
OMEGA: ON-LINE MEMORY-BASED

GENERAL PURPOSE SYSTEM

CLASSIFIER

Kan Deng

CMU-RI-TR-98-33

November 1998

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

Thesis committee:

Andrew W. Moore (Chair)
Dean Pomerleau
Scott E. Fahlman

Christopher G. Atkeson, Georgia Institute of Technology

Copyright 1998, Kan Dengc

ABSTRACT

A time series is a sequence of data points in which the order of the data points is important. In
many cases, each data point consists of both inputs and outputs. The reason that the time order of
such a time series is important may be that at a certain time instant, the outputs are determined not
only by the current inputs, but also by some of the more recent inputs and outputs. If we extend
the input vector to include those previous inputs and outputs in addition to the current inputs, then
the outputs are fully determined by the expanded input vector. Thus, we can transform a time
series into a set of data points where the time order is no longer important.

Given a time series, a system classifier’s purpose is to determine to which category the
underlying system belongs, among a set of pre-defined candidate categories. To do so, our system
classification algorithm transforms the time series into a set of expanded data points. It then
employs a memory-based classifier to calculate a sequence of probabilities that measure how
likely these expanded data points are to belong to each of the categories. Finally, it uses likelihood
analysis and hypothesis testing to summarize these classification results. Our method can also
handle the classification of non-time series.

Our contributions include: (1) the methodology that decomposes time series classification into
the likelihood analysis of a sequence of classifications; (2) a new memory-based classifier that has
many desirable properties; (3) re-organization of the memory in the form of a cached kd-tree that
greatly improves the computational efficiency of information retrieval and memory-based
learning algorithms; and (4) fast feature selection based on intensive cross-validation and greedy
searching.

Compared with other methods, our new system classifier is simple to understand, easy to
implement, robust for various types of systems, and adaptive to datasets with different densities
and/or noise levels. It is capable of distinguishing the various categories of the underlying system
without requiring any predefined thresholds. It is efficient not only because it can perform
classification quickly, but also because it can focus on the promising categories while ignoring the
others after only a few iterations. Based on our empirical evaluations, our method tends to be
more accurate than other methods.

DEDICATION

To my family.

To my advisor.

ACKNOWLEDGMENTS

When I write this acknowledgments, I realize that my formal education will end very soon.
Reviewing the six years and three months of my graduate study at the Robotics Institute of
Carnegie Mellon University, not only has CMU given me a very solid education in computer
science and robotics, but also it helped me to build my confidence to pursue career goals after my
graduation. However, my experience in CMU is like a medicine: it is good for my health but
sometimes it tastes bad.

First, I sincerely thank my advisor, Andrew Moore for his friendship and his patient and
intellectual guidance. I feel very lucky to be his student; otherwise, I cannot imagine how I could
have finished my Ph.D. study. My other three committee members, Christopher Atkeson, Dean
Pomerleau and Scott Falman, were also very helpful. I especially appreciate their tough questions,
which pushed me to make my work more solid.

My labmates and classmates, Leeman Baird, Justin Boyan, Steve Chen, Fabio Cozman, Scott
Davis, Remi Munos, Michael Nechyba, Andrew Ng, and Jeff Schneider, contributed
immeasurably to my research by arguing about the research ideas. I appreciate Michael Nechyba
and Andrew Ng for their selfless help which introduced me to the culture of computer science
research. Besides, I thank all my friends in CMU’s machine learning community, especially: Rich
Caruana, Frank Dellaert, Geoff Gordon, Andrew McCallum, Peter Stone, Astro Teller and
Belinda Thom.

I am very happy to see that the number of Chinese students in the Robotics Institute has kept
growing. A friendly social community is important to everybody, especially for foreign students.
Fortunately, our RoboChinese, Heng Cao, Peng Chang, Mei Chen, Mei Han, Yingli Tian, Yanghai
Tsin, Huadong Wu, Xingxing Yu, Dongmei Zhang, Li Zhang, Liang Zhao, as well as their
families, is such a friendly community.

Almost all the CMU faculty to whom I have talked are very supportive. I want to thank
following professors for their help these years: Avrim Blum, Christos Faloutsos, Tom Mitchell,
Matt Mason, Roy Maxion, Sebastian Thrun, Manuela Veloso and Yangsheng Xu. Thanks also go
to Suzanne Crow, Marie Elm, Carlyn Ludwig, Sandy Rocco, Ruth Wiehagen and Marce
Zaragoza.

Since my undergraduate background is not in computer science, without the help of my folks:
Yanbin Jia, Tang Lei, Harry Shum, Jiawen Su, Yalin Xiong and Dajun Zeng, I can not imagine
how I could have survived in the Robotics Ph.D. program. I also appreciate my former advisor,
Katia Sycara, as well as Dundee Navin-Chandra, the other principal researcher in our group, for
their support and guidance.

Finally, my special thank goes to my dear wife, Xuemei Gu. A happy family life is the solid
foundation of my pursuit of a career.

: 9

Chapter 1..13

Introduction 13

1.1 What is system classification?... 13

1.2 The applications of system classification.. 15

1.3 The assumptions of OMEGA.. 16

1.4 Related fields... 18

1.5 The system classification approaches ... 19

1.6 Thesis outline: ... 22

1.7 *: Hidden Markov Model (HMM) .. 23

Chapter 2..27

Memory-based System Classification 27

2.1 Likelihood Analysis .. 27

2.2 Hypothesis Testing .. 32

2.3 Efficiency Issues.. 35

2.4 Pre-processing ... 37

2.5 Memory-based learning .. 40

2.6 Summary ... 48

Chapter 3..49

Tennis Style Detection 49

3.1 Experimental Design .. 49

3.2 OMEGA Result Analysis.. 52

3.3 Comparison with Other Methods ... 55

3.4 Summary ... 58

Chapter 4..59

Logistic Regression as a Classifier 59

4.1 Classification methods .. 60

4.2 Global logistic regression.. 63

4.3 Locally Weighted Logistic Regression ... 66

4.4 Comparison Experiment ... 71

4.5 Summary ... 75

Contents

10 :

Chapter 5..77

Efficient Memory Information Retrieval 77

5.1 Efficient information retrieval ... 77

5.2 Kd-tree Construction and Information Retrieval... 79

5.3 Cached Kd-tree for Memory-based Learning ... 82

5.4 Experiments and Results ... 88

5.5 Summary ... 92

Chapter 6..95

Using Kd-trees for Various Regressions 95

6.1 Locally Weighted Linear Regression .. 95

6.2 Efficient locally weighted linear regression .. 97

6.3 Technical details .. 101

6.4 Empirical Evaluation... 102

6.5 Kd-tree for logistic regression... 107

6.6 Empirical evaluation.. 111

6.7 Summary ... 114

Chapter 7..117

Feature Selection 117

7.1 Introduction ... 117

7.2 Cross Validation vs. Overfitting .. 119

7.3 Feature selection algorithms.. 120

7.4 Experiments... 124

7.5 Summary ... 132

Chapter 8..133

Driving Simulation 133

8.1 Experimental data.. 134

8.2 Experimental results .. 136

8.3 Comparison with other methods ... 139

8.4 Summary ... 144

Chapter 9..147

Real World Driving 147

9.1 Data collection... 147

9.2 OMEGA result .. 150

9.3 Comparison with other methods ... 153

9.4 Summary ... 155

: 11

Chapter 10..157

Conclusion 157

10.1 Discussion ... 157

10.2 Contributions... 160

10.3 Future research .. 162

10.4 Applications .. 163

Appendix A..167

Chinese Handwriting Recognition 167

1.1 Feature selection for Chinese handwriting recognition .. 167

1.2 Future work ... 171

Bibliography 173

12 :

13

Chapter 1

Introduction

1.1 What is system classification?

With the dramatic development of computer science and technology, we are on the edge of

making many machines intelligent by embedding computer systems in them. For example, peo-

ple have known how to cook rice for thousands of years, but only in the last two decades was

the neuro-controlled automatic rice cooker invented. In the near future, by embedding com-

puter chips in other kitchen devices, people will be further liberated from the tedious and

exhausting cooking tasks which their predecessors have suffered for many centuries. Similar

things will also happen to vehicles. In next century, we expect cars will become autonomous.

Once the passengers tell the vehicle where to go, they can go to sleep or watch television. In

the short term, cars will become smarter, if not completely autonomous. The smart car’s intel-

ligence has many aspects, including the ability to tell if the human driver’s sobriety level is

good enough for further operation. If necessary, the monitoring system may warn the driver to

stop for a break. This is important because inattention may lead to the fatal accidents. In the

U.S. 1996, there were over 37,000 automobile accidents involving fatalities, in which 42,000

people were killed. Among these cases, over 21,000 were single vehicle accidents resulted in

22,500 fatalities [Batavia, 98].

14 Chapter 1: Introduction

The technique we explore in this thesis is useful for driving sobriety monitoring, as well as

other applications. Let’s imagine that we have a vehicle full of smart sensors which can tell the

velocity of the vehicle, its orientation, its lateral distance to the center of road, and the distances

to the other vehicles nearby, etc. If we regard a driver as a system, the above variables are the

inputs to the system. Based on the inputs, the driver has to properly steer and control the gas

and brake pedal. Thus the outputs of the system are the vehicle’s steering angle and its accel-

eration. Suppose we also measure the outputs. Let’s take a record of both the input and output

values every time unit, say 0.1 second. We will get a multi-dimensional time series. The driving

time series varies from case to case, even if the driver is the same person and his/her sobriety

condition is identical. The reason is that road conditions and traffic may be different, and these

differences will make the driver’s response (system outputs) differ from case to case. However,

we believe if the driver is sober, his driving behavior time series should be consistent with his

historic “sober” driving time series. Otherwise, if the driver is intoxicated, his driving (system

outputs) may differ from those normal cases in memory. In addition, an intoxicated driver may

create some unusual input scenarios because of his careless behavior.

