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Abstract
A locally convex space (lcs) E is said to have an ωω-base if E has a neighborhood
base {Uα : α ∈ ωω} at zero such that Uβ ⊆ Uα for all α ≤ β. The class of lcs with
an ωω-base is large, among others contains all (L M)-spaces (hence (L F)-spaces),
strong duals of distinguished Fréchet lcs (hence spaces of distributions D′(�)). A
remarkable result of Cascales-Orihuela states that every compact set in an lcs with
an ωω-base is metrizable. Our main result shows that every uncountable-dimensional
lcs with an ωω-base contains an infinite-dimensional metrizable compact subset. On
the other hand, the countable-dimensional vector space ϕ endowed with the finest
locally convex topology has an ωω-base but contains no infinite-dimensional compact
subsets. It turns out that ϕ is a unique infinite-dimensional locally convex space which
is a kR-space containing no infinite-dimensional compact subsets. Applications to
spaces C p(X) are provided.

Keywords Locally convex space · ωω-base · Free space · Networks

Mathematics Subject Classification 46A50 · 46A17

The research of the Jerzy Ka̧kol is supported by the GAČR project 20-22230L and RVO: 67985840.
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1 Introduction

A topological space X is said to have a neighborhoodωω-base at a point x ∈ X if there
exists a neighborhood base (Uα(x))α∈ωω at x such that Uβ(x) ⊆ Uα(x) for all α ≤ β

in ωω. We say that X has an ωω-base if it has a neighborhood ωω-base at each point
of X . Evidently, a topological group (particularly topological vector space (tvs)) has
an ωω-base if it has a neighborhood ωω-base at the identity. The classical metrization
theorem of Birkhoff and Kakutani states that a topological group G is metrizable if
and only if G is first-countable. Then, as easily seen, if (Un)n∈ω is a neighborgood
base at the identity of G, then the family {Uα : α ∈ ωω} formed by sets Uα = Uα(0)
forms an ωω-base (at the identity) for G. Locally convex spaces (lcs) with an ωω-base
are known in Functional Analysis since 2003 when Cascales, Ka̧kol, and Saxon [7]
characterized quasi-barreled lcs with an ωω-base. In several papers (see [16] and the
references therein) spaces with an ωω-base were studied under the name lcs with a
G-base, but here we prefer (as in [4]) to use the more self-suggesting terminology of
ωω-bases.

In [8] Cascales andOrihuela proved that compact subsets of any lcswith anωω-base
are metrizable. This refers, among others, to each (L M)-space, i.e. a countable induc-
tive limit of metrizble lcs, since (L M)-spaces have an ωω-base. Also the following
metrization theorem holds together a number of topological conditions.

Theorem 1.1 [16, Corollary 15.5]For a barrelled lcs E with an ωω-base, the following
conditions are equivalent.

(1) E is metrizable;
(2) E is Fréchet-Urysohn;
(3) E is Baire-like;
(4) E does not contain a copy of ϕ, i.e. an ℵ0-dimensional vector space endowed with

the finest locally convex topology.

Hence every Baire lcs with an ωω-base is metrizable. The space ϕ appearing in The-
orem 1.1 has the following properties:

(1) ϕ is the strong dual of the Fréchet-Schwartz space R
ω.

(2) All compact subsets in ϕ are finite-dimensional.
(3) ϕ is a complete bornological space,

see [16,21,23].
Beingmotivated by above’s results, especially by a remarkable theoremofCascales-

Oruhuela mentioned above, one can ask for a possible large class of lcs E for which
every infinite-dimensional subspace of E contains an infinite-dimensional compact
(metrizable) subset. Surely, each metrizable lcs trivially fulfills this request. We prove
however the following general

Theorem 1.2 Every uncountably-dimensional lcs E with ωω-base contains an infinite-
dimensional metrizable compact subset.

Theorem 1.2 will be proved in Sect. 4. An alternative proof will be presented in
Sect. 5 as a consequence of Theorem 5.2.
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The uncountable dimensionality of the space E in Theorem 1.2 cannot be replaced
by the infinite-dimensionality of E : the space ϕ is infinite-dimensional, has an ωω-
base and contains no infinite-dimensional compact subsets. However, ϕ is a unique
locally convex kR-space with this property. Recall [20] that a topological space X is a
kR-space if a function f : X → R is continuous whenever for every compact subset
K ⊆ X the restriction f �K is continuous. We prove the following

Theorem 1.3 An lcs E is topologically isomorphic to the space ϕ if and only if E is a
kR-space containing no infinite-dimensional compact subsets.

Theorem 1.3 implies that an lcs is topologically isomorphic to ϕ if and only if it
is homeomorphic to ϕ. This topological uniqueness property of the space ϕ was first
proved by the first author in [2].

The following characterization of the space ϕ can be derived from Theorems 1.2
and 2.1. It shows that ϕ is a unique bornological space for which the uncountable
dimensionality in Theorem 1.2 cannot be weakened to infinite dimensionality.

