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Although a rigorous theoretical ground on metasurfaces has been established in recent years on the basis of

the equivalence principle, the majority of metasurfaces for converting a propagating wave into a surface wave are

developed in accordance with the so-called generalized Snell’s law being a simple heuristic rule for performing

wave transformations. Recently Tcvetkova et al. [Phys. Rev. B 97, 115447 (2018)] have rigorously studied

this problem by means of a reflecting anisotropic metasurface, which is unfortunately difficult to realize, and no

experimental results are available. In this paper, we propose an alternative practical design of a metasurface-based

converter by separating the incident plane wave and the surface wave in different half-spaces. It allows one

to preserve the polarization of the incident wave and substitute the anisotropic metasurface by an omega-

bianisotropic one. The problem is approached from two sides: By directly solving the corresponding boundary

problem and by considering the “time-reversed” scenario when a surface wave is converted into a nonuniform

plane wave. In particular, we reveal that an input surface wave plays an important role in the conversion process,

influencing the conversion efficiency. To validate the theory, we develop a practical three-layer metasurface

based on a conventional printed-circuit-board technology to mimic the omega-bianisotropic response at the

microwave frequency range. The design is verified by full-wave three-dimensional numerical simulations and

demonstrates high conversion efficiency. Obtained results are relevant independently of the frequency range and

can be generalized to acoustics domain. It enables novel applications, from efficient excitation of waveguide

modes in integrated photonic circuits to cloaking of large objects.

DOI: 10.1103/PhysRevB.100.125103

I. INTRODUCTION

Surface waves propagate along an interface and expo-

nentially decay away from it being localized on the sub-

wavelength scale. Historically, investigation of surface waves

started from the discovery of Zenneck waves at radio fre-

quencies and study of optical Wood’s anomalies that were

explained by the excitation of surface waves [1]. The basic

system that supports propagation of surface waves is repre-

sented by two half-spaces filled with a metal and a dielectric

[1]. In optical and infrared domains, the effect of strong field

localization of surface waves (or surface plasmon polaritons)

is used in many applications, and we list a few of them below.

Specht et al. developed a near-field microscopy technique that

*uladzislau.papou@centralesupelec.fr

harnesses surface plasmon polaritons (SPPs) and allows one to

significantly overcome the diffraction resolution limit [2]. On-

chip SPPs-based high-sensitivity biosensor platforms were

implemented and commercialized [3,4]. Surface-enhanced

Raman scattering is attributed to excitation of SPPs [5,6].

Application of SPPs in integrated photonic circuits enables

further miniaturization in comparison to silicon-based circuits

[7] and allows one to approach the problem of size compati-

bility with integrated electronics [8].

At lower frequencies (THz or microwaves), metals behave

like a perfect electric conductor, which does not allow a

surface wave to penetrate in the metallic region. However,

the fields extend it over long distances in a dielectric. For-

tunately, the localization degree can be significantly increased

by making use of artificial structures as was demonstrated in

Refs. [9–14]. Properties of surface waves excited on a struc-

tured interface can be controlled by engineering the interface.

2469-9950/2019/100(12)/125103(10) 125103-1 ©2019 American Physical Society
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A surface wave propagating along a periodically structured

interface mimics optical SPPs and is called a spoof surface

plasmon polariton (SSPP). SSPPs allow one to significanty

expand the frequency range of SPPs applications. For in-

stance, SSPPs can be used in integrated microwave photonics

[15–17].

Metasurfaces (or thin two-dimensional [2D] equivalents

of metamaterials) provide a useful tool for manipulation of

surface waves [18–20] and are not restricted to mere sup-

port of propagation of spoof SPPs. Maci et al. proposed in

Ref. [21] a general approach for transforming a wavefront

of a surface wave by locally engineering the dispersion re-

lation with spatially modulated metasurfaces. For instance,

a metasurface-based Luneburg lens for surface waves was

demonstrated in Refs. [21,22]. Spatial modulation signifi-

cantly broadens the range of applications of metasurfaces

and allows one to link propagating waves and surface waves.

Metasurface-based leaky-wave antennas radiating a surface

wave (or more generally, a waveguide mode) into free space

were developed in Refs. [23–26]. Vice versa, one can take

advantage of spatially modulated metasurfaces to convert an

incident propagating plane wave into a surface wave [see the

schematics in Fig. 1(a)], as it was suggested by Sun et al.

in Ref. [27]. In this case, an excited surface wave is not an

eigenwave and can propagate along a metasurface only under

illumination (in contrast to SPPs and SSPPs). However, one

can guide out an excited surface wave on an interface sup-

porting the propagation of the corresponding SSPP [27,28].