How can we formalize the informal discussion above into a useful and reliable algorithm? In

statistical terms, to classify the driving style we want to calculate Prob(Snormal | Oq), which is

the probability that a driver’s sobriety is normal, as inferred from the observation of their driv-

ing behavior. Oq represents the current driver’s driving behavior time series; q stands for query,

implying that the underlying state of the driver’s sobriety condition is unknown. Snormal is the

event of the driver being sober. To calculate Prob(Snormal | Oq), we compare the unclassified

time series Oq with those time series in memory generated by the same driver when he was

sober. If Prob(Snormal | Oq) is higher than a certain threshold, the driver seems to be sober. Oth-

erwise, they are intoxicated. Sometimes, the task can be more complicated. For example, the

police department may want to distinguish drowsiness from drunkenness. In this case, we

should calculate Prob(Sintoxicated | Oq) or Prob(Sdrowsy | Oq), as well as Prob(Snormal | Oq), the

largest value indicates the driver’s most likely sobriety condition.

Chapter 1: Introduction 15

Generally speaking, we define the task of a system classifier as the following: given a set of

observations of a system’s inputs and outputs, a system classifier is to figure out the underlying

mechanism which generates these observations.

1.2 The applications of system classification

• System diagnosis:

No machine can work perfectly all the time. People need to know when to fix the

machines and how to fix them. This is the purpose of system diagnosis. System diag-

nosis can be done by human experts. However, in some cases an on-line autonomous

system diagnosis tool is preferred, because for some complicated machines, no single

human expert can understand every detail. Also, it is hard to ask the human expert (or

a group of them) to do the diagnosis job twenty-four hours a day, seven days a week, in

all possible situations including dangerous environments.

• Surveillance

With the progress of video tracking and speech signal processing, we are on the edge

of implementing an autonomous system to liberate human operators from surveillance

jobs which may be tedious and last long hours. We expect that these autonomous sys-

tems will have better performance than that of a sleepy human operator. Similarly, we

expect to apply this technique to make some military surveillance devices more intelli-

gent. For example, we can invent an automatic radar monitoring system so that the sol-

diers can be liberated from the radar desk, especially during the tedious period when

nothing unusual happens.

• Human behavior monitoring

Every year in the U.S., thousands of people die in traffic accidents. Some of these acci-

dents are caused by the exhaustion of the drivers. It would be desirable to have a way

to monitor the behavior of the human operators and give them warnings if necessary.

16 Chapter 1: Introduction

Another possible application is that with the booming of virtual reality stores on the

Internet, more and more customers will go shopping via the Internet. Technically the

e-stores’ server is capable of tracking the behaviors of the visitors, to detect the cus-

tomers’ purpose and/or preference. This prospect does raise many moral, ethical, and

social issues which are beyond the scope of this thesis.

• Human skill transition and evaluation

Sometimes people want to learn physical skills from the masters. Some skills should

be passed on before the old masters die. Some skills should also be transferred to

robots, because robots can work in remote or inhospitable environments. Therefore,

we need some ways to transfer skills and evaluate the learned performance.

• Financial monitoring

We can apply the techniques of this thesis to keep an eye on the financial climate,

which is useful and rewarding.

1.3 The assumptions of OMEGA

In this thesis, we investigate and extend memory-based learning for general propose on-line

system classification. We name this new technique On-line MEmory-based GenerAl purpose

system classifier, (OMEGA). OMEGA calculates Prob(Sp | Oq), which is the probability that

the underlying mechanism of a set of observations Oq is system Sp. It has following the assump-

tions:

1. OMEGA does not approximate the closed-form mechanism of the underlying system. We

also assume that the unknown underlying generator of Oq must be one of a finite set of can-

didate systems. This assumption is not so bad as it looks. For the example mentioned

above, it is unnecessary to require every police officer to know the psychological and phys-

iological processes underlying intoxication. Instead, if a traffic police officer can correctly

Chapter 1: Introduction 17

detect any unusual driving behavior, his job is well done.

2. For the same example, to calculate the probability Prob(Snormal | Oq), we compare the

query driving time series Oq with those “sober” driving time series in memory. In other

words, we assume that we have collected some training observations of each candidate

system’s behavior before the classification job for Oq comes. Notice that if there are only a

few sober driving time series samples in memory, it is still possible to approximate

Prob(Snormal | Oq). Of course, the fewer the sober samples in memory, the less reliable the

approximated Prob(Snormal | Oq) is.

3. Originally motivated to classify time series, our research ends up with a general purpose

technique which is also capable of general pattern classification. In other words, the obser-

vation Oq may be a time series, but this is not necessary. As defined, Oq is in fact a set of

observation data points, while a data point consists of the inputs of the concerned system at

a certain time instant and their corresponding outputs. When Oq is not a time series, we can

shuffle its data points randomly.

4. OMEGA works best for those systems whose input and output are fully observable, and

the output are fully determined by the input. Note that this assumption is often violated in

practice. For example, in driving domain, a driver’s control action may be influenced by

some of his hidden psychological and physiological factors. However, like other machine

learning methods, we assume a driver control action is somehow predictable by some

observable input variables.

5. The inputs and outputs of any candidate systems can be of any type. They can be continu-

ous or discrete, (including categorical), or even a mixture of the two. However we assume

the types of the input and output of all candidate systems are the same.

6. We study stochastic systems; in other words, given a certain input, the corresponding out-

put is stochastic. The conditional distribution of the output given a certain input can be of

any type. For some systems, the outputs corresponding to an identical input may scatter

18 Chapter 1: Introduction

around a center, so that the conditional distribution can be roughly formed as Gaussian.

However, as a general purpose approach, OMEGA does not require this uni-modal

assumption.

1.4 Related fields

Conventionally, classification is to detect to which category a single data point belongs. How-

ever, since a time series consists of a sequence of data points, system classification involves a

sequence of classifications, then summarize them so as to draw an overall conclusion.

System classification is different from system identification. The latter estimates the configura-

tion and the parameters of an unknown system, but system classification’s task is to recognize

an unknown system, without necessarily estimating its parameters.

Another closely related field is fault detection, which is also referred to as novelty detection.

The task of fault detection is to tell whether or not a system’s current behavior is out of the tol-

erance of its normal performance. System classification is different from fault detection

because system classification concerns multiple systems, and it assumes that every system

always works normally. The difficulty of fault detection is that its training data is usually unbal-

anced; in other words, the majority of the training data is collected when the system works nor-

mally. However, it is still straightforward to apply OMEGA to solve the fault detection

problem: we approximate Prob(Snormal | Oq), if this probability value is lower than a certain

threshold, the system is abnormal; in another case, even if the value of Prob(Snormal | Oq) is

higher than the threshold, but it is not reliable (its confidence interval is too large), the state of

the system is uncertain. The threshold can be decided by hypothesis testing methods.

Chapter 1: Introduction 19

1.5 The system classification approaches

There are two approaches to system classification: comparing the system parameters, or com-

paring the predictions.

Comparing the system parameters

This approach is similar to system identification: we approximate the unknown system’s

parameters first, then classify the system based on the comparison of the system parameters.

For example, suppose we have a collection of observations (x1, y1), (x2, y2), ..., (xT, yT), where

x’s are the system’s inputs, and y’s are the outputs. Temporarily, let’s assume based on prior

knowledge that we know these signals were generated by a linear system:

If there are sufficient observations, we are able to approximate the system parameters, β0 and

β1. To detect if the observation signals (x1, y1), (x2, y2), ..., (xT, yT) were generated by a partic-

ular one-input-one-output linear system whose parameters are α0 and α1, we can straightfor-

wardly check if the α’s and β’s are close to each other respectively.

This approach looks simple, but it has three problems: (1) We need the prior knowledge of the

closed-form formula of the system. (2) Before we employ this approach, we should make sure

that identical systems must have the same parameters. When the system is more complicated

than a linear one, different sets of parameters may correspond to the same system. Section 1.7

gives an example.

In some circumstances like chemical manufacturing process, it is hard to get precise mathemat-

ical models of the systems. Therefore, to design a robust, general purpose system classification

package, we will resort to the other approach.

y βo β1x ξ+ +=

20 Chapter 1: Introduction

Comparing the predictions

Given a set of observations whose underlying generator is unknown, the prediction approach

temporarily assumes the unknown underlying system is a certain candidate one. Based on our

knowledge of this assigned candidate system, we can predict the outputs corresponding to the

inputs of the observations. If the candidate system is indeed the real underlying system, the pre-

dictions must be close to those observed outputs. Otherwise, the assumption is not correct.

In more details, let’s suppose there is a collection of observations, (x1, y1), (x2, y2), ..., (xT, yT).

To figure out whether or not they were generated by a certain linear system,

with particular α0 and α1 values, we can use the above formula to predict the y value given a

certain x. Therefore, we will get a sequence of predictions, . The difference

between them and the observed values y1, y2, ..., yT are the residuals. If the residuals are close

to zero, the system with α0 and α1 as parameters is likely to be the underlying system which

generated the observations.

Even with only one observation, the prediction-based approach can still start to work, though

the result will be unreliable. With more observations, this approach can be expected to have

improved performance. Therefore, the prediction-based approach is ideal for on-line applica-

tions.

Up to now, we have assumed the system is linear. The linear system model has been popular

for several decades because it is simple and in many cases it is reasonable. For non-linear sys-

tems, we can apply non-linear function approximators such as neural network to do the predic-

tion job, so that the prediction-based system classification approach still works [Petridis et al.,

96].

y αo α1x ξ+ +=

y1
ˆ y2

ˆ ... , yT
ˆ, ,

Chapter 1: Introduction 21

The neural prediction approach uses neural networks to approximate every candidate system.

If there are one hundred candidate systems, there will be one hundred neural networks. To cal-

culate Prob(Sp | Oq), we compare the outputs of Oq with the predictions of the neural net, which

represents Sp, given the corresponding inputs.