Theorem 1.4 An lcs E is topologically isomorphic to the space ϕ if and only if E is
bornological, has an ωω-base and contains no infinite-dimensional compact subset.

Theorem 1.2 provides a large class of concrete (non-metrizable) lcs containing
infinite-dimensional compact sets.

Corollary 1.5 Every uncountable-dimensional subspace of an (L M)-space contains
an infinite-dimensional compact set.

Let X be a Tychonoff space. By C p(X) and Ck(X) we denote the space of contin-
uous real-valued functions on X endowed with the pointwise and the compact-open
topology, respectively. The problem of characterization of Tychonoff spaces X whose
function spaces C p(X) and Ck(X) admit an ωω-base is already solved. Indeed, by
[16, Corollary 15.2] C p(X) has an ωω-base if and only if X is countable. The space
Ck(X) has an ωω-base if and only if X admits a fundamental compact resolution [11],
for necessary definitions see below. Since every Čech-complete Lindelöf space X is a
continuous image of a Polish space under a perfect map (and the latter space admits
a fundamental compact resolution), the space C p(X) has an ωω-base. So, we have
another concrete application of Theorem 1.2.

Example 1.6 Let X be an infinite Čech-complete Lindelöf space. Then every
uncountable-dimensional subspace of Ck(X) contains an infinite-dimensional metriz-
able compact set.

In Sect. 2 we show that all (bornological) lcs containing no infinite-dimensional
compact subsets are bornologically (and topologically) isomorphic to a free lcs over
discrete topological spaces. Consequently, in Sects. 3 and 4 we study the free lcs
L(κ) over infinite cardinals κ , including L(ω) = ϕ. We introduce two concepts: the
(κ, λ)-tall bornology and the (κ, λ)p-equiconvergence, which will be used to obtain
bornological and topological characterizations of L(κ). Both concepts apply to prove
Theorem 1.2. To this end, we shall prove that each topological (vector) space with
an ωω-base is (ω1, ω)p-equiconvergent (and has (ω1, ω)-tall bornology). Another
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property implying the (ω1, ω)p-equiconvergence is the existence of a countable cs·-
network (see Theorem 4.2), which follows from the existence of anωω-base according
to Proposition 3.3. Linear counterparts of cs·-networks are radial networks introduced
in Sect. 5, whosemain result is Theorem 5.2 implying Theorem 1.2. Some applications
of Theorem 1.2 to function spaces C p(X) are provided in Sect. 6.

2 Locally convex spaces containing no infinite-dimensional compact
subsets

In this section we study lcs containing no infinite-dimensional compact subsets. We
shall show that all such (bornological) spaces are bornologically (and topologically)
isomorphic to free lcs over discrete topological spaces.

Recall that for a topological space X its free locally convex space is an lcs L(X)

endowed with a continuous function δ : X → L(X) such that for any continuous
function f : X → E to an lcs E there exists a unique linear continuous map T :
L(X) → E such that T ◦ δ = f . The set X forms a Hamel basis for L(X) and δ is
a topological embedding, see [22]; we also refer to [5] and [4] for several results and
references concerning this concept; [5, Theorem 5.4] characterizes those X for which
L(X) has an ωω-base.

Let E be a tvs. A subset B ⊆ E is called bounded if for every neighborhoodU ⊆ E
of zero there exists n ∈ N such that B ⊆ nU . The family of all bounded sets of E is
called the bornology of E . A linear operator f : E → F between two tvs is called
bounded if for any bounded set B ⊆ E its image f (B) is bounded in F .

Two tvs E and F are

• topologically isomorphic if there exists a linear bijective function f : E → F
such that f and f −1 are continuous;

• bornologically isomorphic if there exists a linear bijective function f : E → F
such that f and f −1 are bounded.

An lcs E is called bornological if each bounded linear operator from E to an lcs F
is continuous. A linear space E is called κ-dimensional if E has a Hamel basis of
cardinality κ . In this case we write κ = dim(E).

An lcs E is free if it carries the finest locally convex topology. In this case E is
topologically isomorphic to the free lcs L(κ) over the cardinal κ = dim(E) endowed
with the discrete topology.

The study around the free lcs L(ω) = ϕ has attracted specialists for a long time. For
example, Nyikos observed [21] that each sequentially closed subset of L(ω) is closed
although the sequential closure of a subset of ϕ need not be closed. Consequently,
L(ω) is a concrete “small” space without the Fréchet-Urysohn property. Applying the
Baire category theorem one shows that L(ω) is not a Baire-like space (in sense of
Saxon [23]) and a barrelled lcs E is Baire-like if E does not contain a copy of L(ω),
see [23]. Although L(ω) is not Fréchet-Urysohn, it provides some extra properties
since all vector subspaces in L(ω) are closed. In [17] we introduced the property
for an lcs E (under the name C−

3 ) stating that the sequential closure of every linear
subspace of E is sequentially closed, and we proved [17, Corollary 6.4] that the
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only infinite-dimensional Montel (DF)-space with property C−
3 is L(ω) (yielding a

remarkable result of Bonet and Defant that the only infinite-dimensional Silva space
with property C−

3 is L(ω)). This implies that barrelled (DF)-spaces and (L F)-spaces
satisfying property C−

3 are exactly of the form M , L(ω), or M × L(ω) where M is
metrizable, [17, Theorems 6.11, 6.13].