It is worth to note, that metasurface-based converters and

leaky-wave antennas are not equivalent, since the plane-wave

illumination is normally uniform (other designs also consider

Gaussian-beam illumination, see, e.g., Ref. [29]), while a

plane wave radiated by a leaky-wave antenna is essentially

inhomogeneous, as compared in Figs. 1(a) and 1(b).

Although a rigorous theoretical ground on metasurfaces

has been established in recent years on the basis of the equiva-

lence principle [30–32], the majority of metasurfaces for con-

verting a propagating wave into a surface wave are developed

in accordance with the so-called generalized Snell’s law (see,

e.g., Refs. [27,28,33]). Initially, the generalized Snell’s law

was applied to reflect or refract an incident wave at arbitrary

angles by engineering the phase of a scattered wave at each

point along a metasurface in order to create a linear spatial

evolution [34]. However, in this case the wave impedance

of the scattered wave is not equal to the wave impedance of

the incident wave. It makes the efficiency of the anomalous

reflection (refraction) decrease significantly when the angle

between the incident and reflected (refracted) wave increases

(corresponding to increased impedance mismatch) [31,35,36].

The outcome is even worse for conversion of a propagating

wave into a surface wave using the recipe provided by the

generalized Snell’s law. The wave impedance of the scattered

field is imaginary in this case (a propagating wave has a

real wave impedance), and the generalized Snell’s law does

not and cannot ensure a proper energy transfer between the

propagating wave and the surface wave [the amplitude of

the surface wave must increase along a reactive metasurface

according to the energy conservation law, as illustrated by

Fig. 1(a)]. As a result, losses have to be added to the system in

order to arrive to a meaningful solution [27], which makes the

FIG. 1. (a) Schematics of a metasurface converting a normally

incident plane wave into a transmitted surface wave with the prop-

agation constant βy and the growth rate αy. (b) Schematics of

a metasurface converting a surface wave into an inhomogeneous

plane wave propagating in the normal direction with the propagation

constant β ′
z.

generalized Snell’s law a tool for designing an absorber rather

than a converter (in addition to Ref. [27] see also Ref. [36]

where almost perfect absorption is demonstrated by exciting a

single evanescent Floquet mode).

Recently Tcvetkova et al. have for the first time rigorously

studied the problem of conversion of an incident plane wave

into a surface wave with a growing amplitude [37] by means

of a reflecting anisotropic metasurface, described by tensor

surface parameters. The incident plane wave and the surface

wave had orthogonal polarizations in order to avoid interfer-

ence resulting in the requirement of “loss-gain” power flow

into the metasurface [35,36]. Unfortunately, the anisotropic

metasurface with the required impedance profile is difficult to

realize, and no experimental results are available.

In this paper, we elaborate on the work done by the au-

thors of Ref. [37] and propose an alternative practical design

125103-2
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of a metasurface-based converter by separating the incident

plane wave and the surface wave of the same polarization in

different half-spaces. A similar idea was used in Ref. [38]

for engineering reflection and transmission of propagating

plane waves. We demonstrate realistic implementation of the

converter based on a conventional printed circuit board and

confirm its high-efficiency performance via full-wave three-

dimensional (3D) simulations.

The rest of the paper is organized as follows. In Sec. II

we derive impedance matrix of a metasurface-based converter.

By means of 2D full-wave numerical simulations, we verify

theoretical findings in Sec. III and propose a topology of a

practically realizable metasurface. Section IV is devoted to

description of the design procedure and verification of the de-

sign via 3D full-wave simulations. Finally, Sec. V concludes

the paper.

II. THEORY

A. Impedance matrix of an ideal converter

We consider the conversion of a normally incident plane

wave with the magnetic field along the x axis into a trans-

mitted TM-polarized surface wave, as illustrated in Fig. 1(a).

Then the corresponding magnetic and electric fields read as

(assuming time-harmonic dependency in the form eiωt )

Hx2(y, z) = eikz, Ey2(y, z) = ηeikz,

Hx1(y, z) = Ae(αz+iβz )ze(αy−iβy )y,

Ey1(y, z) = −
iη(αz + iβz )

k
Ae(αz+iβz )ze(αy−iβy )y. (1)

Indices 2 and 1 denote the fields above and below the meta-

surface, respectively, k is the free-space wave number, and

η is the free-space impedance. All the parameters α and

β are greater than zero and obey the dispersion relation

(αz + iβz )2 + (αy − iβy)2 = −k2. The extinction coefficients

αz and αy result in the surface wave attenuation away from the

metasurface and in its growth along the metasurface (along

the +y direction).

