PUFA lipid lowering e�ects and howmany of them are
due to lipid-independent e�ects.

Regarding the lipid deposition in the arterial layers,
which is associated with atherogenesis [17], in a mouse
animal model, n-3 PUFA were able to protect the arterial

wall by decreasing the LDL uptake and by directing lipid
deposition away from the aortic media, by decreasing the
lipoprotein lipase expression [18]. �is antiatherogenic e�ect
is also associated with a reduction of macrophages and other
proin�ammatorymarkers and is enhanced by an incremental
replacement of n-3 PUFA in the diet [19].

�e proliferation of vascular smooth muscle cells and
their lipid accumulation are associatedwith early lesion in the
arterial wall and atherosclerosis promotion [20], highlighting
the role of these cells in the pathophysiology of vascular
remodeling [21]. An e�ect of n-3 PUFA on vascular smooth
muscle cells activation has been reported in several studies.
In culture cells, EPA and DHA were incorporated into
phospholipids and slow down the progression of cell cycle, by
inhibiting DNA synthesis and replication, thus suppressing
vascular smooth muscle cells proliferation [22]. A similar
inhibition in the proliferation of vascular smoothmuscle cells
was observed in human coronary arteries a�er consumption
of 
sh oil, with a regulation of adhesion molecules on these
cells [23].

A speci
c e�ect of n-3 PUFA on plaque stability has
also been reported, in preventing the rupturing of vulnerable
plaques, that leads to arterial thrombosis and obstruction.
�is e�ect could explain the reduction in cardiovascular
endpoints observed in short-term trials conducted with
n-3 PUFA. In patients undergoing carotid endarterectomy,
atherosclerotic plaques revealed reduced macrophages in
l-
tration andmore stablemorphology a�er n-3 PUFA adminis-
tration [24]. In amore recent study, in plaques of patients sup-
plemented with n-3 PUFA analyzed a�er carotid endarterec-
tomy, reduced in�ammation and signi
cantly lower levels of
mRNA for matrix metalloproteinases were observed [25].

�e evaluation of intima-media thickness (IMT) has long
been used as a marker of atherosclerotic involvement of
arterial walls and as a surrogate endpoint of cardiovascular
disease [26]. Although several observational studies reported
an inverse association of n-3 PUFA administration, as diet
consumption or 
sh oil administration, a systemic review of
human intervention studies could not draw a 
rm conclusion
on the e�ects of n-3 PUFA administration on IMT [27]. Also
more recent trials were inconclusive: a positive e�ect on IMT
was observed in patients with type 2 diabetes [28], although,
in elderly men with hypercholesterolemia, a favorable e�ect
on IMT progression was not con
rmed, whereas n-3 PUFA
imposed an improvement in arterial elasticity [29]. Recent
cross-sectional studies reported that DHA levels, but not
EPA, have an inverse association with IMT, suggesting that
DHA may have a more potent antiatherogenic e�ect than
EPA, independently of other risk factors [30].

4. Influence of n-3 PUFA on
Arterial Wall Stiffening

As above mentioned, the alteration of mechanical properties
of the arterial wall is strictly connected with atherosclerothic
involvement. An increased plaque burden and amodi
cation
in the composition of arterial layers can hamper arterial elas-
tic behavior. Nevertheless, although sharing some common
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risk factors, these two processes should be considered sep-
arately. While e�ects of n-3 PUFA on atherogenesis, on
atherosclerotic plaques stability, and on arterial restenosis
have been previously extensively reviewed, we will focus on
n-3 PUFA e�ects on hemodynamic properties of the large
arteries. Arterial sti�ness, while being 
rstly determined by
traditional risk factors for cardiovascular disease, can be
in�uenced by passive mechanisms that consider mechanical
and elastic properties of the vessels, and active mechanisms,
regulated by the cellular and molecular function of the
endothelium, the vascular smooth cells, and the extracellular
matrix [1]. Some of these mechanisms may be in�uenced by
n-3 PUFA intake.