The following simple theorem characterizes lcs containing no infinite-dimensional
compact subsets.

Theorem 2.1 For an lcs E the following conditions are equivalent:

(1) Each compact subset of E has finite topological dimension.
(2) Each bounded linearly independent set in E is finite.
(3) E is bornologically isomorphic to a free lcs.

If E is bornological, then the conditions (1)–(3) are equivalent to
(4) E is free.

Proof (1) ⇒ (2) Suppose that each compact subset of E has finite topological dimen-
sion. Assuming that E contains an infinite bounded linearly indendent set, we can find
a bounded linearly independent set {xn}n∈ω consisting of pairwise distinct points xn .
Then the sequence (2−n xn)n∈ω converges to zero and

K = ⋃
n∈ω

{ 2n∑

k=n
tk xk : (tk)2n

k=n ∈
2n∏

k=n
[0, 2−k]}

is an infinite-dimensional compact set in E , which contradicts our assumption.
(2) ⇒ (3) Let τ be the finest locally convex topology on E . Then the identity map

(E, τ ) → E is continuous and hence bounded. If each bounded linearly independent
set in E is finite, then each bounded set B ⊆ E is contained in a finite-dimensional
subspace of E and hence is bounded in the topology τ . This means that the identity
map E → (E, τ ) is bounded and hence E is bornologically isomorphic to the free lcs
(E, τ ).

(3) ⇒ (1) If E is bornologically isomorphic to a free lcs F then each bounded
linearly independent set in E is finite, since the free lcs F has this property.

The implication (4) ⇒ (3) is trivial. If E is bornological then the implication
(3) ⇒ (4) follows from the continuity of bounded linear operators on bornological
spaces. 
�

The free lcs over discrete topological spaces are not unique lcs possessing no
infinite-dimensional compact sets. A subset B of a topological space X is called
functionally bounded if for any continuous real-valued function f : X → R the set
f (B) is bounded.

Proposition 2.2 For a Tychonoff space X the following conditions are equivalent:

(1) each compact subset of the free lcs L(X) has finite topological dimension;
(2) each bounded linearly independent set in L(X) is finite;
(3) each functionally bounded subset of X is finite.
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Proof The equivalence (1) ⇔ (2) follows from the corresponding equivalence in
Theorem 2.1. The implication (3) ⇒ (1) follows from [6, Lemma 10.11.3], and
(2) ⇒ (3) follows from the observation that each functionally bounded set in an lcs
is bounded. 
�

3 Bornological and topological characterizations of the spaces L(�)

In this section, given an infinite cardinal κ we characterize the free lcs L(κ) using
some specific properties of the bornology and the topology of the space L(κ).

Let κ, λ be two cardinals. An lcs E is defined to have (κ, λ)-tall bornology if every
subset A ⊆ E of cardinality |A| = κ contains a bounded subset B ⊆ A of cardinality
|A| = λ.

Theorem 3.1 Let κ be an infinite cardinal. For an lcs E the following conditions are
equivalent:

(1) E is bornologically isomorphic to the free lcs L(κ);
(2) each bounded linearly independent set in E is finite and the bornology of E is

(κ+, ω)-tall but not (κ, ω)-tall.
If E is bornological, then the conditions (1)–(2) are equivalent to

(3) E is topologically isomorphic to L(κ).

Proof (1) ⇒ (2): Assume that E is bornologically isomorphic to L(κ). Then E has
algebraic dimension κ and each bounded linearly independent set in E is finite (since
this is true in L(κ)).

To see that the bornology of E is (κ+, ω)-tall, take any set K ⊆ E of cardinality
|K | = κ+. Since E has algebraic dimension κ , there exists a cover (Bα)α∈κ of E
by κ many compact sets. By the Pigeonhole Principle, there exists α ∈ κ such that
|K ∩ Bα| = κ+. This means that the bornology of E is (κ+, κ+)-tall and hence
(κ+, ω)-tall.

To see that the bornology of the space E is not (κ, ω)-tall, observe that the Hamel
basis κ of L(κ) has the property that no infinite subset of κ is bounded in L(κ). Since
E is bornologically isomorphic to L(κ), the image of κ in E is a subset of cardinality
κ containing no bounded infinite subsets and witnessing that E is not (κ, ω)-tall.

(2) ⇒ (1): Assume that each bounded linearly independent set in E is finite and
the bornology of E is (κ+, ω)-tall but not (κ, ω)-tall. Let B be a Hamel basis of E . We
claim that |B| = κ . Assuming that |B| > κ , we conclude that E is not (κ+, ω)-tall,
which is a contradiction. Assuming that |B| < κ , we conclude that E is the union of
< κ many bounded sets and hence is (κ, κ)-tall by the Pigeonhole Principle. But this
contradicts our assumption. Therefore |B| = κ . Let h : κ → B be any bijection and
h̄ : L(κ) → E be the unique extension of h to a linear continuous operator. Since
B is a Hamel basis for E , the operator h̄ is bijective. Since each bounded set in E is
contained in a finite-dimensional linear subspace, the operator h̄−1 : E → L(κ) is
bounded and hence h̄ : L(κ) → E is a bornological isomorphism.