We avoid interference between the incident and scattered

waves by introducing the latter one only in the bottom half-

space. Otherwise, the interference would result in complex

power flow distribution, making it difficult to satisfy power

conservation conditions locally without gain and lossy struc-

tures (also discussed below). The chosen configuration when

the incident and scattered waves propagate in different half-

spaces allows us to deal with waves of the same polarization.

We characterize the metasurface by a 2 × 2 impedance

matrix ¯̄Z (y). It allows one to understand the most fundamental

properties of a system disregarding its concrete physical im-

plementation. In terms of an impedance matrix, the boundary

conditions determining a metasurface can be written in the

following matrix form:
[

Ey1(y, 0)

Ey2(y, 0)

]

=
[

Z11(y) Z12(y)

Z21(y) Z22(y)

][

−Hx1(y, 0)

Hx2(y, 0)

]

. (2)

The set of Eqs. (2) serves to find the impedance matrix nec-

essary to perform the transformation defined by Eq. (1). Un-

fortunately, the desired field distribution Eq. (1) does not sat-

isfy these impedance conditions for any reactive metasurface

( ¯̄Z = − ¯̄Z†, the symbol † stands for the Hermitian conjugate).

The physical reason for this conclusion is that the ansatz fields

do not satisfy the energy conservation principle for any choice

of the surface-wave parameters [37]. Although negative, it is

an important result: The condition of locally passive metasur-

face is a crucial obstacle that does not allow one to perform an

ideal conversion of a propagating plane wave into a growing

surface wave. Thus, we omit this requirement and proceed

with a more general impedance matrix ¯̄Z = i ¯̄X , where ¯̄X is

a real-valued matrix. Substituting this ansatz in Eq. (2), one

arrives at the following expression for ¯̄Z:

¯̄Z (y) = −iη

⎡

⎣

−αz

k
+ βz

k
cot[βyy]

βz

k

A csc[βyy]

exp[−αyy]

csc[βyy]

A exp[αyy]
cot[βyy]

⎤

⎦. (3)

Since X12 �= X21, the impedance matrix (3) corresponds to

a nonreciprocal and locally active or lossy metasurface.

Equation (2) has other than ¯̄Z = i ¯̄X forms of solutions, as was

shown in Ref. [37] for an anisotropic metasurface. However,

for any exact solution, one arrives at the same conclusion:

The impedance matrix corresponds to either reciprocal or

nonreciprocal but always locally active or lossy metasurface.

Noteworthy, active and lossy responses do not necessarily

mean that the metasurface must locally radiate or absorb elec-

tromagnetic waves. We speculate that a metasurface possess-

ing strong spatial dispersion can be designed, as was done in

Refs. [39,40] for controlling reflection of propagating waves.

Unfortunately, the design procedure of such metasurfaces is

still based on the local periodic approximation [41,42], which

does not allow one to set the near field found a priori [40].

B. Small growth approximation

Conventional leaky-wave antennas perform the conversion

of a waveguide mode (e.g., a surface wave) into a propagat-

ing wave [43]. It makes one think of the reciprocal, “time-

reversed” process of converting a propagating wave into a sur-

face wave. We use the quotes to stress that a wave radiated by

a leaky-wave antenna is necessarily inhomogeneous, while we

are particularly interested in converting a homogeneous plane

wave into a surface wave. Therefore, these two problems are

not equivalent. Nevertheless, in practice there are only finite-

size antennas, and the inhomogeneity can be made arbitrarily

small, which, however, reduces the aperture efficiency. Let us

find the impedance matrix of a metasurface-based leaky-wave

antenna converting a TM-polarized surface wave

Hx1(y, z) = Ae(αz−iβz )ze(αy+iβy )y (4)

into an inhomogeneous propagating plane wave with the

magnetic field along the x direction

Hx2(y, z) = e−iβ ′
zz+αyy. (5)

Here β ′
z =

√
k2 + α2

y is the propagation constant of the radi-

ated wave. Figure 1(b) depicts a schematics of this process.