Arterial blood pressure is considered the main deter-
minant of arterial sti�ness [9]. A fundamental mechanical
property of the arteries is that the arterial wall becomes sti�er
when the distending pressure becomes higher. Hypertension
can also increase arterial sti�ness chronically, by inducing
elastin fragmentation and arterial wall remodeling [31]. A
large body of studies demonstrated that n-3 PUFA are able
to reduce systemic blood pressure [32], and a recent meta-
analysis con
rmed that a consumption of >2 g/d of EPA +
DHA can reduce systolic and diastolic blood pressure in
humans [33]. �us, blood pressure, a main factor associated
with arterial sti�ening, is in�uenced by n-3 PUFA intake,
explaining part of the bene
cial e�ect of fatty acids on the
arterial wall.

Triglyceride levels are known to be a�ected by n-3
PUFA intake. A supplementation of 2-3 g/d of EPA + DHA
can reduce triglyceride levels by 25–30%, although a slight
increase of LDL levels was observed in some studies [34].
Lipid abnormalities are well-known determinants for the
development of atherosclerotic vessels disease and related
abnormalities, such the sti�ening of large arteries. In large
cross-sectional studies [35] triglyceride levels were strongly
associated with arterial properties, although a speci
c bene
t
in arterial sti�ness levelswith therapies targeting triglycerides
has not been demonstrated yet.

Elevated heart rate has been shown to be associated
with an increased risk of cardiovascular events, and there is
evidence that the heart rate is independently associated with
the progression of arterial sti�ness, both in animal models
and in humans [36]. n-3 PUFA supplementation is able to
reduce resting heart rate and recovery a�er exercise. Experi-
mental studies suggested that heart rate lowering could result
from direct e�ects on cardiac electrophysiology [37, 38].
Some studies also suggested that n-3 PUFA might improve
neurogenic autonomic function of cardiovascular system,
through a modulation of vagal and sympathetic balance [39],
and an independent association between aortic sti�ness and
muscle sympathetic nerve activity has been reported [40].

�e e�ect of n-3 PUFA on classical risk factors for
cardiovascular disease may explain the favorable e�ect on
arterial sti�ness. Nevertheless other mechanisms, mediated
through biochemical cellular signaling and through neuro-
genic and neuroendocrine pathways, have been explored.�e
association between endothelial dysfunction and increased
arterial sti�ness has been demonstrated in vitro [41] and in
vivo, both in animals and in humans [42, 43]. Considering

the known e�ect of n-3 PUFA on endothelial function,
which is discussed later in this review, this could be a main
explanation of the reduction of arterial sti�ness observed
in experimental condition of n-3 PUFA supplementation.
An enhancement in endothelial-dependent vasodilation of
the muscular arterioles leads to a decrease in arterial sti�-
ness because mechanical stresses are transferred to elastin
components of the wall and because there is a reduction
in re�ected pulse waves [44]. A direct vasodilatory e�ect
and an inhibition of constrictor response of DHA have
been demonstrated in humans [45]. An interrelation of this
vasodilatory e�ect has been found with di�erent endocrine
pathways, as the vascular constrictor response to angiotensin
[46] and norepinephrine [47] is attenuated by n-3 PUFA in
humans.

�erefore, the improvement in arterial properties shown
a�er n-3 PUFA supplementation is multifactorial and
involves both passive and active mechanisms of arterial
hemodynamics, mediated by multiple cellular and molec-
ular pathways and in�uenced by some major cardiovascu-
lar risk factors (hypertension, blood lipids, and autonomic
balance).

5. n-3 PUFA and Arterial Stiffness:
In Vivo Studies

Many studies have focused directly on the evaluation of
arterial sti�ness a�er n-3 PUFA supplementation (Table 1).
Considering animal models, Sato et al. [48] found that
supplementation of EPA reduced aortic PWV in high-
cholesterol-diet-fed rabbits. Masson et al. [49] reported that
pulse pressure obtained from telemetry, an index of arterial
sti�ness, was reduced by n-3 PUFA in fructose-fed rats,
a model of insulin-resistant state. Similarly, Engler et al.
[50] demonstrated that DHA supplementation reduced pulse
pressure and vascular wall thickness in spontaneously hyper-
tensive rats. More recently our group demonstrated that n-3
PUFA supplementation prevents arterial sti�ening [51] and
other vascular changes, such as barore�ex sensitivity [52]
induced by ovariectomy, in a rat experimental model of
menopause.