If the space E is bornological, then the equivalence (1) ⇔ (3) follows from the
bornological property of E and L(κ). 
�
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The (κ, ω)-tallness of the bornology of an lcs E has topological counterparts intro-
duced in the following definition.

Definition 3.2 Let κ, λ be cardinals. We say that a topological space X is

• (κ, λ)p-equiconvergent at a point x ∈ X if for any indexed family {xα}α∈κ ⊆ {s ∈
Xω : limn→∞ s(n) = x}, there exists a subset � ⊆ κ of cardinality |�| = λ such
that for every neighborhood Ox ⊆ X of x there exists n ∈ ω such that the set
{α ∈ � : xα(n) /∈ Ox } is finite;

• (κ, λ)k-equiconvergent at a point x ∈ X if for any indexed family {xα}α∈κ ⊆ {s ∈
Xω : limn→∞ s(n) = x}, there exists a subset � ⊆ κ of cardinality |�| = λ such
that for every neighborhood Ox ⊆ X of x there exists n ∈ ω such that for every
m ≥ n and α ∈ � we have xα(m) ∈ Ox ;

• (κ, λ)p-equiconvergent if X is (κ, λ)p-equiconvergent at every point x ∈ X ;
• (κ, λ)k-equiconvergent if X is (κ, λ)k-equiconvergent at every point x ∈ X .

It is easy to see that every (κ, λ)k-equiconvergent space is (κ, λ)p-equiconvergent.
The following observation will be used below.

Proposition 3.3 If an lcs E is (κ, λ)p-equiconvergent, then its bornology is (κ, λ)-tall.

Proof Given a subset K ⊆ E of cardinality |K | = κ , for every α ∈ K consider
the convergent sequence xα ∈ Xω defined by xα(n) = 2−nα. Assuming that the lcs
E is (κ, λ)p-equiconvergent, we can find a subset L ⊆ K of cardinality |L| = λ

such that for every neighborhood of zero U ⊆ E there exists n ∈ ω such that the
set {α ∈ L : 2−nα /∈ U } is finite. We claim that the set L is bounded. Indeed,
for every neighborhood U ⊆ E of zero, we find a neighborhood V ⊆ E of zero
such that [0, 1] · V ⊆ U . By our assumption, there exists n ∈ ω such that the set
F = {α ∈ K : 2−nα /∈ V } is finite. Find m ≥ n such that 2−mα ∈ U for every α ∈ F .
Then 2−m L ⊆ 2−m(L \ F) ∪ 2−m F ⊆ ([0, 1] · V ) ∪ U = U , and hence the set L is
bounded. 
�
Nevertheless, it seems that the following question remains open.

Problem 3.4 Assume that the bornology of an lcs E is (ω1, ω)-tall. Is it true that E is
(ω1, ω)p-equiconvergent?

Below we prove the following topological counterpart to Theorem 3.1.

Theorem 3.5 Let κ be an infinite cardinal. For an lcs E the following conditions are
equivalent:

(1) E is bornologically isomorphic to L(κ);
(2) each compact subset of E has finite topological dimension, E is (κ+, ω)k-

equiconvergent but not (κ, ω)p-equiconvergent.
(3) each compact subset of E has finite topological dimension, E is (κ+, ω)p-

equiconvergent but not (κ, ω)k-equiconvergent.
If E is bornological, then the conditions (1)–(3) are equivalent to

(4) E is topologically isomorphic to L(κ).
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Proof (1) ⇒ (2): Assume that E is bornologically isomorphic to L(κ). By Theo-
rems 3.1 each bounded linearly independent set in E is finite, and by Theorem 2.1,
each compact subset of E is finite-dimensional. The linear space E has algebraic
dimension κ , being isomorphic to the linear space L(κ). Let B be a Hamel basis for
the space E .

To show that E is (κ+, ω)k-equiconvergent, fix an indexed family {xα}α∈κ+ ⊆ {s ∈
Eω : limn→∞ s(n) = 0}. Since bounded linearly independent sets in E are finite, for
every α ∈ κ+ there exists a finite set Fα ⊆ B such that the bounded set xα[ω] is
contained in the linear hull of Fα . Since |B| = κ < κ+, by the Pigeonhole Principle,
for some finite set F ⊆ B the set A = {α ∈ κ+ : Fα = F} is uncountable. Let [F] be
the linear hull of the finite set F in the linear space E .