The impedance matrix ¯̄Z (y) is found by solving the boundary

problem formulated in Eq. (2) and becomes symmetric when

A =
√

β ′
z/βz, thus, corresponding to a reactive and reciprocal
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metasurface

¯̄Z (y) = −iη

⎡

⎣

−αz

k
+ βz

k
cot[βyy]

√
βzβ ′

z

k
csc[βyy]

√
βzβ ′

z

k
csc[βyy] k

β ′
z

cot[βyy]

⎤

⎦. (6)

Noteworthy, in Ref. [25] Tcvetkova et al. arrived at a similar

impedance matrix for an anisotropic metasurface. The reader

is also directed to Ref. [26], where the authors consider an

omega-bianisotropic metasurface-based leaky-wave antenna

radiating a waveguide mode that propagates between the

metasurface and a ground plane. In strong contrast with

Ref. [26], we employ the concept of leaky-wave antennas as

a tool to approach the problem of converting a uniform plane

wave into a surface wave as discussed further.

The reciprocity of the impedance matrix (6) allows one

to harness the corresponding metasurface for converting the

inhomogeneous plane wave at normal incidence (5) into the

surface wave (4). Since we are particularly interested in

converting a homogeneous plane wave (this is the case in

most practical situations when the source of waves is in the

far zone of the metasurface), the total growth of the surface

wave amplitude along the length of the metasurface has to

remain small. Mathematically, the small-growth condition can

be expressed as αyL0 ≪ 1, where L0 is the total size of the

metasurface in the y direction. Under the condition αyL0 ≪ 1

the impedance matrix (6) (as well as the one given by Eq. (3)

when A =
√

k/βz) converges to the following matrix:

¯̄Z (y) = −iη

⎡

⎣

−αz

k
+ βz

k
cot[βyy]

√

βz

k
csc[βyy]

√

βz

k
csc[βyy] cot[βyy]

⎤

⎦. (7)

Reactive and symmetric impedance matrix (7) represents an

approximate solution of the boundary problem (2) and cannot

realize exactly the transformation represented by Eq. (1) even

in case of small (but finite) values of the parameter αyL0. Ad-

ditional waves [not present in Eq. (1)] will be excited and play

the role of auxiliary waves in the conservation of local normal

power flow [38–40]. Furthermore, in order to satisfy the

small-growth condition for a metasurface with the impedance

matrix (7), an input surface wave should be excited. Tcvetkova

et al. arrived at the same conclusion in Ref. [37]. Indeed, the

time-averaged power flow density associated with the surface

wave in Eq. (1) has exponential growth along the metasurface

that becomes nearly linear under the small-growth assumption

(being nonzero along the whole metasurface since |αyy| ≪ 1)

given by

SSW (y, 0) ≈
η

2
(1 + 2αyy)

(

βy

βz

y0 − z0

)

. (8)

In order to create the initial power flow (at y = 0) along the

y direction in accordance with Eq. (8), the amplitude of the

input surface wave should be equal to
√

k/βz [the amplitude

of the excited surface wave (1)]. Vice versa, the amplitude of

the excited surface wave will be equal to the one of the input

surface wave. Since there are two excitation sources (incident

homogeneous plane wave and input surface wave), one has

to correctly adjust the complex amplitude of the input surface

wave: It must be in phase with that of the incident plane wave,

and its magnitude must be
√

k/βz times larger. Only under

these conditions is nearly all the power of the incident plane

wave transferred to the surface wave. Practically, the adjusting

procedure can be performed by tuning the power and the phase

of the input surface wave (for instance) while measuring the

power of the output surface wave. The procedure is over as

soon as the maximum of the output power is found.

In spite of all the limitations listed above, the impedance

matrix (7) seems to be the only possible periodic, reactive,

and reciprocal solution for the conversion problem, which is

formulated by Eq. (1) and Eqs. (4) and (5). In what follows,

we use only the impedance matrix given by Eq. (7).

III. RESULTS OF 2D SIMULATIONS

In this section we present and analyze results of 2D full-

wave numerical simulations on the conversion of an homo-

geneous incident plane wave into a surface wave. In the 2D

simulations a metasurface was modeled by means of boundary

conditions as described in more detail further.