Although a neural classifier is capable of starting its job to detect the unknown underlying gen-

erator of Oq with very few data points in Oq, we should clarify that it does need a large amount

of training data to train the neural net to precisely represent the candidate system, say Sp. The

training data are collections of observations similar to Oq, but they are labeled by their under-

lying systems, say Sp.

There are three concerns with a neural prediction-based system classification approach. (1) It

is computationally expensive to train a neural network. Things become worse when new train-

ing data is constantly becoming available. (2) Even if we can afford a supercomputer which is

capable of updating the neural networks quickly, we will have another trouble: interference.

The neural networks will evolve to fit the new data, and the old data will eventually lose their

impact. (3) Every candidate system’s neural network, should be included in the competition,

until there is convincing evidence that a certain candidate’s neural net is less competitive.

Therefore, when there are a huge number of candidates, the computational cost becomes pro-

hibitively expensive, especially in the early stage when all the candidates are involved in the

process.

To overcome these problems, the memory-based learning approach is a good choice. A mem-

ory-based learning system stores all the training data in memory. When new data arrive, they

will be stored into the memory together with the old data. All processing of the training data is

deferred until a prediction query is made. Therefore, less interference happens. Second, as we

will introduce in the later chapters, the memory-based learning methods do not require any

parametric model of the system. Hence, there is no model which needs to be trained off-line.

Third, by reorganizing the memory in kd-tree form and caching some information into the tree

22 Chapter 1: Introduction

nodes, the memory-based learning process can be done very quickly. Fourth, also with the help

of kd-tree, we can focus on the more promising candidates from the very beginning.

1.6 Thesis outline:

The thesis research consists of four parts: (1) The top-level principle of OMEGA, which is to

combine a series of classifications in the context of likelihood analysis and hypothesis testing.

(2) A new memory-based classifier, which has many improvements over existing classifiers. (3)

Efficient memory information retrieval and regression using the cached kd-tree technique. (4)

Cross-validation for feature selection and parameter tuning. Although (2) (3) (4) are three inde-

pendent research topics, they act as components in the OMEGA approach.

Chapter 2 introduces the principle and framework of OMEGA to give the readers a birds-eye

view of the whole approach and the relationship of the various components. As a demonstra-

tion, in Chapter 3 we use OMEGA to classify different styles of tennis playing, and compare

OMEGA’s performance with those of other methods. From Chapter 4 to Chapter 7, we discuss

the components of OMEGA in details. Chapter 4 explores the new memory-based classifier,

and compares it with other classification methods. In Chapter 5 and 6, we discuss a technique

to re-organize the memory so as to improve the efficiency of information retrieval and regres-

sion. In Chapter 7, we talk about cross-validation, which is useful for feature selection and

parameter tuning for the learning process. After that, we combine all the techniques into the

OMEGA toolkit, and apply it to classify different driving styles, using both simulation data and

real world data, referring to Chapter 8 and 9. Finally, Chapter 10 is a summary of all the

research work, the contributions, and the open questions.

Figure 1-1 illustrates the structure of OMEGA system and the organization of the thesis.

Chapter 1: Introduction 23

1.7 *1: Hidden Markov Model (HMM)

HMMs have been widely accepted as a time series analysis tool. They stand between the

parameter comparison approach and the prediction approach. On one hand, it approximates the

parameters of the hidden Markov model; on the other hand, it use a method similar to the pre-

diction approach to evaluate whether or not two hidden Markov models with different param-

eters are in fact identical. There is no doubt HMM is an important and interesting technique,

but it is questionable if it is a robust, general purpose system classification tool.

Before we argue the reasoning of our conclusion, let’s give a brief introduction to HMM. HMM

assume that a system has some internal hidden states. As time passes, the system jumps from

1. This section can be skipped if the reader does not have much interest in HMM.

Figure 1-1: The structure of OMEGA system and the organization of the thesis.

OMEGA methodology

Memory-based
learning

A new classifier
(Chapter 4)

Kd-tree
information
retrieval

(Chapter 5 6)

(Chapter 2)

Preprocessing

Feature selection
(Chapter 7)

Experiments in Chapter 3 8 9

24 Chapter 1: Introduction

one internal state to another. Each hidden state generates an observable signal, but it is possible

that one state has several possible signals, and the same signal may be shared by several hidden

states. The observation time series generated by a HMM is stochastic in two aspects: (1) The

jumps are stochastically decided by the transition probabilities among the hidden states. (2)

Even for the same hidden state, we may observe differing signals. Two two-state HMMs are

illustrated in Figure 1-2. The numbers attached to the arc links are the transition probabilities.

Since all the transition probabilities in Figure 1-2 (a) are 1.0, the system definitely switches its

hidden state every time step. The system of Figure 1-2 (b) has a 50% chance to stay in the same

hidden state, but has the other 50% chance to switch. The tables above the diagrams indicate

the probabilities linking the hidden states to the observations, A and B.

If two time series are different, the underlying HMMs’ parameters must be distinguishable. The

HMM parameters include the transition probabilities and the probabilities linking the hidden

states to the observations.

1.0

1.0

0.5 0.5
0.5

0.5

Figure 1-2: Two identical HMMs

1 2 1 2

Hidden State
Observation

A B

1

2

0.5 0.5

0.5 0.5

Hidden State
Observation

A B

1

2

1.0 0.0

0.0 1.0

An observation sequence: A A B A B A B B A B A B A A B B. The above
two models have the same chance to be the generator of the observation sequence.

Chapter 1: Introduction 25

However, notice that an identical system may have a different structure and parameters. The

system of Figure 1-2 (a) is in fact equivalent to that of Figure 1-2 (b), because both systems

have exactly the same chance to generate the observation sequence written in Figure 1-2.

Therefore, to detect if two HMMs are equivalent, we cannot simply compare their parameters.

Instead, we should use the first HMM to generate a sample observation sequence, then find a

way to measure how well the sample observation sequence fits the second HMM.

HMM were originally explored by the speech recognition community. For speech, there is no

input, all the signals can be regarded as outputs. To extend HMM to systems which have both

inputs and outputs, one solution is to enumerate every possible combination of input and output

as a state. Thus, the number of states explodes as the number of possible input and output values

increases. Therefore, in our opinion, HMMs did not easily fit our tastes.

26 Chapter 1: Introduction

27

Chapter 2

Memory-based System Classification

In this chapter, we study the methodology of the On-line MEmory-based GenerAl purpose sys-

tem classification technique (OMEGA). OMEGA combines a series of classifications in the

framework of likelihood analysis and hypothesis testing. In this chapter, we will introduce like-

lihood analysis and hypothesis testing first, then discuss efficiency issues. Afterwards, we will

summarize pre-processing method and briefly discuss alternative memory-based classification

and prediction methods.

2.1 Likelihood Analysis

As defined in the last chapter, a system classifier should estimate the underlying generator of a

set of observation signals Oq, under the assumption that the generator must be one of a finite

number of candidate systems, S1, ..., Sn. For example, given a time series of a vehicle’s behavior

in traffic, Oq, the task of system classification is to tell the sobriety state of the driver, Sp, assum-

ing that we have sufficient knowledge of the behavior of sober drivers, sleepy drivers and even

intoxicated ones.

Average residuals

If we treat a driver as a system, the outputs are the control actions of the driver: the positions

of the steering wheel and the gas and brake pedals. A driver chooses his control actions accord-

28 Chapter 2: Memory-based System Classification

ing to the state of the vehicle, the road condition and the traffic condition, as well as his previous

actions, hence the inputs of the system are the speed of the vehicle, its orientation, its distance

to the center of the road, the road curvature, the distances from the vehicle to the neighboring

ones in traffic, as well as the driver’s previous control of the steering angle and the gas/brake

throttle. Usually an observation sequence consists of a series of input-output data points {xqi,

yqi}. Temporarily let’s assume that at any time instant, the output yqi is fully controlled by the

input xqi. We will come back to this topic in Section 2.4.

We do not know which candidate system generated the observation sequence Oq, but let’s guess

it is the first system, S1. Assuming somehow we have sufficient knowledge about S1, so that

given a specific input x, we can predict the output . Since Oq consists of a series of data

points {xqi, yqi}, i = 1, ..., Nq, if we pick up one input xqi from them, we can predict the corre-

sponding output, . If S1 is indeed the real underlying generator of Oq, is

expected to be close to the observed output, yqi. In other words, the smaller the residual between

and yqi, the more likely the unlabeled data points {xqi, yqi}, i = 1, ..., Nq, were generated

by S1. If there are Nq data points in Oq, we will get Nq such residuals. We can use the average

of these residuals as a measure of the likelihood.

If there are n candidate systems, we can calculate n such averages of residuals. The smallest

one indicates the particular candidate system which is most likely to be the generator of the

unlabeled data points, {xqi, yqi}, i = 1, ..., Nq, or equivalently, the observation sequence Oq.

The average residual is a useful metric, but it treats every residual equally. This is not desirable,

because some ’s have better quality than the others, and they should therefore have

stronger impact on the likelihood measurement. Hence, we explore the likelihood approach in

next subsection.

ŷ S1

yqi
ˆ S1 yqi

ˆ S1

yqi
ˆ S1

yqi
ˆ Sp

Chapter 2: Memory-based System Classification 29

Likelihood

From the Bayesian point of view, the system classification problem can be structured as calcu-

lating P(Sp | Oq), p = 1, ..., Ns, which is the probability that given an observation sequence Oq,

the underlying generator is the p’th candidate system. The biggest P(Sp | Oq), ,

indicates the most likely system which generated Oq.