Consider the ordinal ω + 1 = ω ∪ {ω} endowed with the compact metrizable
topology generated by the linear order. For every α ∈ A let x̄α : ω + 1 → [F] be
the continuous function such that x̄α�ω = xα and x̄α(ω) = 0. Let Ck(ω + 1, [F])
be the space of continuous functions from ω + 1 to [F], endowed with the compact-
open topology. Since A is uncountable and the space Ck(ω + 1, [F]) ⊇ {x̄α}α∈A is
Polish, there exists a sequence {αn}n∈ω ⊆ A of pairwise distinct ordinals such that
the sequence (x̄αn )n∈ω converges to x̄α0 in the function space Ck(ω + 1, [F]). Then
the set � = {αn}n∈ω ⊆ κ+ witnesses that E is (κ+, ω)k-equiconvergent to zero and
by the topological homogeneity, E is (κ+, ω)-equiconvergent. By Theorem 3.1, the
bornology of the space E is not (κ, ω)-tall. By Proposition 3.3, the space E is not
(κ, ω)p-equiconvergent.

The implication (2) ⇒ (3) is trivial. To prove that (3) ⇒ (1), assume that each com-
pact subset of E has finite topological dimension and E is (κ+, ω)p-equiconvergent
but not (κ, ω)k-equiconvergent. Let B be a Hamel basis in E . By Theorem 2.1, the
space E is bornologically isomorphic to L(|B|). Applying the (already proved) impli-
cation (1) ⇒ (2), we conclude that E is (|B|+, ω)k-equiconvergent, which implies
that |B| ≥ κ (as E is not (κ, ω)k-equiconvergent). Assuming that |B| > κ , we can see
that the family {xb}b∈B ⊆ Eω of the sequences xb(n) = 2−nb witnesses that E is not
(|B|, ω)p-equiconvergent and hence not (κ+, ω)p-equiconvergent, which contradicts
our assumption. So, |B| = κ and E is bornologically isomorphic to L(κ). If the space
E is bornological, then the equivalence (1) ⇔ (4) follows from the bornological
property of E and L(κ). 
�

Observe that the purely topological properties (2), (3) in Theorem 3.5 characterize
the free lcs L(κ) up to bornological equivalence. We do not know whether the topo-
logical structure of the space L(κ) determines this lcs uniquely up to a topological
isomorphism.

Problem 3.6 Assume that an lcs E is homeomorphic to the free lcs L(κ) for some
cardinal κ . Is E topologically isomorphic to L(κ)?

By [2] the answer to this problem is affirmative for κ = ω. This affirmative answer can
also be derived from the following topological characterizations of the space L(ω) =
ϕ. This characterization has been announced in the introduction as Theorem 1.3.
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Theorem 3.7 An lcs E is topologically isomorphic to the free lcs L(ω) if and only
if E is an infinite-dimensional kR-space containing no infinite-dimensional compact
subset.

Proof The “only if” part follows from known topological properties of the space
L(ω) = ϕ mentioned in the introduction. To prove the “if” part, assume that an lcs
E is a kR-space and each compact subset of E is finite-dimensional. Choose a Hamel
basis B in E and consider the linear continuous operator T : L(B) → E such that
T (b) = b for each b ∈ B. Since B is a Hamel basis, the operator T is injective. We
claim that the operator T −1 : E → L(B) is bounded. By Theorem 2.1 the linear
hull of each compact subset K ⊆ E is finite-dimensional, which implies that the
restriction T −1�K is continuous. Since E is a kR-space, T −1 is continuous and hence
T is a topological isomorphism. Then the free lcs L(B) is a kR-space. Applying [15],
we conclude that B is countable and hence E is topologically isomorphic to L(ω). 
�

A Tychonoff space X is called Ascoli if the canonical map δ : X → Ck(Ck(X))

assigning to each point x ∈ X the Dirac functional δx : Ck(X) → R, δx : f �→ f (x),
is continuous. By [3], the class of Ascoli spaces includes all Tychonoff kR-spaces. By
[15] a Tychonoff space X is countable and discrete if and only if its free lcs L(X) is
Ascoli.

Problem 3.8 Assume that an infinite-dimensional lcs E is Ascoli and contains no
infinite-dimensional compact subsets. Is E topologically isomorphic to the space
L(ω)?

4 Equiconvergence of topological spaces and proof of Theorem 1.2

In this section we establish two results related to equiconvergence in topological
spaces.

Theorem 4.1 If a topological space X admits an ωω-base at a point x ∈ X, then X is
(ω1, ω)k-equiconvergent at the point x.

Proof Let (U f ) f ∈ωω be an ωω-base at x . To show that X is (ω1, ω)k-equiconvergent
at x , fix an indexed family

{xα}α∈ω1 ⊆ {s ∈ Xω : lim
n→∞ s(n) = x}

of sequences that converge to x . For every α ∈ ω1 consider the functionμα : ωω → ω

assigning to each f ∈ ωω the smallest number n ∈ ω such that {xα(m)}m≥n ⊆ U f . It
is easy to see that the function μα : ωω → ω is monotone.