A. Omega-bianisotropic combined sheet

A metasurface characterized by a symmetric impedance

matrix can be realized as a combined sheet possessing omega-

bianisotropic response. Then an incident wave excites electric

Jes and magnetic Jms surface polarization currents, which

results in the discontinuity of both tangential electric and

magnetic fields at the metasurface. In the particular case when

the magnetic field is along the x direction, the boundary

conditions read as

Hx2(y, 0) − Hx1(y, 0) = Jes(y),

Ey2(y, 0) − Ey1(y, 0) = Jms(y),

Jes =
1

Zes

E1y + Ey2

2
+ Kme

H1x + H2x

2
,

Jms = Zms

H1y + Hy2

2
− Kme

E1x + E2x

2
. (9)

Here Zes and Zms are, respectively, electric and magnetic

surface impedances, and Kme is the magneto-electric coupling

coefficient. When comparing Eq. (2) with Eq. (9), the surface

impedances and coupling coefficient can be expressed in

terms of the components of the impedance matrix

Zes =
1

4

2
∑

a,b=1

Zab, Zms =
det[ ¯̄Z]

Zes

, Kme =
Z11 − Z22

2Zes

,

(10)

where det[ ¯̄Z] = Z11Z22 − Z2
12 is the determinant of ¯̄Z .

In order to verify theoretical findings and estimate the

conversion efficiency, we perform 2D full-wave numerical

simulations with COMSOL MULTIPHYSICS. The metasur-

face is represented by electric and magnetic surface currents

set in accordance with Eq. (9). A schematics of the model

is illustrated in Fig. 2(a). Thus, the conversion efficiency is

defined as the difference between the output power from Port

125103-4
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FIG. 2. Schematics of the COMSOL models used for simulating the conversion with (a) omega-bianisotropic combined sheet and

(b) asymmetric three-layer structure. Port 1 launches the normally incident plane wave. Port 2 either launches or accepts the surface wave.

Port 3 accepts only the excited surface wave. (c–d) Zooming of the three-layer metasurface with metallic walls [implemented with vias in

panel (d)] separating individual unit cells, n is the number of unit cells per a super cell, Zi (i = 1, 2, 3) is the electric surface impedance of the

corresponding sheet.

3 (P3) and the input power from Port 2 (P2) divided over the

power delivered by the incident plane wave from Port 1 (P1):

(P3 − P2)/P1.

Figure 3(a) validates the small-growth approximation. It

is seen that the conversion efficiency approaches 1 and does

not depend on the total length of the metasurface up to

FIG. 3. (a) Conversion efficiency vs the total length of the metasurface (expressed in terms of the number of periods) for different growth

rates αy of the surface wave, when Port 2 is on and excites an input surface wave. (b–c) Normalized power received by the Ports (b) 3 and

(c) 2 vs the total length of metasurface, when Port 2 is listening (no input surface wave). (d–g) Snapshots of the magnetic field for a metasurface

with 10 periods; the growth rates are (d, f) αy = 0.001k and (e, g) αy = 0.01k. Port 2 is on in panels (d–e) and off in panels (f–g). The arrows

depict directions of the power flow density. (h) Continuous and (i) discretized components (imaginary parts) of the impedance matrix as

functions of the y coordinate. (j) Conversion efficiency in case of a discretized impedance matrix vs the number of unit cells per period (total

length of a metasurface is 10L) for different growth rates αy of the surface wave, when Port 2 is on. In all figures metasurface is represented by

an omega-bianisotropic combined sheet, and propagation constant of the surface wave equals βy = 1.05k.
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FIG. 4. (a) Conversion efficiency vs the total length of metasurface (expressed in terms of the number of periods) for different growth rates

αy of the surface wave, when Port 2 excites an input surface wave. (b, c) Normalized power received by the Ports (b) 3 and (c) 2 vs the total

length of metasurface, when Port 2 is listening (no input surface wave). Metasurface is represented by an asymmetric three-layer structure

incorporating metallic walls, the impedance matrix is discretized with four unit cells per period.

αyL0 ≈ 0.01. When increasing the growth rate αy (the rest of

the parameters are fixed), the conversion efficiency decreases

for longer metasurfaces, which leads to appearance of spu-

rious scattering in the far-field [compare distribution of the

power flow density in Figs. 3(d) and 3(e)].

As was noticed above, the small-growth approximation can

be strictly valid only when there is an input surface wave

from Port 2. Figures 3(b) and 3(c) demonstrate the scenario

when Port 2 is listening. In bright contrast to the case of

Fig. 3(a), the part of the power of the incident wave coupled

to the surface wave increases (but eventually saturates) for

larger values of αyL0, as compared in Figs. 3(a) and 3(b).

The difference stems from the normal power flow mismatch

at the left end of the metasurface occurring in the case when

Port 2 is switched off. In the result, surface waves propagating

along and opposite to the y axis are excited when there is no

input surface wave as demonstrated by Figs. 3(b) and 3(c).