A number of randomized and controlled clinical trials
have been conducted to explore the e�ects of n-3 PUFA
on various endpoints related to arterial sti�ness. A well-
conducted meta-analysis by Pase et al. in 2011 [53], consid-
ering 10 intervention trials of n-3 PUFA supplementation,
reported that the 2 main outcomes examined (PWV and
systemic arterial compliance) were favorably a�ected by the
intervention, thus providing strong support to the use of n-3
PUFA as an evidence-based mean to reduce arterial sti�ness.
�e randomized clinical trials considered in this meta-
analysis consideredmainly high risk patients, with cardiovas-
cular risk factors ranging from dyslipidemia, hypertension,
and obesity to type 2 diabetes. More recent trials con
rmed
this result with the validated endpoint of carotid-femoral
PWV, actually considered the gold standardmeasure for arte-
rial sti�ness [9]. �ese studies, performed in special patient
population such as healthy smokers [54] and metabolic
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Table 1: Studies evaluating n-3 PUFA e�ects on arterial sti�ness.

(a) Animal studies

First author Year Dose Sample
Duration

(w)
Study
design

Outcome
measure

Results

Sato [48] 1993
300mg/kg/day
EPA

High-
cholesterol-diet-

fed
rabbits

12 AES-PG cf-PWV
Prevent increase in

cf-PWV

Engler [50] 2003 DHA-enriched oil
Spontaneous
hypertensive

rats
6 AES-PG

Wall
thickness, PP

Reduce wall
thickness and PP

Masson [49] 2008
diet enriched w.
16 g/kg n-3 PUFA

Fructose-fed
rats

10 AES-PC PP
Prevent increase in

PP

Losurdo [51] 2014
0.65 g/kg/d versus
placebo by gavage

Ovariectomized
rats

8 AES-PC cf-PWV
Prevent increase in

cf-PWV
(b) Human studies

First author Year Dose Sample
Duration

(w)
Number

Study
design

Outcome
measure

Results

McVeigh
[110]

1994
1800mg EPA + 1200
mg DHA/d versus
placebo (olive oil)

Type 2
diabetes

6 20 RCT-PC Total AC
Increase in total

AC

Nestel [111] 2002

3000mg EPA/d
versus 3000 mg
DHA/d versus
placebo (olive oil)

Dyslipidemic 7 38 RCT-PC Total AC
Increase 36% with
EPA, 27% with

DHA

Tomiyama
[62]

2011
1800mg EPA/d versus
control (diet therapy)

Dyslipidemic 52 84 RCT-PG ba-PWV
Reduction of
ba-PWV

Hjerkinn [29] 2006
2400mg n-3 PUFA
versus control diet

Dyslipidemic 156 563 RCT-PG cr-PWV
Decrease in
cr-PWV 4%

Hill [112] 2007

1560mg DHA +
360mg EPA/d versus
placebo (6 g
sun�ower oil/d)

Overweight,
hypertensive,
dyslipidemic

6 to 12 38 RCT-PC
Small and large

AC
Increase in small

AC 26%.

Mita [28] 2007
1800mg EPA/d versus
control (no EPA)

Type 2
diabetes

6 64 RCT-PG ba-PWV
Reduction of
ba-PWV

Wang [113] 2008
540mg EPA + 360mg
DHA versus placebo
capsules

Overweight,
hypertensive

8 52 RCT-PC
Small and large

AC
Increase in large

AC 21%

Satoh [114] 2009
1800mg EPA/d + diet
versus control (diet
only)

Metabolic
syndrome

12 92 RCT-PG ca-PWV
Reduction of
ca-PWV 6%

Ayer [115] 2009
32mg EPA/d + 135 mg
DHA/d + canola oil
versus control diet

Healthy
children

260 616 RCT-PG
Carotid artery
distensibility,
cb-PWV, Aix

No di�erence

Sjoberg [116] 2010
1560DHA + 360mg
EPA/d versus placebo
(sunola oil)

Overweight 12 67 RCT-PC
Small and large

AC
Increase in large

AC 14%

Dangardt
[60]

2010
1200mg n-3 PUFA
versus placebo

Obese
adolescents

12 25 RCT-PC cf-PWV No di�erence

Sanders [58] 2011
1800mg n-3 PUFA
versus placebo

Healthy
subjects

52 312 RCT-PC cf-PWV
Decrease in
cf-PWV

Haiden [57] 2012
1800mg n-3 PUFA
versus placebo

Hypertensive,
dyslipidemic

52 19 CT
ba-PWV, aortic

strain rate

Decrease in
ba-PWV 1%, strain

rate 17%

Siasos [54] 2013
2000mg n-3 PUFA
versus placebo

Healthy
smokers

12 20 RCT-PC cf-PWV
Decrease in
cf-PWV 6%

Root [59] 2013
1700mg n-3 PUFA
versus placebo

Overweight
young

4 30 RCT-PC cf-PWV No di�erence
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(b) Continued.