For every n ∈ ω and finite function t ∈ ωn , let ωω
t = { f ∈ ωω : f �n = t}. By [4,

Lemma 2.3.5], for every f ∈ ωω there exists n ∈ ω such that μα[ωω
f �n] is finite. Let

Tα be the set of all finite functions t ∈ ω<ω = ⋃
n∈ω ωn such that μα[ωω

t ] is finite
but for any τ ∈ ω<ω with τ ⊂ t the set μα[ωω

τ ] is infinite. It follows from [4, Lemma
2.3.5] that for every f ∈ ωω there exists a unique t f ∈ Tα such that t f ⊂ f .
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Let δα( f ) = maxμα[ωω
t f

] ≥ μα( f ). It is clear that the function δα : ωω → ω is
continuous and hence δα is an element of the spaceC p(ω

ω, ω) of continuous functions
from ωω to ω. Here we endow ωω with the product topology. The function space
C p(ω

ω, ω) is endowed with the topology of poitwise convergence. By Michael’s
Proposition 10.4 in [19], the space C p(ω

ω, ω) has a countable network.
Consider the function δ : ω1 → C p(ω

ω, ω), δ : α �→ δα, and observe that
δα( f ) ≥ μα( f ) for any α ∈ ω1 and f ∈ ωω.

Since the space C p(ω
ω, ω) has countable network, there exists a sequence

{αn}n∈ω ⊆ ω1 of pairwise distinct ordinals such that the sequence (δαn )n∈ω converges
to δα0 in the function spaceC p(ω

ω, ω).We claim that the sequence (xαn )n∈ω witnesses
that X is (ω1, ω)k-equiconvergent at x . Given any open neighborhood Ox ⊆ X of x ,
find f ∈ ωω such thatU f ⊆ Ox . Since the sequence (xα0(n))n∈ω converges to x , there
exists m ∈ ω such that {xα0(n)}n≥m ⊆ U f . Since the sequence (δαn )n∈ω converges
to δα0 in C p(ω

ω, ω) we can replace m by a larger number and additionally assume
that δαn ( f ) = δα0( f ) for all n ≥ m. Choose a number l ≥ δα0( f ) such that for every
n < m and k ≥ l we have xαn (k) ∈ Ox . On the other hand, for every n ≥ m and k ≥ l
we have k ≥ l ≥ δα0( f ) = δαn ( f ) ≥ μαn ( f ) and hence xαn (k) ∈ U f ⊆ Ox . 
�

Another property implying the (ω1, ω)p-equiconvergence is the existence of a
countable cs•-network. First we introduce the necessary definitions.

Let x be a point of a topological space X . We say that a sequence {xn}n∈ω ⊆ X
accumulates at x if for each neighborhood U ⊆ X of x the set {n ∈ ω : xn ∈ U } is
infinite.

A family N of subsets of X is defined to be

• an s∗-network at x if for any neighborhood Ox ⊆ X of x and any sequence
{xn}n∈ω ⊆ X that accumulates at x there exists N ∈ N such that N ⊆ Ox and the
set {n ∈ ω : xn ∈ N } is infinite;

• a cs∗-network at x ∈ X if for any neighborhood Ox ⊆ X of x and any sequence
{xn}n∈ω ⊆ X that converges to x there exists N ∈ N such that N ⊆ Ox and the
set {n ∈ ω : xn ∈ N } is infinite;

• a cs•-network at x if for any neighborhood Ox ⊆ X of x and any sequence
{xn}n∈ω ⊆ X that converges to x there exists N ∈ N such that N ⊆ Ox and N
contains some point xn .

• a network at x if for any neighborhood Ox ⊆ X the union
⋃{N ∈ N : N ⊆ Ox }

is a neighborhood of x ;

It is clear that for any familyN of subsets of a topological space X and any x ∈ X we
have the following implications.

(N is an s∗-network at x) (N is a network at x)

(N is a cs∗-network at x) (N is a cs•-network at x)

Theorem 4.2 If a topological space X has a countable cs·-network at a point x ∈ X,
then X is (ω1, ω)p-equiconvergent at x.
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Proof Let N be a countable cs•-network at x and

{xα}α∈ω1 ⊆ {s ∈ Xω : lim
n→∞ s(n) = x}.

Endow the ordinal ω + 1 = ω ∪ {ω} with the discrete topology. For every α ∈ ω1
consider the function δα : N → ω + 1 assigning to each N ∈ N the smallest number
n ∈ ω such that xα(n) ∈ N if such number n exists, and ω if xn /∈ N for all n ∈ ω.
Since (ω + 1)N is a metrizable separable space, the uncountable set

{δα}α∈ω1 ⊆ (ω + 1)N

contains a non-trivial convergent sequence. Consequently, we can find a sequence
(αn)n∈ω of pairwise distinct countable ordinals such that the sequence (δαn )n∈ω con-
verges to δα0 in the Polish space (ω + 1)N. We claim that the sequence (xαn )n∈ω

witnesses that the space X is (ω1, ω)p-equiconvergent. Fix any neighborhood U ⊆ X
of zero.

Since N is an cs•-network, there exists N ∈ N and n ∈ ω such that xn ∈ N ⊆ U .
Hence

d := δα0(N ) ≤ n.