Moreover, it is seen that for small αyL0 the power received

by Port 2 is approximately equal to the power received by

Port 3, and a significant portion of incident power appears in

the far field as spurious scattering. Snapshots of the magnetic

field depicted in Figs. 3(f) and 3(g) show the influence of

the spurious scattering on the field profile and power flow

distribution in the cases of small (αy = 0.001k) and large

(αy = 0.01k) growth rates. Specific attention should be paid to

the region above the metasurface: Disturbed normally incident

power flow indicates the spurious scattering in the far field.

Although the portion of incident power transferred to

the surface wave is considerably higher in case there is an

input surface wave, the conversion of a propagating wave into

a surface wave usually assumes absence of any input surface

wave. At this point one can conclude that metasurfaces do not

represent the best approach to the problem but, however, can

perform very efficient enhancement of an input surface wave

(phase and amplitude of the incident plane wave should be

accordingly adjusted as discussed in Sec. II).

Practically, it is important to study the influence of the

discretization of a continuous impedance matrix on the per-

formance of a metasurface. The discretized impedance matrix

is found from the continuous one as ¯̄Z[y − mod(y, L/n) +
L/n/2], where n is the number of unit cells per period.

The components of the impedance matrix as functions of

y are plotted in Fig. 3(h) for βy = 1.05k and αy = 0.005k.

The components (as functions of y) of the corresponding

discretized impedance matrix (n = 4) are shown in Fig. 3(i).

Figure 3(j) demonstrates that only in the case of two unit

cells per period there is a drop in the conversion efficiency.

Making the discretization finer, the efficiency quickly grows

and reaches the limit of the continuous impedance matrix

for as few as n = 4 unit cells per period. This result is very

important as it allows one to use large unit cell and simplify

the converter design.

B. Three-layer asymmetric structure

Omega-bianisotropic response can be mimicked with three

impedance sheets separated by two dielectric substrates [32]

as illustrated in Figs. 2(b) and 2(c). In the COMSOL model

grid impedances are introduced via electric surface currents

(similarly to the previous section). From the transmission-line

(TL) theory, the impedance matrix (7) corresponds to the

following grid impedances [32]:

Z1 =
ηs tan(ksh)

i + ηs tan(ksh) Z11+Z12

det[ ¯̄Z]

,

Z2 = −
[ηs tan(ksh)]2 Z12

det[ ¯̄Z]

sec(ksh)2 − 2iηs tan(ksh) Z12

det[ ¯̄Z]

,

Z3 =
ηs tan(ksh)

i + ηs tan(ksh) Z22+Z12

det[ ¯̄Z]

, (11)

where ks = √
εsk and ηs = η/

√
εs, εs is the relative permit-

tivity of the dielectric substrates (each of thickness h). The

TL theory assumes that inside the substrates only waves

with the exp(∓iksz) spatial dependence propagate. This as-

sumption can be strictly valid only for spatially uniform

grid impedances. However, it is not the case of wave-

front transforming metasurfaces (and considered metasurface-

based converters of propagating waves into surface waves),

which require spatial modulation of impedances. Indeed,

closely placed spatially modulated impedance sheets also

interact via waves propagating along the substrates, which

are not taken into account by Eq. (11). In order to improve

the accuracy of the TL theory, one can use very thin high

permittivity substrates [32], which make the waves refract
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closer to the normal direction. Unfortunately, it still does not

allow one to design the grid impedances separately by means

of only Eq. (11) due to the coupling between adjacent unit

cells via higher order modes. Instead, Eq. (11) provides a

coarse approximation which is used as a first step of a design

procedure aimed at obtaining a given impedance matrix.

The waves propagating along the substrates can be cut off

by means of metallic walls separating each unit cell from

the others (in analogy with the idea introduced in acoustics

[44]), as shown in Fig. 2(c). Practically, metallic walls can

be implemented as arrays of metallic vias in a multilayer

printed circuit board. Such a design solution allows one to

use substrates of arbitrary large thicknesses h and perform

design of a sample considering each grid impedance sepa-

rately. Since a pair of metallic walls represents a parallel plate

waveguide inside a unit cell, waves can propagate with tan-

gential component of wave vector taking the discrete values

βm = mπ/d where d = L/n and m = 0,±1,±2,.... Thus, the

finer the discretization, the less is the interaction between the

adjacent grid impedances. However, practically it is easier

to increase the substrate thickness than to decrease the unit

cell size in order to reduce the interaction via higher order

spatial harmonics. Figure 4 demonstrates the dependence of

the conversion efficiency on the total length of metasurface

and the growth rate αy when there is and there is no an input

surface wave from Port 2 [see Fig. 2(b)]. By comparing Figs. 3

and 4, one can see that the results for the practical three-layer

structure qualitatively repeat those for omega-bianisotropic

combined sheet while quantitative differences are minor and

can be explained by the impedance mismatch between Port 2

and the three-layer metasurface, as presented in Fig. 2(b).