First author Year Dose Sample
Duration

(w)
Number

Study
design

Outcome
measure

Results

Wong [56] 2013
4000mg n-3 PUFA +
diet versus diet alone

Obese 12 13 RCT-PC
Small and large

AC

Increase in large
AC 20%, small AC

22%

Tousoulis
[55]

2014
2000mg n-3 PUFA
versus placebo

Metabolic
syndrome

12 29 RCT-PC cf-PWV
Decrease in
cf-PWV 5%

n-3 PUFA, omega-3 polyunsaturated fatty acids; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; PWV, pulse wave velocity; cf, carotid-femoral;
ba, brachial-ankle; cr, carotid-radial; PP, pulse pressure; AC, arterial compliance; AES, animal experimental study; RCT, randomized clinical trial; CT,
clinical trial; PG, parallel groups; PC, placebo controlled; d, day; w, week.

syndrome patients [55], con
rmed a reduction in arterial
sti�ness. A large study conducted evaluating carotid-radial
PWV in elderly men with hypercholesterolemia [29] and
systemic arterial compliance in obese patients on a weight
loss diet [56] con
rmed a favorable e�ect in arterial sti�ness.
Considering innovative measurement methods of arterial
sti�ness, a small open-label study observed an improvement
in regional aortic sti�ness assessed by strain rate, using
tissue Doppler imaging [57].�ree randomized clinical trials
conducted with small doses of n-3 PUFA (<1.8 g/d) on
healthy patients [58] and on young healthy patients with
metabolic syndrome [59] or obesity [60] did not 
nd any
signi
cant e�ect on arterial sti�ness. In a trial evaluating
patients with cardiovascular risk factors a 
sh oil diet was
ine�ective in reducing brachial-ankle pulse wave velocity,
while the subsequent administration of pure EPA in the
same population signi
cantly reduced the arterial sti�ness
[61]. Considering cross-sectional studies, in general Japanese
population, there was no relationship between serum omega-
3 levels and arterial sti�ness, evaluated as brachial-ankle
PWV [62], while in a sample of 299 Korean men a regression
analysis found a signi
cant inverse association with total n-3
PUFA and carotid-femoral PWV [63].

Despite the few negative results in randomized clinical
trials, current evidences generally agree that n-3 PUFA are
e�ective in reducing arterial sti�ness in humans. We can
speculate that the negative results in these trials [58–60] are
due to the small dose of active treatment or to the fact that
in these trials a population with a low risk for cardiovascular
disease was considered (young patients, healthy volunteers).
�e preferred use of n-3 PUFA only in high risk patients or
in secondary prevention is supported by current guidelines
and could be applied also for n-3 PUFAadministration for the
purpose of reducing arterial sti�ness, although well-designed
clinical trials considering high and low risk population are
needed to support this evidence.

As arterial sti�ness is a strong risk factor for cardiovas-
cular disease, n-3 PUFA should be considered, among the
wide range of cardiovascular drugs, as a safe and evidence-
based choice to positively a�ect the mechanical properties
of arterial wall. Which dose is the best for this outcome
and which group of patients should be treated constitute an
important area of future research.

6. Regulation of Endothelial Function and
Endothelial Dysfunction

Classically the term “endothelial dysfunction” strictly refers
to reduced endothelium-dependent vasodilation, which is
notably associated with impaired bioavailability of the main
endothelium-derived relaxing factor, nitric oxide (NO). In
addition to promoting vasodilation, NO is a powerful
antiatherosclerotic agent, since it reduces leukocyte adhesion,
platelet aggregation, and smooth muscle cell proliferation
[64]. In the endothelium NO is produced by the enzyme
endothelial nitric oxide synthase (eNOS). Reduced nitric
oxide bioavailability can be the result of either decreased
production or increased scavenging. Several mechanisms,
including downregulation of eNOS expression, posttrans-
lational modi
cations of eNOS, inhibition of the enzyme
catalytic activity, enzyme uncoupling, and circulating eNOS
inhibitors result in decreased NO release and endothelial
dysfunction [65, 66].