Since the sequence (δαn )n∈ω converges to δα0 , there exists l ∈ ω such that

δαk (N ) = δα0(N ) = d

for all k ≥ l. Then for every k ≥ l we have xαk (d) ∈ N ⊆ U . 
�

The following proposition (connecting ωω-bases with networks) is a corollary of
Theorem 6.4.1 in [4].

Proposition 4.3 If (Uα)α∈ωω is an ωω-base at a point x of a topological space X, then
(
⋂

β∈↑α Uβ)α∈ω<ω is a countable s∗-network at x. Here ↑α = {β ∈ ωω : α ⊂ β} for
any α ∈ ω<ω = ⋃

n∈ω ωn.

As a consequence of the results presented above about the (κ, λ)p-equiconvergence
and the (κ, λ)-tall bornology for an lcs E , we propose the following proof of Theo-
rem 1.2.

Proof of Theorem 1.2 If an lcs E has an ωω-base, then by Theorem 4.1, the space
E is (ω1, ω)k-equiconvergent and hence (ω1, ω)p-equiconvergent. The (ω1, ω)p-
equiconvergence of E also follows from Proposition 4.3 and Theorem 4.2. Next,
by Proposition 3.3, the space E has (ω1, ω)-tall bornology, which means that each
uncountable set in E contains an infinite bounded set. If E has an uncountable Hamel
basis H , then H contains an infinite bounded linearly independent set, and by Theo-
rem 2.1 the space E contains an infinite-dimensional compact set. 
�
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5 Radial networks and another proof of Theorem 1.2

A family N of subsets of a linear topological space E is called a radial network if for
every neighborhood of zero U ⊆ E and every every x ∈ E there exist a set N ∈ N

and a nonzero real number ε such that ε · x ∈ N ⊆ U .
The following theorem is a “linear” modification of Theorem 4.2.

Theorem 5.1 If an lcs E has a countable radial network, then each uncountable subset
in E contains an infinite bounded subset.

Proof Let N be a countable radial network in E , and let A be an uncountable set in
E . Endow the ordinal ω + 1 = ω ∪ {ω} with the discrete topology.

For every α ∈ A consider the function δα : N → ω + 1 assigning to each N ∈ N

the ordinal

δα(N ) = min{n ∈ ω + 1 : 2−n · α ∈ [−1, 1] · N }.

Here we assume that 2−ω = 0.
Since (ω + 1)N is a metrizable separable space, the uncountable set {δα}α∈A ⊆

(ω + 1)N contains a non-trivial convergent sequence. Consequently, we can find a
sequence {αn}n∈ω ⊆ A of pairwise distinct points of A such that the sequence (δαn )n∈ω

converges to δα0 in the Polish space (ω + 1)N.
We claim that the set {αn}n∈ω is bounded in X . Fix any neighborhood U ⊆ X of

zero.
Since N is a radial network, there exist a set N ∈ N and a nonzero real number

ε such that ε · α0 ∈ N ⊆ U . Then d := δα0(N ) ∈ ω. Since the sequence (δαn )n∈ω

converges to δα0 , there exists l ∈ ω such that δαk (N ) = δα0(N ) for all k ≥ l. Then for
every k ≥ l we have

2−d · αk ∈ [−1, 1] · N ⊆ [−1, 1] · U

and hence {αk}k≥l ⊆ [−2d , 2d ] ·U , which implies that the family (αn)n∈ω is bounded
in X . 
�

The implication (1) ⇒ (7) in the following theorem provides an alternative proof
of Theorem 1.2, announced in the introduction.

Theorem 5.2 For an lcs E consider the following properties:

(1) E has an ωω-base;
(2) E has a countable s∗-network at zero;
(3) E has a countable cs∗-network at zero;
(4) E has a countable cs•-network at zero;
(5) E has a countable radial network at zero;
(6) each uncountable set in E contains an infinite bounded subset;
(7) E contains an infinite-dimensional compact set.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6). If E has uncountable Hamel basis, then
(6) ⇒ (7).

123



ωω-Base and infinite-dimensional compact sets in locally… 611

Proof The implication (1) ⇒ (2) follows from Proposition 4.3. The implications
(2) ⇒ (3) ⇒ (4) are trivial and (4) ⇒ (5) follows from the observation that every
cs•-network at zero in the space E is a radial network for E . The implication (5) ⇒ (6)
is proved by Theorem 5.1.

If E has an uncountable Hamel basis H , then by (6), there exists an infinite bounded
set B ⊆ H . By Theorem 2.1, the space E contains an infinite-dimensional compact
set. 
�
Problem 5.3 Is there an lcs E that has a countable radial network but does not have a
countable cs•-network at zero?

6 Applications to spaces Cp(X)

A family {Bα : α ∈ ωω} of bounded (compact) sets covering an lcs E is called a
bounded (compact) resolution if Bα ⊆ Bβ for each α ≤ β. If additionally every
bounded (compact) subset of E is contained in some Bα , we call the family {Bα : α ∈
ωω} a fundamental bounded (compact) resolution of E .