IV. SAMPLE DESIGN AND RESULTS OF 3D SIMULATIONS

The next step towards a real metasurface-based converter

is to implement (by means of metallic patterns) three grid

impedances found from Eq. (11). The design is performed

at the chosen operating frequency of 10 GHz in accordance

with the requirements of conventional printed-circuit-board

technology. On the basis of the conducted analysis of 2D

simulations, we have chosen the growth rate parameter equal

to 0.005k and the propagation constant of the surface wave

as 1.05k. Eventually, we validate the developed design by

comparing the results of 2D and 3D full-wave numerical

simulations for a metasurface of total length L0 = 10L.

FIG. 5. Topology of the copper (in yellow color) patterns im-

plementing grid impedances in the three-layer design of the meta-

surface performing the conversion of a normally incident plane

wave into the surface wave with βy = 1.05k and αy = 0.005k at

the frequency 10 GHz. There are four unit cells per period (L =
2π/βy ≈ 28.57 mm) separated by metallic walls (illustrated by red

rectangles). Thickness of the copper cladding is 35 µm. Minimal

width of copper traces and gaps is 0.35 mm.

The design procedure is based on the commonly used

local periodic approximation (see, e.g., Refs. [41,42]). Each

grid impedance is designed separately. It is possible due to

incorporation of metallic walls and usage of thick dielec-

tric substrates. Specifically, commercially available F4BM220

substrates with relative permittivity εs = 2.2(1 − i10−3) and

thickness h = 5 mm are used. The topology of the designed

grid impedances is depicted in Fig. 5, and geometrical param-

eters are specified in Table I.

In order to validate the design, we exploit the reciprocal

scenario when the metasurface is excited from Port 3 and Port

2 is listening (Port 1 is absent in this geometry). We compare

2D and 3D simulations. The schematics of the model is shown

in Fig. 6(a). In such a configuration the metasurface trans-

forms the input surface wave from Port 3 into a propagating

wave and becomes a leaky-wave antenna. Figures 6(b) and

6(c) compare the distribution of the magnetic field obtained in

TABLE I. Physical dimensions of the designed metasurface. Parameter w represents the width of the strip or slot for each inductive or

capacitive impedance. Parameter l is the length of the meander in the strips or slots.

Cell 1 Cell 2 Cell 3 Cell 4

No meanders 2 meanders 4 meanders 2 meanders

Top w = 1.23 mm w = 0.35 mm w = 0.35 mm w = 0.35 mm

l = 4.48 mm l = 1.35 mm l = 2.65 mm

2 meanders 2 meanders 2 meanders 2 meanders

Middle w = 0.35 mm w = 0.35 mm w = 0.35 mm w = 0.35 mm

l = 1.23 mm l = 1.52 mm l = 1.82 mm l = 1.52 mm

1 meander 1 meander 1 meander 1 meander

Bottom w = 0.35 mm w = 0.35 mm w = 0.35 mm w = 0.35 mm

l = 1.49 mm l = 2.27 mm l = 2.60 mm l = 1.10 mm
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FIG. 6. (a) Schematics of the COMSOL model used for com-

paring 2D (three-layer metasurface) and 3D (grid impedances are

substituted by metallic patterns) simulations, WG section represents

surface waveguide implemented as an impedance boundary condi-

tion ZW G = iηαz/k. Port 2 accepts the surface wave, and Port 3

excites an input surface wave. (b, c) Snapshots of the magnetic

field for the metasurfaces with 10 periods in the (b) 2D and (c) 3D

simulations; the growth rate is 0.005k. The arrows depict directions

of the power flow density. (d) Magnetic field along the metasurface

(at the distance λ/10 below the metasurface) extracted from 2D (red

curve) and 3D (blue curve) simulations.

the 2D and 3D simulations, respectively. Figure 6(d) allows

one to see the difference between the magnetic fields at the

distance λ/10 below the metasurface. Since the metasurface is

designed in accordance with the slow growth approximation,

not all the power of the surface wave from Port 3 is launched

as a leaky wave (approximately 50% of power is radiated in

the considered example). Thus, the surface wave entering Port

2 in Fig. 6 is the equivalent of the input surface wave in Figs. 3

and 4.