According to Bayes rule, P(Sp | Oq) is proportional to P(Oq | Sp), when the prior probability

P(Sp) is fixed. Let’s assume Oq can be transformed into a set of data points, {xqi, yqi}, i = 1, ...,

Nq, so that temporal order is not important. If so, the following equations hold:

(2-1)

However, temporal order is important for most system because of the system’s delays and feed-

back. Figure 2-1 illustrates a symple driving system with one delay and feedback. For such a

system, P(yqi | Sp, xqi) in Equation 2-1 should be changed to P(yqi | Sp, xqi, xq,i-1, yq,i-1), because

the current system output is not only determined by the input at the moment, but also the delay

xq, i-1 and the feedback yq, i-1. To be convenient, we use Xqi to represent the conjunction of xqi,

xq,i-1 and yq,i-1. P(xqi | Sp) should be changed to P(Xqi | Sp, Xq,i-1). The reason for the appear-

ance of Xq,i-1 is that the two components of Xqi: xq,i-1 and yq,i-1, may be partially dependent on

p 1 … N s, ,{ }∈

P Oq Sp() P xqi yqi, Sp()
i 1=

Nq

∏ P yqi Sp xqi,()P xqi Sp()
i 1=

Nq

∏= =

Driver

Car

xt xt, xt-1, yt-1

xt-1

yt-1

yt

Figure 2-1: A driving system with one delay and feedback.

30 Chapter 2: Memory-based System Classification

their ancestors: xq,i-2 and yq,i-2. Theoretically, P(Xqi | Sp) is no bigger than P(Xqi | Sp, Xq,i-1);

however, in practice, we find that in many cases that we can substitute P(Xqi | Sp) for P(Xqi | Sp,

Xq,i-1), and the classification results are still satisfactory. Therefore, for a system with one delay

and feedback, the following equations hold:

(2-2)

Therefore, to calculate P(Sp | Oq), an approach is to approximate P(Xqi | Sp) and P(yqi | Sp, Xqi).

To explain their physical meanings, let’s study the driving domain again. Suppose we want to

distinguish a certain driver’s different driving behaviors under two sobriety conditions: sober

and intoxicated. We notice that corresponding to the same scenario, Xqi, the driver’s response

when he is intoxicated tends to be different from that when he is sober; in other words, facing

a certain situation Xqi, the probability that the driver gives a certain response yqi while he is

intoxicated, i.e. P(yqi | Sintoxicated, Xqi), may be different from the probability when he is sober,

i.e. P(yqi | Ssober, Xqi). Therefore, we believe that the probability P(yqi | Sp, Xqi) is a good metric

of the driver’s sobriety condition.

Besides, we also notice that an intoxicated driver may encounter situations which are not famil-

iar to him when he is sober. For example, an intoxicated driver may let his car be very close to

other vehicles in traffic, but when he is sober, the driver may realize that this situation is so dan-

gerous that he would try to avoid it. In other words, the probability that a sober driver encoun-

ters a certain scenario Xqi, i.e. P(Xqi | Ssober), may be different from the probability that he faces

the same situation when he is intoxicated, i.e. P(Xqi | Sintoxicated). Notice that if a sober driver

intentionally does something new, our system classifier may misunderstand him as being

drunk. But, we do not have to blame our system classifier for that. Tom Hanks’ performance in

Forrest Gump is highly appreciated. Why? Because Tom mimicked the dummy’s behavior

P Oq Sp() P yqi Sp Xqi,()P Xqi Sp Xq i 1–,,()
i 1=

Nq

∏ P yqi Sp Xqi,()P Xqi Sp()
i 1=

Nq

∏≈=

Chapter 2: Memory-based System Classification 31

seamlessly. Hence, we believe that by combining the two probabilities, P(Xqi | Sp) and P(Yqi |

Sp, Xqi), we can have a good chance to distinguish the different underlying mechanisms, Sp, p

= 1, 2, ..., Ns.

Let’s assume we know how to approximate P(Xqi | Sp) and P(yqi | Sp, Xqi). The details will be

covered by Section 4. To make the computation more convenient, usually we calculate the aver-

age of the negative log likelihood instead of P(Oq | Sp). The average of the negative log likeli-

hood is defined as:

(2-3)

Notice is a positive real number, because both P(Xqi | Sp) and P(yqi | Sp, Xqi) are

between 0 and 1.

For the example in Figure 2-2, we were given a sequence of unlabeled observations of the driv-

ing behavior. The driver is unknown, but he must be one of five candidates: Tony, Larry, Curly,

lik– Sp() 1
Nq

------ P Oq Sp()()log–=

1
Nq

------ P yqi Sp Xqi,()P Xqi Sp()
i 1=

Nq

∏log–=

1
Nq

------ P Xqi Sp()log

i 1=

Nq

∑–
1

Nq

------ P yqi Sp Xqi,()log

i 1=

Nq

∑–=

lik– Sp()

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

Time, or Number of Datapnts

L
o

g
L

ik
e

lih
o

o
d

Driving Performance Detection, the hidden driver is Groucho

Groucho

Tony

Larry

Curly

Moe

Figure 2-2: The X-axis is the number of
observation data points. The Y-axis is the
average of the negative log likelihood. To find
the underlying system, one should compare
the tails of the curves. Because Groucho’s tail
is closest to the X-axis, Groucho is most likely
the underlying generator of the observation
sequence.

lik– Sp()

32 Chapter 2: Memory-based System Classification

Moe and Groucho. Using all the 3,150 unlabeled data points, we calculated five averages of the

negative log likelihood , p = 1, ..., 5. Since OMEGA is an on-line approach, the 3,150

data points were not available at the early stage, we also study the with fewer data

points. Therefore, we have five curves in the picture, the X-axis is the number of data points

involved in the calculation of , the Y-axis is . At the very beginning, the val-

ues of are not reliable, because they were calculated using only a few data points; but

with more and more data points involved, the curves become more consistent. The

tails of the curves (to the right extreme) are the based on all the 3,150 data points.

Among the five tails, the one closest to the horizontal axis indicates the generator of the obser-

vation sequences. In Figure 2-2, Groucho’s tail is closest to the X-axis, thus Groucho seems to

be the unknown driver.

2.2 Hypothesis Testing

Closely looking at the picture, of Groucho at the tail is 0.53, while that of Tony is

about 1.40. Since 0.53 looks significantly smaller than 1.40, we claim that Groucho, not any

other operator, seems to be the unknown driver.

However, we are not always lucky enough to be able to assign a unique candidate system to be

the generator of Oq. It is possible that more than one candidate’s curves so close to each other

that it is hard to tell which one is more likely to be the underlying generator. In Figure 2-3, Larry

and Tony’s tails are very close to each other. Larry’s is 1.19, while Tony’s is 1.21.

Although Larry is a bit closer to the horizontal axis than Tony, we do not want to stake too much

on Larry to be the only probable operator. Instead we say that the observation sequence Oq is

confusing. It is important to distinguish the confusing situation from the exclusive one; because

if the situation is confusing and we appoint a unique operator, we may end up with a severe

mistake.

lik– Sp()

lik– Sp()

lik– Sp() lik– Sp()

lik– Sp()

lik– Sp()

lik– Sp()

lik– Sp()

lik– Sp()

Chapter 2: Memory-based System Classification 33

To strictly define a confusing situation, we need a threshold. If the gap between the lowest tail

and the second lowest one is beyond the threshold, the unique generator is easy to decide; oth-

erwise, the situation is confusing. A difficulty arises in that there does not exist a fixed threshold

applicable to any domain. For different domains, are of differing scales, resulting in

different thresholds. Therefore, we resort to the statistical two sample hypothesis testing

method [Devore, 91]. For two candidate systems Sp1 and Sp2:

1. We calculate the Z-test value from statistics,1

, (2-4)

where σp1
2 and σp2

2 are the sample variance of -lik(Sp1) and -lik(Sp2) respectively,

defined as,

. (2-5)

1. P(yqi | Sp, Xqi) are independently identifically distributed (iid). Although theoretically P(Xqi | Sp) is not iid,
in practice, we roughly regard it as iid, and the hypothesis testing result is satisfactory.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time, or Number of the Query Datapnt

L
o

g
L

ik
e

lih
o

o
d

Driving Performance Detection, the hidden driver is Larry

Tony
Larry

Curly

Moe

Groucho

lik– Sp()

Figure 2-3: A confusing case. Since Larry and
Tony’s curves, especially their tails to the right
extreme, are so close, that it is hard to tell
which one is more likely.

lik– Sp()

Z
lik– Sp1()() lik– Sp2()()–

σp1
2

N p1⁄ σp2
2

N p2⁄+

---=

σp
2 1

N p

------- P Xqi Sp()log P yqi Sp Xqi,()log––[] lik Sp()–[]–{ }
2

i 1=

N p

∑=

34 Chapter 2: Memory-based System Classification

Np1 and Np2 are the numbers of data points involved in the calculation of the likelihoods

of system Sp1 and Sp2. Sometimes Np1 and Np2 are equal. However, this is not a require-

ment. The bigger Np1 and/or Np2, the larger the absolute value of the Z statistic tends to

be.

2. The beauty of statistic Z is that its distribution is close to standard normal distribution if

Np1 and Np2 are big enough, due to Central Limit Theorem. In this way, we can find a

standard threshold for any domain and any observation sequence. We define this domain-

independent threshold as Zα. If Z < -Zα, Sp1 has more potential than Sp2 to be the genera-

tor of the unlabeled observation sequence Oq. If Z > Zα, Sp2 has more potential than Sp1.

Otherwise, the observation sequence is confusing because Sp1 and Sp2 are closely likely to

be its generator.

The value of Zα depends on the significance level α. Referring to Figure 2-4, the smaller

the significance level α, the remoter the threshold Zα deviates from zero, then it is harder

for Z to be bigger than Zα or smaller than -Zα, so that maybe no candidate system is found

to be more competitive than all others to be the underlying generator of Oq. Therefore, the

smaller α is, the “pickier” we are.

In practice, the significance level α is pre-defined by the user of OMEGA, and Zα can be

found by consulting the standard normal distribution table.

3. With more data points, the absolute value of the Z statistic tends to be bigger, and it is eas-

P

Zα α

X

Figure 2-4: The physical meaning of Zα.

0

Chapter 2: Memory-based System Classification 35

ier to distinguish the competitiveness of the various candidate systems. Therefore, in Fig-

ure 2-2 and 2-3, with more data points, the five curves become more separated. But the

redundant data points do not help to distinguish , p = 1, ..., 5, any further; hence,

the curves become smooth and consistent afterwards.