Example 6.1 Let E be a metrizable lcs with a decreasing countable base (Un)n∈ω

of absolutely convex neighbourhoods of zero. For α = (nk)k∈ω ∈ ωω put Bα =⋂
k∈ω nkUk and observe that {Bα : α ∈ ωω} is a fundamental bounded resolution in

E .

A Tychonoff space X is called pseudocompact if each continuous real-valued func-
tion on X is bounded.

The first part of the following (motivating) result has been proved in [18]; since this
is not published yet, we add a short proof.

Proposition 6.2 For a Tychonoff space X the following assertions are equivalent:

(1) The space Ck(X) is covered by a sequence of bounded sets.
(2) The space C p(X) is covered by a sequence of bounded sets.
(3) X is pseudocompact.

Moreover, the following assertions are equivalent:
(4) C p(X) is covered by a sequence of bounded sets but is not covered by a sequence

of functionally bounded sets.
(5) X is pseudocompact and contains a countable subset which is not closed in X or

not C∗-embedded in X.

Proof (1) ⇒ (2) is clear. (2) ⇒ (3): Assume C p(X) is covered by a sequence of
bounded sets but X is not psudocompact. Then C p(X) contains a complemented copy
of R

ω, see [1]. But R
ω cannot be covered by a sequence of bounded sets, otherwise

would be σ -compact. (3) ⇒ (1): If X is pseudocompact, then for every n ∈ N the set
Bn = { f ∈ C(X) : supx∈X | f (x)| ≤ n} is bounded inCk(X) and

⋃
n∈N Bn = Ck(X).

The equivalence (4) ⇔ (5) follows from [24, Problem 399]: C p(X) is covered by a
sequence of functionally bounded subsets o C p(X) if and only if X is pseudocompact
and every countable subset of X is closed and C∗-embedded in X . 
�
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Example 6.3 C p([0, ω1)) is covered by a sequence of bounded sets but is not covered
by a sequence of functionally bounded sets.

By [10], C p(X) has a bounded resolution if and only if there exists a K -analytic
space L such that C p(X) ⊆ L ⊆ R

X . The problem when C p(X) has a fundamental
bounded resolution is easier. As a simple application of Theorem 1.2 we prove the
following

Proposition 6.4 For a Tychonoff space X consider the following assertions:

(1) C p(X) admits a fundamental bounded resolution {Bα : α ∈ ωω}.
(2) X is countable.

(3) R
X = ⋃

α∈ωω Bα
R

X

for a fundamental bounded resolution {Bα : α ∈ ωω} in
C p(X).

(4) The strong (topological) dual Lβ(X) of C p(X) is a cosmic space, i.e. a continuous
image of a metrizable separable space.

(5) C p (X) is a large subspace of R
X , i.e. for every mapping f ∈ R

X there is a

bounded set B ⊆ C p(X) such that f ∈ B
R

X

.

Then (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇒ (5) but (5) ⇒ (2) fails even for compact spaces X.

The implication (1) ⇒ (2) was recently proved by Ferrando, Gabriyelyan and
Ka̧kol [9] (with the help of cs0∗-networks). We will derive this implication from
Theorem 1.2.

Proof (1) ⇒ (2): If C p(X) has a fundamental bounded resolution {Bα : α ∈ ωω},
then the sets Uα = {ξ ∈ Lβ(X) : sup f ∈Bα

|ξ( f )| ≤ 1} form an ωω-base in Lβ(X).
By [14], every bounded set in Lβ(X) is finite-dimensional. Applying Theorem 1.2,
we conclude that the Hamel basis X of the lcs Lβ(X) is countable. (2) ⇒ (1) is clear.
(2) ⇒ (3)∧(5): Since C p(X) is dense in the metrizable space R

X , the claims hold. (2)
⇒ (4): If X is countable, then Lβ(X) has a fundamental sequence of compact sets
covering Lβ(X) and [19, Proposition 7.7] implies that Lβ(X) is an ℵ0-space, hence
cosmic. (4) ⇒ (2): If Lβ(X) is cosmic, then it is separable, and [12, Corollary 2.5]
shows that X is countable. (5) � (2): C p(X) over every Eberlein scattered, compact
X satisfies (5), see [13]. 
�

Item (5) in Proposition 6.4 is strictly connected with the following result.

Theorem 6.5 [12,13]For a Tychonoff space X, the following conditions are equivalent:

(i) C p(X) is distinguished, i.e. the strong dual Lβ(X) of the space C p(X) is bornolog-
ical.

(ii) The strong dual Lβ(X) of the space C p(X) is a Montel space.
(iii) C p (X) is a large subspace of R

X .
(iv) The strong dual Lβ(X) of the space C p(X) carries the finest locally convex topol-

ogy.

The following is a linear counterpart to item (4) in Proposition 6.4.

Remark 6.6 A Tychonoff space X is finite if and only if Lβ(X) is a continuous linear
image of a metrizable lcs.
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Indeed, if X is finite, nothing is left to prove. Conversely, assume that Lβ(X) is a
continuous linear image of a metrizable lcs E (by a one-to-one map). But Lβ(X) has
only finite-dimensional bounded sets and E fails this property. Hence X is finite.
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