On the other hand, a number of studies have shown that
reactive oxygen species (ROS), which are increased in many
conditions associated with enhanced oxidative stress, deter-
mine endothelial dysfunction by quenching NO, reducing its
bioavailability and leading to the formation of the highly toxic
peroxynitrite [66, 67].

Perturbations of NO bioavailability are usually associated
with signs of vascular in�ammation and of a prothrombotic
and procoagulable state [68]. �erefore, in a comprehensive
sense, the term endothelial dysfunction encompasses a wide
range of alterations of endothelial function preluding overt
atherosclerosis.

Endothelial dysfunction is typically detected in condi-
tions associated with vascular disease, such as hypertension,
smoking, diabetes mellitus, hypercholesterolemia, and aging
[69]. Clinically, endothelial dysfunction can be noninvasively
assessed by measuring �ow-mediated dilation (FMD), at
the level of the brachial artery or of the coronary bed.
�is parameter allows determining the capability of the
vessel to dilate in response to various stimuli (hyperemia
following sphygmomanometer cu� in�ation or infusion of
muscarinic receptor agonists) [4, 70]. Importantly, several
studies have demonstrated the prognostic value of endothe-
lial dysfunction in terms of future cardiovascular events in
both populations at low and high cardiovascular risk, its
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Figure 1: n-3 PUFA e�ects on vascular structure and function.

predictive value being not inferior to validated surrogate
markers of vascular function [4, 71–73].�erefore endothelial
dysfunction can be considered an early marker of increased
cardiovascular risk in patients with or without a previous
history of cardiovascular disease.

7. Influence of n-3 PUFA on
Endothelial Function

�e mechanism by which n-3 PUFA in�uence endothelial
function is mediated by their incorporation into biolog-
ical membrane phospholipids; this allows modulation of
membrane composition and �uidity. �e importance of
endothelial cell membrane composition has been docu-
mented by several studies (Table 2). �e reason lies in the
fact that endothelial cell membrane houses caveolae and
lipid ra�s where several receptors and signaling molecules
crucial for cell function are concentrated [74]. Caveolae-
associated receptor-mediated cellular signal transduction
includes important pathways such as the nitric-oxide cGMP
pathway, the NADPH oxidase and TNF-� –NF�B induced
cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2)
activation pathway [75, 76]. By modulating the composition
of caveolae, as described for other classes of lipids [77]
n-3 PUFA may exert their bene
cial e�ects, which include
increased NO production and reduced production proin-
�ammatory mediators.

Molecular evidence of enhanced eNOS activity/expres-
sion following administration of n-3 PUFA derives from
experimental studies in endothelial cells in culture or in
animals. Wu et al. [78] showed that in bovine aortic endothe-
lial cells and in eNOS knock-out mice EPA induces NO
production by stimulating AMP-activated protein kinase
(AMPK) induced endothelial nitric oxide synthase (eNOS)
activation. Similarly, Omura et al. demonstrated that EPA
stimulates eNOS activation in endothelial cells by inducing its
dissociation from the inhibitory sca�olding protein caveolin
[79]. Likewise, Stebbins et al. reported that DHA promotes
eNOS activity by increasing the interaction between eNOS
andHSP-90, which activates PKB/AKt pathway 
nally result-
ing in eNOS phosphorylation and activation [80]. Finally, n-3
PUFA can enhance eNOS activity by reducing the circulating

levels of asymmetric dimethylarginine (ADMA), an endoge-
nous inhibitor of eNOS, which is increased in conditions as
hypertension, renal failure, and aging [81].

Another mechanism by which n-3 PUFA increase NO
production is by directly stimulating eNOS gene and pro-
tein expression. Improved vasodilation as a result of n-3
PUFA induced upregulation of eNOS gene/protein expres-
sion has been documented in a wide series of reports con-
sidering physiological and disease animal models including
menopause, atherosclerosis, and diabetes mellitus by our and
other groups [82–88]. Taken together these data indicate a
strong potential of n-3 PUFA to potentiate NO availability
by enhancing its production via di�erent molecular mecha-
nisms.