2.3 Efficiency Issues

The efficiency of OMEGA is important for two reasons: (1) OMEGA is an on-line technique.

(2) Because OMEGA calculates for every possible candidate system, suppose there

are one hundred candidate systems, S1, S2, ..., S100, OMEGA will repeat the likelihood calcu-

lation for one hundred times to get , ..., . When there are numerous candi-

date systems, the computational cost may be prohibitively high even if the task is off-line.

There are three ways to improve the efficiency,

1. Eliminate non-promising candidate systems from consideration:

Recall that the crucial steps of system classification are to calculate , then com-

pare the of the variant candidate systems to eliminate the non-promising candi-

dates, and finally select the most likely one. The is calculated according to the

following equation:

In fact, it is unnecessary to consume all the Nq unlabeled observation data points to

approximate . With fewer data points, even only a single data point, we can still

do it. The problem is that with fewer data points, it is more difficult to distinguish a candi-

date from the others, referring to Section 2.2. But if some systems are far less promising

than the others, even with a limited number of data points, its value is signifi-

cantly larger than the others’, so that they can be neglected afterwards.

lik– Sp()

lik– Sp()

lik– S1() lik– S100()

lik– Sp()

lik– Sp()

lik– Sp()

lik– Sp() 1
Nq

------ P Xqi Sp()log

i 1=

Nq

∑–
1

Nq

------ P yqi Sp Xqi,()log

i 1=

Nq

∑–=

lik– Sp()

lik– Sp()

36 Chapter 2: Memory-based System Classification

2. Speed up the calculation of the likelihoods:

Since is decided by P(Xqi | Sp) and P(yqi | Sp, Xqi), a quick calculation or

approximation for P(Xqi | Sp) and P(yqi | Sp, Xqi) would improve the efficiency.

3. Focus on the promising candidates:

Even though we can eliminate unpromising candidate systems after a limited number of

observations, at the early stage there may still be a large number of candidate systems

involved in the processing. For example, if there are 10,000 candidate systems, perhaps

after 100 observation data points, we can decide 9,999 candidates are irrelevant. Suppose

that with fewer than 100 data points, no elimination can be performed and we have to cal-

culate 10,000 times. To enhance the computational efficiency, it may be worth-

while to take a risk and focus on the more promising candidates from the beginning.

Compared with P(yqi | Sp, Xqi), the computational cost of P(Xqi | Sp) is much cheaper.

Therefore, at the early stage with a limited number of (Xqi, yqi), i = 1, 2, ..., we can elimi-

nate those candidate systems whose P(Xqi | Sp)’s are far lower than the others’. Of course

this selection may make mistakes, but in case there are too many candidate systems, the

risk is worthy of taking.

To implement the second and the third solutions, we need the kd-tree technique, which will be

described in Chapter 5 and 6. A kd-tree re-organizes the memory of the training data points in

a tree structure and caches some useful information in the nodes. A kd-tree is useful in two

respects: (1) We can implement alternative memory-based learning methods with dramatically

less cost. Thus we can greatly enhance the efficiency of calculating P(yqi | Sp, Xqi). (2) When a

specific query Xqi is given, we can quickly retrieve all its neighboring training data points, so

as to approximate P(Xqi | Sp) rapidly. Based on these two aspects, we can improve the efficiency

of approximating , as well as focus on the promising candidates from the beginning.

lik– Sp()

lik– Sp()

lik– Sp()

Chapter 2: Memory-based System Classification 37

2.4 Pre-processing

In Subsection 2.1.2, we expand the input to include the delays and feedback so that the output

at a certain moment is fully determined by the expanded input at that moment. More generally,

for an one-input-one-output system illustrated in Figure 2-5, at time instant t, the output is sim-

ply yt, while the input consists of xt, xt-1, ..., xt-p, and yt-1, ..., yt-q. Thus, the input space dimen-

sionality is p + q + 1.

If the time delays p and q are not known via prior knowledge; we have to figure them out based

on empirical analysis of the observation data. Cross-validation, which is discussed in Chapter

7, is a useful technique to select the proper time delays.

It is straightforward to extend this method to transform time series with multiple input and/or

output variables. It is not necessary for different input variables to have the same delay, nor like-

wise for the output variables. In the case where there are u input variables, whose time delays

are p1, ..., pu, and there are v output variables with q1, ..., qv feedback variables, then the dimen-

sionality of the transformed data point’s input is p1 + ... + pu + u + q1 + ... + qv.

Figure 2-5: An one-input-one-output system with feedbacks and
delays. The time order is important.

Plant (driver)Σ

Delay

x y

Delay Delay

Delay Delay

Delay Delay

Delay Delay

Delay

Car

Car

Car

38 Chapter 2: Memory-based System Classification

The transformation of the time series data is not always necessary. Imagining a set of data

points { (x1, y1), (x2, y2), ..., (xT, yT) } are generated by a system which has no time delays

and feedback, the output yt is fully determined by xt, and xt is independent from the previous

ones, xt-1, xt-2, In this case, although the data points are collected as time passes, the order

of time is not important and we can shuffle the data points randomly.

However, a high dimensionality of the data points is always a concern. Especially those trans-

formed time series data points with expanded input tend to have a dimensionality which is pro-

hibitively high for the further OMEGA steps. This motivates the pre-processing: decreasing the

dimensionality of the input space.

Other alternatives may exist, but we choose two approaches: feature selection and Principal

Component Analysis (PCA).

Feature selection

In the driving domain, many variables affect our driving performance. While the distance

between our vehicle to the vehicle immediately in front of us is probably important, the dis-

tance from our vehicle to that one behind us may not be very important in most cases. There-

fore, we should consider eliminating the latter distance from the input vector.

To perform feature selection, we follow cross-validation approach again. The biggest concern

of cross-validation is the computational cost. Therefore, in Chapter 7, we explore ways to

improve its efficiency. Feature selection may not be very crucial in the driving domain due to

the large amount of prior knowledge. Feature selection is an important component of OMEGA,

as a general purpose toolkit.

Chapter 2: Memory-based System Classification 39

Principal component analysis

In the driving domain, although we have eliminated those irrelevant input variables based on

prior knowledge, the input dimension of the transformed data points may still be as high as 50,

(referring to Chapter 8 and Chapter 9). To reduce the dimensionality, we resort to Principal

Component Analysis (PCA) [Jolliffe, 86].

Each data point consists of two parts: input and output. Assume the input vector X is d-dimen-

sional. Without loss of generality, X can be represented as a linear combination of a set of d

orthonormal vectors Uk,

With fixed orthonormal vectors Uk, k = 1, ..., d, different data points’ inputs have differing coef-

ficients zk, k = 1 ,..., d. If we carefully choose Uk, it is sometimes possible that the first M coef-

ficients contains the most information, i.e.

If so, we can shrink the dimensionality of X from d down to M. Notice that only when all the

data points satisfy the above equation, is PCA useful for compressing the dimensionality, as

illustrated in Figure 2-6 (a). In the two cases illustrated in Figure 2-6 (b) and (c), PCA does not

help.

In one of our experiments, PCA compressed the input dimensionality of the independent data

points from 50 dimensions to 3; and in another case, it helped to reduce from 36 dimensions to

8.1

X zkUk

k 1=

d

∑=

X zkUk

k 1=

d

∑ zkUk

k 1=

M

∑ zkUk

k M 1+=

d

∑+ zkUk

k 1=

M

∑≈= =

40 Chapter 2: Memory-based System Classification

2.5 Memory-based learning

In this section, we discuss how to use memory-based learning methods to approximate P(xq |

Sp) and P(yq | Sp, xq). To do so, we need some knowledge of system Sp. Memory-based learning

methods assume that the knowledge about a system Sp comes from a memory which consists

of the observation data points of this system’s previous behavior, {(xp1, yp1), (xp2, yp2), ..., }.

Again, these data points have been pre-processed so that temporal order is no longer important.

When there are n candidate systems, we will have at least n sets of observation data points. The

memory contains all of them together. To distinguish the data points generated by different sys-

tems, each data is labeled by its generator. Suppose the p’th system has Np memory data points

and there are n candidate systems, the size of memory will be N1 + N2 + ... + Nn.

1. In first case, the loss of information is 14%. The second case loses 17%.

U1
U2

X1

X2

X1

X2

X1

X2

(a) (b) (c)

Figure 2-6: PCA can be used to compress the dimensionality of a set of data points. In (a),
after the transformation of the coordinates, the information along U2 axis is no more
significant, so that the dimension is reduced from two to one. However, PCA may not be
useful for all cases. Although there obviously exist submanifolds in (b) and (c), the
conventional PCA does not help to reduce the dimensionality.

Chapter 2: Memory-based System Classification 41

A naive method

In Figure 2-7 the X-axis is the input of a system, the Y-axis is the output. Each dot represents a

data point of system Sp. There should exist data points generated by other systems in the mem-

ory, too. For example, the triangles are the data points of another system. The cross represents

the unlabeled data point (xq, yq), which is a component of the observation sequence Oq whose

underlying generator is unknown.

To approximate P(xq | Sp), we can simply count the number of the memory data points of Sp

(the dots) in the stripe shown in Figure 2-7. The stripe defines the neighboring region of xq. It

is a big concern to decide the boundaries of the stripe, but let’s temporarily assume that the

boundaries can be easily decided. Suppose the number of dots in the stripe is Nq (Nq = 27 in

this case), while the total number of dots in the whole memory space is Np, then P(xq | Sp) can

be approximated as Nq / Np.

To approximate P(yq | Sp, xq), we can simply count the number of dots in the square around the

unlabeled data point (xq, yq); in this case, the number is 6. P(yq | Sp, xq) can be approximated

as the ratio of 6 to Nq, the number of dots in the stripe.