V. DISCUSSION AND CONCLUSION

We have theoretically studied conversion of a normally

incident plane wave into a transmitted surface wave by means

of a scalar omega-bianisotropic metasurface. It allows one

to decouple the illumination from the scattered field without

changing its polarization and eventually significantly simpli-

fies the converter design. The problem has been approached

from two sides: By directly solving the corresponding bound-

ary problem and by considering the “time-reversed” scenario

when a surface wave is converted into a nonuniform plane

wave. In agreement with Ref. [37], we have concluded that the

perfect conversion of a uniform plane wave into a transmitted

surface wave requires the metasurface to exhibit loss-gain

response. On the other hand, a surface wave can be totally

radiated into a nonuniform plane wave by a reactive reciprocal

metasurface. When imposing the condition of a slowly grow-

ing surface wave, the two approaches lead to the same reactive

reciprocal metasurface, which can be used for converting a

uniform plane wave into a single surface wave with nearly

100% efficiency. The condition of slow growth requires an

input surface wave to create an initial power flow, which is

a necessary condition to have a metasurface with passive and

lossless elements.

The theoretical results have been validated through full-

wave 2D simulations by representing a metasurface as a com-

bined sheet with an omega-bianisotropic response. Next, we

have developed a practical three-layer metasurface based on

conventional printed-circuit-board technology to realize the

omega-bianisotropic response. The metasurface incorporates

metallic walls to avoid coupling between adjacent unit cells

and accelerate the design procedure. The design has been

validated by 2D and 3D simulations and has demonstrated

high conversion efficiency. Noteworthy, the three-layer struc-

ture is not the only way to achieve the response prescribed

by an asymmetric impedance matrix, and, generally, one just

needs to use asymmetric (with respect to the plane z = 0) unit

cells. Moreover, we have shown that as few as four unit cells

per supercell are enough to approximate continuous surface

impedances. It will facilitate implementation of metasurface

converters at higher frequencies (THz, infrared, or visible),

where other metasurface devices incorporating bianisotropic

elements have been already demonstrated [45–48]. The con-

cept of an impedance matrix is also used in studies on acoustic

metasurfaces, and recent advances in bianisotropic acoustic

metasurfaces [44,49] suggest that our results can be also

useful for converting acoustic propagating waves into surface

waves. To implement an acoustic converter, various designs of

unit cells can be found in the literature (see, e.g., Ref. [50]),

including straight pipes loaded with Helmholtz resonators

in series that were shown to demonstrate a bianisotropic

response [49].

Apart from a fundamental interest, solving the problem

of converting a propagating wave into a surface wave has

an important practical value. First of all, the metasurface

converter can be used for highly efficient excitation and

directional radiation of surface plasmon polaritons or other

waveguide modes in integrated photonic devices, which is

particularly challenging by conventional means (prisms, grat-

ings, or probes) at optical frequencies [5,51]. For applications
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at microwave frequencies, the results presented in this study

can be useful for the development of novel leaky-wave an-

tennas [25,26]. A compact in-plane polarimeter on the basis

of metasurface converters have been proposed in Ref. [52]

(see also Ref. [33]) for determining the polarization state

of light by simultaneously retrieving the associated Stokes

parameters. As yet another example, it has been recently

suggested in Ref. [53] that cloaking of large objects can be

realized by means of a spherical metasurface converting an

incident wave into a surface wave, which is then radiated

behind the metasurface to restore the incident wavefront.

In perspective, other strategies for approaching the con-

version problem can be considered in order to avoid the

complexity of implementing bianisotropic metasurfaces and

the necessity for an input surface wave to achieve perfect

conversion. For instance, a recently emerged concept of

metamaterials-inspired diffraction gratings (or metagratings)

has demonstrated unprecedented efficiency in manipulating

scattered waves with sparse arrays of polarizable particles

[54–56]. Due to the sparseness, metagratings inherently pos-

sess strong spatial dispersion, which together with a straight-

forward design procedure [57] can be beneficial for solving

the conversion problem. On the other hand, the near fields of

such a grating are represented by an infinite number of Floquet

modes, which makes it more challenging to selectively excite

a given mode. The importance of the input surface wave

can be reduced by means of a nonperiodic metasurface as

discussed in detail in Ref. [37].
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