In addition to increasing NO production, n-3 PUFA
decrease oxidative stress.�is e�ect is controversial, since the
prooxidant activity of long-chain n-3 PUFA especially at high
doses has long been debated [89]. However experimental
studies conducted so far in cell culture or in vascular beds of
experimental animals have shown that relatively large doses
of n-3 PUFA improve endothelial function by attenuating
ROS production as a result of a direct modulatory e�ect
on the sources of ROS formation, including the enzymes
NADPH oxidase and iNOS, 
nally resulting in reduced
peroxynitrite formation [82, 83]. In retinal endothelial cells
in culture exposed to high glucose ALA directly reduces
ROS information and increased superoxide dismutase (SOD)
activity [90, 91]. A potentiation of endogenous antioxidant
enzyme concentrations in plasma as a direct e�ect of n-3
PUFA oral administration has also been reported also by
other reports [92].

Among the contributors to endothelial dysfunction, n-3
PUFA have shown the potential to attenuate cellular and
systemic in�ammation. In endothelial cells in vitro n-
3 PUFA attenuate NF-�B activation, resulting in reduced
VCAM-1 expression [90]. Additionally, n-3 PUFA exert
systemic anti-in�ammatory e�ects by raising the plasma
levels of adiponectin [93] and suppressing the production
of interleukin 6, interleukin 1�, soluble E selectin, and
CRP [94]. �ese e�ects are dose-dependent, as relatively
high doses of n-3 PUFA are required to achieve the anti-
in�ammatory e�ect and this cannot exclude the fact that
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Table 2: Studies evaluating n-3 PUFA e�ects on endothelial function.

(a) Animal studies

First author Year Dose Sample
Duration

(w)
Study
design

Outcome
measure

Results

Nyby [84] 2005

Diet enriched with
60% fructose and
4.4% n-3 PUFA
versus diet with
60% fructose or
control diet

Hyperinsulinemic
rats

8 AES-PG
EDD,

oxidative
stress

Improve EDD and
oxidative stress

Matsumoto [88] 2009
300mg/kg/day
EPA versus control
diet

Diabetic rats 4 AES-PC EDD Improve EDD

Zhang [83] 2013

Diet enriched with
ALA
500mg/kg/day
versus control diet

Type 2 diabetic
rats

5 AES-PC
EDD,

oxidative
stress

Improve EDD and
oxidative stress

Gortan
Cappellari [82]

2013
800mg/kg/day by
gavage versus
control diet

Ovariectomized
rats

8 AES-PC
EDD,

oxidative
stress

Improve EDD and
oxidative stress

(b) Human studies

First author Year Dose Sample
Duration

(w)
Number

Study
design

Outcome
measure

Results

Woodman
[117]

2003
3800mg EPA or
3700mg DHA versus
olive oil

Hypertensive type 2
patients

6 30 RCT-PG EDD, EID
Unchanged EDD

and EID

Engler [118] 2004
1200mg n-3 PUFA
versus control diet

Hypercholesterolemic
children

10 20 RCT-PC

EDD,
oxidative
stress,

in�ammation

Improved EDD,
unchanged

oxidative stress and
in�ammation

Ros [119] 2004
1100–1700mg n-3
PUFA versus
Mediterranean diet

Hypercholesterolemic
patients

4 20 RCT-PG

EDD,
oxidative
stress and

CRP

Improved EDD,
unchanged

oxidative stress and
in�ammation

Keogh [120] 2005

4700mgmg n-3
PUFA versus
isocaloric high
carbohydrate,
saturated or
monounsaturated fat
enriched-diet

Healthy subjects 4 40 RCT-PG
EDD, CRP,

in�ammation

Improved EDD in
all groups except in

saturated fat
enriched diet

Prabodh
Shah [121]

2007
500mg n-3 PUFA
versus placebo

Healthy subjects 2 26 RCT-PC EDD, EID
Improved EDD

and EID

Wright [122] 2008
3000mg n-3 PUFA
versus standard
therapy

Systemic lupus
erythematosus

patients
24 56 RCT-PG

EDD,
oxidative
stress

Improved EDD
and oxidative stress

Schiano [123] 2008
1700–2000mg versus
standard therapy

Intermittent
claudication patients

13 32 RCT-PG
EDD,

in�ammation

Improved EDD,
in�ammation
unchanged

Mindrescu
[124]