Figure 2-7: Memory-based learning methods to approximate
P(xq | Sp) and P(yq | Sp, xq)

x

y

0

xq

yq

42 Chapter 2: Memory-based System Classification

There is one question here: why do not we simply approximate P((xq, yq) | Sp), instead of

approximating two probabilities P(xq | Sp) and P(yq | Sp, xq)? In fact, P((xq, yq) | Sp) can be

approximated as the ratio of the number of dots in the square to the total number of dots in the

whole memory space; in this case, the ratio is 6 / Np.

Recall Equation 2-2 and 2-3, which are

and

.

There are three advantages of decomposing P((xq, yq) | Sp) into P(xq | Sp) and P(yq | Sp, xq).

First of all, we can try any machine learning methods to approximate P(yq | Sp, xq), for example

neural networks and Bayes networks. Hence, P(yq | Sp, xq) is a socket for alternative methods

to plug in. Second, the approximation of P((xq, yq) | Sp) is an interpolation problem, but the

approximation of P(yq | Sp, xq) can be extrapolation as well. Finally, the probability P(yq | Sp,

xq) is about the function relationship between the system input and output. If we have some

domain knowledge of the system Sp, we can use them to improve the approximation of P(yq |

Sp, xq).

The goodness of the naive method is its simplicity. However, it is difficult to define the bound-

aries of the stripe and the square. If the stripe is too narrow and the square is too small, the

approximation of the probabilities will be too sensitive to the noise of the limited number of the

memory data points in the stripe and the square. Otherwise, if the stripe is too wide and the

square is too big, it is hard to tell the difference between P(xq | Sp) and P((xq+ δ) | Sp), as well

P Oq Sp() P yqi Sp Xqi,()P Xqi Sp()
i 1=

Nq

∏≈

lik– Sp() 1
Nq

------ P xqi Sp()log

i 1=

Nq

∑–
1

Nq

------ P yqi Sp xqi,()log

i 1=

Nq

∑–=

Chapter 2: Memory-based System Classification 43

as the difference between P(yq | Sp, xq) and P((yq+ξ) | Sp, (xq+δ)). Besides, the inconsistency

of the distribution of the memory data points brings more troubles. In the case of Figure 2-7, if

we expand the stripe to be wider, the value of P(yq | Sp, xq) will chance greatly. In fact, it will

become larger, because there are numerous memory data points residing just outside the bound-

aries.

Therefore, we consider Kernel density estimation, because it does not require any boundaries.

Kernel density estimation

Kernel density estimation does not neglect any data points in memory, so that every memory

data point is involved in the approximation of P(xq | Sp) and P(yq | Sp, xq). However, higher

weights are assigned to those memory data points neighboring to the unlabeled data point (xq,

yq), so that the neighboring memory data points have stronger impact on the approximation of

P(xq | Sp) and P(yq | Sp, xq). Conversely, remote memory data points have smaller weights,

therefore any single remote data points hardly has any influence on the approximation, but if

many remote memory data points express the same preference, the approximation will be

biased in their favor.

Using Kernel density estimation, P(xq | Sp) can be approximated as,

(2-6)

in which Np is the total number of data points in memory generated by Sp. wi is the weight asso-

ciated with the i’th one among them, usually defined as a Gaussian function of the Euclidean

distance from xq to the concerned memory data point,

. (2-7)

P xq Sp() w xi xq,()
i 1=

N p

∑ Nq⁄=

w xi xq,() Const
xi xq–

2

2Kw
2

----------------------–

exp×=

44 Chapter 2: Memory-based System Classification

Therefore, with respect to different xq’s, the weights associated with an identical memory data

point may be different. The higher the Euclidean distance ||xi - xq||, the smaller the weight. Kw

is the kernel width. The higher the kernel width, the less the weights change with respect to dif-

ferent distances. There are many other possible definitions of the weight [Atkeson et al., 97].

P(yq | Sp, xq) can be approximated as,

. (2-8)

v(yi, yq) is also a weighting function but with respect to the Euclidean distance of || yi - yq||. If

y’s value is continuous, it is fine to define v(yi, yq) as a Gaussian function in a way similar to

Equation 2-7. However, when y is discrete or categorical, we should be more careful. For exam-

ple, when y is boolean, the weighting function v(yi, yq) can be defined as,

.

Kernel density estimation is useful in many cases, its drawback is that it is only good for inter-

polation, it does not extrapolate. This is not desirable for the approximation of P(yq | Sp, xq).

P yq Sp xq,() w xi xq,()v yi yq,()
i 1=

N p

∑

w xi xq,()
i 1=

Nq

∑

⁄=

v yi yq,()
1 When yi yq=

0 Otherwise

=

Kernel prediction
Kernel prediction

x

y

x

y

(a) (b)

Figure 2-8: Kernel regression does not extrapolate.

xq

yq

xq

yq

Chapter 2: Memory-based System Classification 45

Referring to Figure 2-8(a), suppose we want to approximate P(yq | Sp, xq), while (xq, yq) locates

at the position of the cross, intuitively it should be fairly large because it is on the “trend” of

the memory data points. However, Kernel density estimation’s results will be smaller than they

should be. Kernel density estimation does not extrapolate in both continuous case and categor-

ical one. Figure 2-8(b) shows the similar problem in a categorical case.

Locally weighted linear and logistic regressions

Locally weighted linear regression is applicable for both interpolation and extrapolation.

Although in many cases, the relationship between the input and the output is more complicated

than linear, in any local region, sometimes the relationship can still be approximated as a linear

one, illustrated in Figure 2-9. Locally weighted linear regression is a popular memory-based

learning method. But it works only when the output y is continuous.

The counterpart of locally weighted linear regression for cases when the output y is discrete or

categorical is locally weighted logistic regression. Logistic regression has been explored by the

statistical community since 1970’s. We improve this technique by following a locally weighted

paradigm, so that in the toolkit of memory-based learning method, we have a more reliable

classifier.

Figure 2-9: Locally weighted linear regression can approximate non-linear functional
relationship. It works for both interpolation and extrapolation. The pairs of horizontal
bars indicate the variance.

Y

X

Query 1 Query 2 Query 3

46 Chapter 2: Memory-based System Classification

Similar to the principle of locally weighted linear regression, locally weighted logistic regres-

sion assumes the relationship between the input and output in any local region can be approx-

imated in a form of a simple function. But unlike locally weighted linear regression, which

assumes the local relationship is linear, locally weighted logistic regression approximates the

local relationship in the form of a logistic function of a linear combination of inputs. Logistic

functions are also referred to as sigmoid functions, which are monotonic continuous functions

between zero and one. The details will be discussed in Chapter 4.

Approximate P(yq | Sp, xq) using regression methods

Kernel regression is good enough to approximate P(xq | Sp). In this subsection, we focus on

how to use the regression methods to approximate P(yq | Sp, xq). We discuss this issue in three

cases according to the different distribution types of yq.

1. Suppose the conditional distribution of yq given a specific xq is Gaussian, i.e.,

,

in which E(yq | Sp, xq) can be predicted using locally weighted linear regression tech-

nique, the variance σq
2 can be approximated as,

.

When the conditional distribution of yq is continuous and uni-modal, we will always treat

it as a Gaussian distribution. Therefore, the above method is applicable for many cases.

2. When output yq is discrete or categorical, we can approximate P(yq | Sp, xq) using locally

weighted logistic regression.

P yq Sp xq,() 1

2πσq

yq E yq Sp xq,()–()2

2σq
2

---–

exp=

σq
2

Var yq Sp xq,() E yq
2

Sp xq,() E
2

yq Sp xq,()–= =

Chapter 2: Memory-based System Classification 47

3. When output yq is continuous, but with multiple modes, there are two approaches. First,

we can use the techniques like [King et al., 96] to perform the distribution approximation.

But this approach still relies on some prior knowledge of the distribution. Second, as a

general purpose approach, we can discretizes the output so as to employ the logistic

regression approach described in last paragraph.

For example, suppose the output yq is continuous within [0, 10). Regardless of whether

y’s distribution is uni-modal or multi-modal, we discretize it into five equal-sized bins; so

that when yq’s value is between [0, 2), we transform it into a categorical value, (1, 0, 0, 0,

0)T. While y is between [2, 4), the corresponding categorical value is (0, 1, 0, 0, 0)T. Now

we can use locally weighted logistic regression to approximate P(yq | Sp, xq).

However, the discretization approach has two problems. First, in the example above, P(yq

= 2.5| Sp, xq) and P(yq = 3.5 | Sp, xq) will be identical, because yq = 2.5 and yq = 3.5 are in

the same bin. Therefore, the variance of P(yq | Sp, xq) increases with fewer bins.

Second, increasing the discretization resolution causes increased loss of information. For

example, as categorical values, both (0, 1, 0, 0, 0) and (0, 0, 1, 0, 0) are differing from (1,

0, 0, 0, 0), but one cannot tell that (0, 1, 0, 0, 0) is closer to (1, 0, 0, 0, 0) than (0, 0, 1, 0,

0). Thus, we retain the information that P(yq = 1.0 | Sp, xq) and P(yq = 3.9 | Sp, xq) are both

different from P(yq = 4.0 | Sp, xq), but lose the information that P(yq = 3.9 | Sp, xq) and

P(yq = 4.0 | Sp, xq) are closely related to each other.

Overall, we still suggest the discretizing method as a general purpose approach. In our experi-

ments in Chapters 3, 8 and 9, we discretized the outputs into 8 or 10 categories, and found the

results to be satisfactory.

48 Chapter 2: Memory-based System Classification

2.6 Summary

In this chapter, we introduce the main steps for system classification: pre-processing, predic-

tion, likelihood calculation, and hypothesis testing. In addition, we discuss three ways to

improve the efficiency.

This chapter is the framework of OMEGA technique, although we mention other relevant top-

ics, i.e. feature selection, logistic regression-based classifier and kd-tree technique. We will dis-

cuss these topics in depth in later chapters.

The next chapter discusses an experiment, demonstrating the usefulness of OMEGA system.