2008

4500mg n-3 PUFA +
rosuvastatin 10 g
versus rosuvastatin
10 g

Dyslipidemic patients 4 30 RCT-PG EDD, EID
Improved EDD

and EID

Rizza [125] 2009
1700–2000mg n-3
PUFA versus placebo

O�spring of type 2
diabetic subjects

12 50 RCT-PC
EDD,

in�ammation
Improved EDD

and in�ammation

Wong [99] 2010
4000mg n-3 PUFA
versus control
(olive oil)

Type 2 diabetes
mellitus

12 97 RCT-PG
EDD, CRP,

renal
function

Improved renal
function; no e�ect
on EDD or CRP
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(b) Continued.

First author Year Dose Sample
Duration

(w)
Number

Study
design

Outcome
measure

Results

Stirban [100] 2010
2000mg versus
control (olive oil)

Type 2 diabetes
mellitus

6 34 RCT-PC
Postprandial

EDD
Improved

postprandial EDD

Sanders [58] 2011
450–900 or 1800mg
n-3 PUFA vresus
placebo (re
ned oil)

Healthy subjects 51 310 RCT-PC EDD
Unchanged EDD

and EID

Skulas-Ray
[101]

2011
850 or 3400mg versus
placebo

Moderate
hypertriglyceridemia

8 26 RTC-PC
EDD, IL-6,

CRP
No e�ect on EDD,

IL-6, or CRP

Moertl [103] 2011
1000 or 4000mg n-3
PUFA versus placebo

CHF 12 43 RCT-PC
LVEF, EDD,

IL-6
Improved LVEF,
EDD, and IL-6

Haberka
[104]

2011

1000mg n-3 PUFA
versus control
(standard diet and
therapy)

Previous AMI 12 40 RCT-PG EDD, EID
Improved EDD;
EID unchanged

Din [105] 2013
2000mg n-3 PUFA
versus placebo

Cigarette smokers 6 20 RCT-PC
EDD,

P-selectin,
CD40L

Improved EDD
and P selectin;

CD40L unchanged

Din [108] 2013
2000mg n-3 PUFA
versus placebo

Previous AMI 6 20 RCT-PC
EDD,

P-selectin,
CD40L

No e�ect

n-3 PUFA, omega-3 polyunsaturated fatty acids; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; EDD, endothelium dependent dilation;
EID: endothelium independent dilation; AMI: acute myocardial infarction; CHF: chronic heart failure; LVEF: le� ventricular ejection fraction; IL-
6: interleukin-6; CRP: C reactive protein; AES, animal experimental study; RCT, randomized clinical trial; CT, clinical trial; PG, parallel groups; PC,
placebo controlled; d, day; w, week.

indirectly also the triglyceride-lowering e�ect contributes
to improved endothelial function o�en observed in these
conditions.

8. n-3 PUFA and Endothelial Dysfunction:
In Vivo Human Studies

n-3 PUFA show the potential to improve endothelial dysfunc-
tion by activating NO production via di�erent mechanisms
and by reducing vascular oxidative stress and in�ammation
(Figure 1). Many studies have evaluated the e�ect of n-
3 PUFA on human endothelial function and the results
have been reported by two recent meta-analyses [95, 96],
whose conclusions are not completely concordant. For review
reasons, we will focus on studies published during the last 5
years. One issue that needs to be considered when evaluating
the e�ect of n-3 PUFA supplementation on endothelial
function is the poverty of data on n-3 PUFA basal enrichment
in the patient population under consideration.�e amount of
n-3 PUFA in biological membranes can be directly extrapo-
lated bymeasuring the omega-3 index in red blood cell mem-
branes [97, 98] or by determining plasma concentrations of
EPA + DHA which have shown a good correlation with their
membrane levels [89]. �is point is crucial as conditions
characterized by n-3 PUFA depletion may mostly bene
t
from their supplementation. In a recent study conducted
in an experimental model of menopause, de
ciency of n-3
PUFA demonstrated by low omega-3 index was associated
with endothelial dysfunction and increased oxidative stress,
which were reversed by e�cient n-3 PUFA supplementation,
resulting in normalization of omega-3 index [82].Having said

this, clinical trials on the e�ects of n-3 PUFA on endothelial
function are signi
cantly heterogeneous in

(i) number of included participants;

(ii) inclusion criteria: age of participants, healthy or
disease state, have been studied;

(iii) markers of endothelial function: in addition to �ow-
mediated dilation, at least 7 di�erent classes of surro-
gate markers have been tested in the last 5 years. �e
most frequent categories tested, according to their
di�erent pathophysiological roles, are proin�amma-
tory and anti-in�ammatory cytokines, endothelial
progenitor cells, markers of platelet activation, of

brinolysis, of thrombosis, and of coagulation, and
markers of oxidative stress [98–102];

(iv) dose and duration of treatment: doses ranging from
0.45 up to 4 grams have been tested as well as
treatments ranging from 4 to 52 weeks [58, 103, 104];

(v) forms of n-3 PUFA: EPA, DHA, or ALA has been
administered alone or in combination;

(vi) concomitant therapy: most of the studies on dis-
ease states do not provide accurate information on
concomitant therapy, particularly on drugs known
to improve endothelial function such as statins and
ACE inhibitors/angiotensin receptor blockers. �e
presence of a robust concomitant therapy might
improve endothelial function independently of n-3
PUFA (especially at low doses) in high risk patients.
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So far, most studies have cautiously suggested that supple-
mentation with n-3 PUFA might improve endothelial func-
tion. However, whether the amplitude of this e�ect depends
on healthy or disease state or on the administered dose
or whether the n-3 PUFA composition of supplementation
di�erentially a�ects the outcome is currently unclear. In
smokers, where the bias of concomitant therapies is not an
issue, two recent studies have shown that n-3 PUFA supple-
mentation for six and twelve weeks, respectively, improves
endothelial function [54, 105]. In patients with moderate car-
diovascular risk Seely et al. performed a meta-analysis where
again quality and power of the available studies precluded any
de
nite conclusion [106]. However, low-strength evidence
seemed to suggest a bene
t of n-3 PUFA in endothelial
dysfunction. Similar results have been reported in high risk
patients with previous myocardial infarction [104] although
a recent comprehensive meta-analysis and a recent study in a
similar population do not con
rm these 
ndings [107, 108].

When considering moderate/high risk patients assuming
polytherapy, the issue of cost/bene
t in terms of clinical e�-
ciency and potential harms is important. �erefore, stronger
evidence is needed before large scale prescription of n-3
PUFA in this population.

9. Endothelial-Independent Vasodilation
and n-3 PUFA

Technically, �ow-mediated dilation is the result of both
endothelial-derived vasodilation (which is mainly NO-
dependent) and endothelial-independent vasorelaxation.�e
latter depends on the ability of smooth muscle cells to
respond to nitric oxide and therefore measures the integrity
of arterial media. �e hypotensive e�ect of n-3 PUFA can
partly be explained by this mechanism. �erefore, when
measuring FMD in vivo in humans, it is di�cult to dissect
the relative contribution of endothelium and smooth muscle
cells unless a selective agonist is administered (muscarinic
receptor agonist for EDD and NO donor for EID). A recent
study addressed the physiologicmechanisms of EPA-induced
relaxation in pulmonary arteries from an animal model [109]
and showed that in these conditions the contribution of
endothelium-derived NO release to vasodilation is promi-
nent, while that mediated by endothelium-independent
mechanisms is negligible.

�ese 
ndings are in line with data from human studies,
showing that when controlled trials assessing EID are con-
sidered, no signi
cant e�ect of n-3 PUFA on EID is observed
[96].

10. Conclusive Remarks

By targeting both arterial wall sti�ness and endothelial dys-
function n-3 PUFA have the potential to bene
cially impact
arterial wall remodeling and cardiovascular outcomes. �eir
pleiotropic e�ects on systemic in�ammation, modulation
of lipid pro
le, and platelet aggregation contribute to the
reduction of cardiovascular risk. Although dissecting the
speci
c contribution of structural arterial remodeling to

overall cardiovascular risk is di�cult from experimental
studies conducted in high risk populations, current results are
encouraging. From here comes the need for large scale trials,
advocated by most of the available literature. �is process is
likely to involve selection of homogenous patient populations
in terms of target disease, endpoints, and modality of treat-
ment.
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