More complicated experiments will be discussed in Chapter 8 and 9, after we have finished the

discussion on feature selection, logistic regression, and kd-tree.

49

Chapter 3

Tennis Style Detection

3.1 Experimental Design

In this experiment, we designed a simple simulator of tennis, to study different people’s playing

styles. The ball is served automatically from a random position in the upper half field with a

random speed within a certain range and a random direction towards the bottom line. A human

player can control the racket by moving the mouse. The speed of the racket is proportional to

the speed of the mouse, and its orientation is perpendicular to the recent trajectory of the mouse.

Figure 3-1: Tennis simulator interface.

50 Chapter 3: Tennis Style Detection

The short line segments in Figure 3-1 illustrate the recent movement of the racket. When the

racket hits the ball, the ball is bounced back as a light beam is reflected by a mirror. Thus, the

direction of the ball after contact is decided by both the orientation of the racket and the inci-

dent direction of the ball. Concerning the ball’s emitted speed, it is decided by three factors:

speed of the racket, the incident speed of the ball and the ball’s incident angle with respect to

the orientation of the racket.

This simulation system is not dynamic. Referring to Figure 3-2, if we regard the human player

as a system, the input consists of four variables: the position where the ball is served by the

computer, (xs, ys), the ball’s speed (vs) and orientation (θs) after the serve. The output includes

the position where the contact between the racket and the ball happens, (xr, yr), the speed and

orientation of the ball after the contact, (vr and θr). We only took records of those shots when

the racket hits the ball. If the player was so careless that the racket missed the ball, we did not

record that shot. We did not consider the ball’s movement after the contact, because we were

only interested in distinguishing the different playing styles, instead of evaluating the goodness

and drawback of each style. Illustrated in Figure 3-2, there is no time delay in the input, and

there is no feedback from the outputs, hence the system is not dynamic. In other words, the time

order of the sequence of the data points, (xs, ys, vs, θs, xr, yr, vr, θr)t, t = 1, ..., T, is not important;

we can shuffle the order of the data points randomly.

Player
Input Output

Input: serve position (xs, ys), serve speed (vs) and orientation (θs).

Output: contact position (xr, yr), the ball’s speed and orientation

Figure 3-2: The tennis simulation system is not dynamic because
there is no feedback from the outputs and no delays for the inputs.

after the contact, (vr, θr).

Chapter 3: Tennis Style Detection 51

Six people were invited to do the experiment. Each of them played twenty runs; and during

each run, they gave one hundred shots. We did not use the data sets of the first three runs

because the human players needed some time to learn how to play this game. We did not use

the data set of the twentieth run, because when the players realized that they were close to the

end, they did not pay enough attention to their performance, instead, they only wanted to finish

the experiments as soon as possible. Thus, for each player, we have sixteen valid data sets.

We did not evaluate the merit of the performance, we only want to distinguish the different

styles. However, it is an interesting but open question that if we evaluate the performance,

whether or not people will adjust their styles so as to pursue higher scores; also, after a long

time, whether or not different people will converge to the same style which is preferred by the

evaluator.

The style is relevant to the distribution of the eight variables. Some people tended to hit the ball

when the ball was close to the bottom line; the others gave a quick response once the ball came

across the net. Some people wanted the ball to go in a direction as far as possible from the serv-

ing direction; others preferred the ball going back along the way it came, because this action is

safer and easier. However, we cannot distinguish the styles only relying on the distribution of

any one variable, because it is influenced by the other variables. As a matter of fact, we found

that the speed of racket, vr, was the best single feature to distinguish different players. But com-

paring with OMEGA, the single-feature-based classifier’s accuracy is very low (Section 3.3).

Since there are six players, and each player has sixteen data sets, totally there are ninety-six

data sets. Randomly we picked out one from the ninety-six datasets, and asked OMEGA to

detect who was the underlying player by using the other ninety-five datasets as the training

datasets. By comparing OMEGA’s result with the real underlying player, we could tell for this

data set, whether or not OMEGA’s detection is correct. Similarly, we selected another data set

to do this test, thus, we repeated the experiment for ninety-six times. The number of times that

OMEGA succeeded to detect the correct underlying players can be used as a measurement of

52 Chapter 3: Tennis Style Detection

OMEGA’s accuracy. In the same way, we can measure the accuracy of the other methods, like

the single-feature-based classifier.

3.2 OMEGA Result Analysis

This subsection discussed the experiment, which was to test if OMEGA could detect the under-

lying player correctly. We picked out one data set from each player’s sixteen data sets as the

testing set, and used the other fifteen data sets as the memory data sets. To detect who was the

underlying player of the testing data set, OMEGA compared the testing data set with the six

players’ memory data sets one by one. Hence, we got six average negative log likelihoods,

’s. In Figure 3-3, 3-4, 3-5, the six curves correspond to the six players’ ’s

with respect to different numbers of data points involved in the calculation. The horizontal axis

is the number of data points in the unlabeled data set. Thus, the tails of the curves tell

who were most likely to be the underlying players.

Shown in Figure 3-3 (a) and (b), OMEGA detected Marianne and Colonel were the underlying

players of the concerned data sets. These results are correct. For the ninety-six data sets,

OMEGA did correct jobs for eighty-five times. It made mistakes for four times and was con-

fused for seven times1. Figure 3-4 (a) shows a confused case, while Figure 3-4 (b) is a wrong

one. Even in the wrong cases and the confused ones, OMEGA always found that the tails of the

real players’ likelihood curves were closer to the horizontal axis than most of the others.

Sometimes the likelihood curves are bumpy. This is because the player performed in an unusual

way that hasn't been observed in memory. If a performance was so strange that it rarely hap-

pened to all the players, including the underlying player himself, then all the likelihood curves

are bumpy, and roughly paralleling each other. In the case illustrated by Figure 3-4 (a), the ninth

ball was served from a position very close to the right edge and also close to the net, with a

sharp angle towards the left edge of the opposite field. Although the speed was not too fast, it

1. The definition of confusion refers to Chapter 2.2., Hypothesis testing, with significance level α = 5%.

lik– Sp() lik– Sp()

lik– Sp()

Chapter 3: Tennis Style Detection 53

left Edward little time to react. Because Edward is right-handed, any ball coming from the right

made him uncomfortable. Therefore, Edward’s action for the ninth hit was totally a failure: the

ball did not go across the net before it went out of the tennis court. Not only that, it seemed

Edward did not recover from this shock until the twelfth hit. In the eleventh hit, he hardly

touched the ball, because the ball’s direction did not change too much after the contact. Hence,

the likelihood curves in Figure 3-4 (a) rose to a peak at the eleventh hit. Fortunately, the twelfth

0 10 20 30 40 50 60 70 80 90 100
2.8

3

3.2

3.4

3.6

3.8

4

4.2

Num of Data Points

−
lo

g
 L

ik

Real Player: Colonel, No. 17

Marianne

Edward

Robert

Colonel

Margaret

(a) (b)
0 10 20 30 40 50 60 70 80 90 100

2.5

3

3.5

4

4.5

5

5.5

Num of Data Points

−
lo

g
 L

ik

Real Player: Marianne, No. 5

Willoughby

Marianne

Edward

Colonel
Robert

Margaret

Figure 3-3: Likelihood curves of six human players. Two sample of the correct cases.

0 10 20 30 40 50 60 70 80 90 100
2.8

3

3.2

3.4

3.6

3.8

4

Num of Data Points

−
lo

g
 L

ik

Real Player: Edward, No. 12

Colonel

Robert

Marianne

Edward

Margaret

0 10 20 30 40 50 60 70 80 90 100
2.8

3

3.2

3.4

3.6

3.8

4

Num of Data Points

−
lo

g
 L

ik

Real Player: Colonel, No. 11

Colonel

Robert

Marianne
Edward

Figure 3-4: A confused case and a wrong case. (a) Confused: OMEGA can hardly
distinguish Edward from Marianne. (b) Wrong: The real play should be Colonel, but
OMEGA decided it was Robert. However, OMEGA did figure out Colonel was also very
likely to be the player.

(a) (b)

54 Chapter 3: Tennis Style Detection

ball was served in a manner Edward preferred: from the top left corner of the court towards the

lower-right one, with a slow speed. This gave Edward a break to rebuild his confidence. He

played in normal way again. Therefore, the likelihood curves start to go downhill. The twenty-

second ball was another triumph. It started not far from center of the upper field, slowly and

straightly downward. This was a great chance for Edward to exaggerate all his unique charac-

teristics: he moved his racket rapidly to hit the ball when it arrived the center of the lower half

field; after the contact, the ball rushed towards to the top right corner. Therefore, in Figure 3-4

(a), we see a great peak around the eleventh data point and a deep valley at the twenty-second.

The bumpiness implies the consistency of the players. Willoughby was the most consistent

players among the six, because comparing Figure 3-5 (b) with other figures, Willoughby’s

curves are smoother than the others’.

The distances among the likelihood curves imply whose performances are similar. In this

experiment, Margaret and Willoughby behaved similarly, referring to Figure 3-5 (a) and (b).

But they are quite different from the others. As in Figure 3-3, 3-4, their curves were so much

higher than the others that they are off the graphs.

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

2

3

4

5

6

7

8

Num of Data Points

−
lo

g
 L

ik

Real Player: Willoughby, No. 17

Margaret

Willoughby

Marianne

Colonel

Edward

Robert

0 10 20 30 40 50 60 70 80 90 100

2.5

3

3.5

4

4.5

5

5.5

6

Num of Data Points

−
lo

g
 L

ik

Real Player: Margaret, No. 12

Robert

Edward

Colonel

Marianne

Willoughby

Margaret

Figure 3-5: Willoughby and Margaret behaved similarly all the time. But they are different
from others. Willoughby played more consistently, referring to his likelihood curve in (b)
which is smoother than others.

Chapter 3: Tennis Style Detection 55

The likelihood curves tend to be more bumpy or chaotic at the beginning phase than afterwards.

Recall that with limited testing data points, OMEGA is still able to start the classification job;

but with more data points, OMEGA may improve its precision. Therefore, OMEGA is an ideal

on-line classification technique.

3.3 Comparison with Other Methods

In this section we compare OMEGA’s performance with those of other methods, like Bayes

classifier and linear regression, because Bayes classifier is a popular statistical classifier while

linear regression represents the linear control system approach. We also used the best single

feature to do the classification. The purpose was to show that it is not easy to distinguish dif-

ferent tennis playing styles.

Bayes classifier

Bayes classifier assumes the memory data points of each candidate system are of Gaussian dis-

tribution, in plain words, each candidate system’s memory data points cluster in a shape more

or less like an ellipse. In Figure 3-6, there are two candidate systems, S1 and S2, whose data

Figure 3-6: Bayes classifier assumes the distributions of the
candidate system’s data points are all of Gaussian distributions.

S1

S2

Unlabeled data point

56 Chapter 3: Tennis Style Detection

points are represented by the circles and the triangles respectively. The horizontal axis may be

the input, the vertical one may be the output; but this is not a requirement. As a matter of fact,

Bayes classifier does not distinguish the input and output, instead, it treats all the input and out-

put as features. By adjusting the scales of the axes, Bayes classifier can discriminate the impor-

tance of different features. In Figure 3-6, if the scales of the axes are changed, the elliptical

shape of the clusters will be different. To classify an unlabeled data point, like the cross in Fig-

ure 3-6, we can measure the distances from the unlabeled data point to the centroids of the ellip-

tical clusters. The shortest distance indicates to which candidate system (represented by the

ellipse) the unlabeled data point belong to. Given a set of unlabeled data points, we can do the

classification one by one, then make an overall judgement.

The Gaussian assumption of Bayes classifier is too restrictive for the tennis style domain.

Therefore, Bayes classifier’s performance as shown in Table 3-1 is very poor compared with

OMEGA.

Linear regression approach

Linear regression assumes the function relationship between the inputs and the outputs are lin-

ear. Furthermore, global linear regression assumes the function relationship (the parameters of

the function) is fixed anywhere around the input space. If the function parameters of a certain

system is distinguishable from the others, the classification job is feasible. In this experiment,

we did the global linear regression of each candidate system based on its memory data points.

In other words, we determined the parameters, β’s, in the following linear equations for every

candidate system,

(3-1)

xr β10 β11xs β12ys β13vs β14θs ξ1+ + + + +=

yr β20 β21xs β22ys β23vs β24θs ξ2+ + + + +=

vr β30 β31xs β32ys β33vs β34θs ξ3+ + + + +=

θr β40 β41xs β42ys β43vs β44θs ξ4+ + + + +=

Chapter 3: Tennis Style Detection 57

in which the definitions of the input variables, xs, ys, vs, θs, and the output variables xr, yr, vr, θr

refer to Section 3.1. When a unlabeled data set came, to detect its underlying player, we tem-

porarily assume the unlabeled set was generated by the first player. Since we have already esti-

mated the first player’s function parameters (the β’s), we picked out a data point (xs, ys, vs, θs,

xr, yr, vr, θr)t from the unlabeled data set, we could predict the outputs (xr, yr, vr, θr)t correspond-

ing to the input (xs, ys, vs, θs)t. If the residual between the predicted outputs and “real” observed

output is small, the first player is likely to be the underlying player. We repeated this test with

respect to all the six players, the smallest residual responds to the most likely player.

We used the estimated β’s to predict the outputs, then compare the predicted outputs with the

real outputs. Usually there is a residual between the predictions and the real outputs. The sys-

tem with the least residuals is most likely to be the underlying system which generates the test-

ing dataset.

Referring to Table 3-1, global linear regression can hardly distinguish the variant human play-

ers, because in most cases, global linear regression is “confused”. To improve it, we can do two

things: (1) We can extend the linear equations in Equation 3-1 to polynomials with higher

degrees. In this way, the function is capable of describing more complicated relationship

between the input and output. (2) Instead of assuming there is one fixed global linear function,

we can assume in any local region, the input and output relationship is linear, but the linear

parameters may vary with different inputs.

In Table 3-1, we notice that quadratic model does not do any better than the linear models, but

local paradigm does help. However, the local approach, even the local models with quadratic

items, is still worse than OMEGA by a large margin. The reason is that in this tennis playing

style domain, even for the identical serves, the same player may react in different ways. That

means, the conditional distribution of the output with respect to a certain input may be of multi-

modal, instead of uni-modal as the linear model assumes. Therefore, the linear models are not

proper for the tennis playing style domain, either.

58 Chapter 3: Tennis Style Detection

3.4 Summary

In this chapter, we used OMEGA to classify different human operators’ behavior in a game

mimicking tennis. Although the simulation system is not dynamic, the classification job is not

easy, especially because the distribution of the input and output is complicated. OMEGA per-

forms very well in this domain, which demonstrates that OMEGA is a good classification tech-

nique. Although originally it was explored to classify time series, OMEGA is also a general

purpose classification tool, which is capable of handling both time series and non-time series.

Experiments have been done to compare OMEGA with other methods. Although we have

tuned up those methods to perform as well as possible, they still are not competitive with

OMEGA.

 Table 3-1: Comparison experiment for tennis domain

Correct Wrong Confused

One Feature 21 57 18

Bayes 34 40 22

k-Nearest Neighborsa 17 14 67

Global Linear 9 12 75

Global Quadratic 9 12 75

Local Linear 17 8 71

Local Quadratic 20 5 71

OMEGA 85 4 7

a. We used 9 nearest neighbors here. Also, we tried 3 nearest neighbors as well as 6,
the results do not deviate from those values in the table significantly.

59

Chapter 4

Logistic Regression as a Classifier

In this chapter, we discuss how to approximate the probability P(yq | Sp, xq), i.e., the probability

that if the underlying system is Sp, corresponding to a certain input xq, the system’s output is

yq. We explore a new memory-based method, locally weighted logistic regression, which aims

at approximating P(yq | Sp, xq) when the output yq is categorical.

Figure 4-1 illustrates the task of this chapter. Suppose there is a system, Sp, whose input space

is 2-dimensional, and the output is boolean. Suppose a unlabeled data point is (xq, yq), to

approximate P(yq | Sp, xq), we need some knowledge of system Sp. Memory-based methods

assume that the knowledge comes from the previous observations of the system’s behavior, i.e.

the memory data points or the training data points, as the circles and crosses in Figure 4-1. The

circles correspond to those memory data points of Sp with outputs equal to 0, the crosses cor-

respond to the other memory data points with outputs equal to 1. Now, if there come two que-

ries, residing at the positions of the dark triangles, if both of the queries’ outputs are “cross”,

then intuitively P((yq = “cross”) | Sp, xq = (2.0, 3.0)T) should be close to 1.0 because the major-

ity of its neighbors are crosses, while P((yq = “cross”) | Sp, xq = (4.5, 1.0)T) should be near

0.0, based on the similar reasoning.

60 Chapter 4: Logistic Regression as a Classifier

4.1 Classification methods

Since the output y is categorical, the approximation of P(yq | Sp, xq) is a classification problem

by itself. System classification is to summarize a sequence of such classifications. There are

many classification methods. The simplest one is nearest neighbor [Duda et al, 73; Aha et al,

89]. Its derivative, k-nearest neighbors, is more popular. Kernel regression, as mentioned in

Chapter 2, is another important method. These methods are referred to as memory-based or

instance-based classification methods [Atkeson et al, 97], while non-memory-based classifica-

tion methods include neural network [Bishop, 95], decision-tree [Quinlan, 93], hierarchical

mixtures of experts (HME) [Jordan, et al, 93], Bayes classifier [James, 85], etc. Both memory-

based classifiers and non-memory-based ones assume the knowledge of the system Sp comes

from the training data points. The distinguishing characteristic of memory-based classification

methods is that they defer most of the processing of the training data points until after a query

is made. This characteristic is desirable for processing continuous streams of training data and

queries in real-time systems. In addition, the memory-based classifiers are capable of self-tun-

ing according to the distribution and noise level of the training data points. Non-memory-based

methods try to learn the underlying function model of the system Sp before any query comes.

For example, neural networks have been proved capable of approximating any functions, if

x1

x2

0

1.0

3.0

2.0 4.5

Figure 4-1: An illustration of the classification task.

Chapter 4: Logistic Regression as a Classifier 61

there is no restriction of the numbers of its hidden layers and its hidden nodes. Given a suffi-

cient number of training data points, neural network uses them to approximate the underlying

function relationship of the input and output. Once the training is done, the training data points

are tossed away. Then, we wholly rely only on the trained neural network to process any que-

ries.

Let’s pick up some popular classification methods, and discuss them in a little depth.

1. Nearest neighborhood or 1-nearest neighborhood doesn’t perform satisfactorily in most

cases, because it is too sensitive to the noise of the single nearest neighboring data point.

k-nearest neighborhood performs quite well in many domains. But notice that it does not

recognize the “boundary” of the different patterns. Besides, k-nearest neighborhood may

be influenced by the density of the neighboring data points along the border. In the follow-

ing diagram, intuitively the output of the query (the dark triangle) should be a cross,

because it is on the cross side. However, k-nearest neighborhood’s conclusion tends to be a

circle, because among the k nearest neighboring data points, the majority are circles.

2. Kernel regression is a good method for interpolation. However, it is not ideal for extrapo-

lation. Suppose a query resides at a location remote from the centroid of other memory

data points, like the reversed triangles in the above diagram, Kernel regression can not

clearly decide if the category of the reversed triangle. Instead, it tends to assign 50% to the

probability for the query’s output to be “cross” (or “circle”).

3. The simple Bayes classifier, referring to Section 3.3, puts too strong assumptions on the

distribution of the data points. The conventional Bayes classifier assumes that if the out-

62 Chapter 4: Logistic Regression as a Classifier

puts are boolean, the memory data points distribute in two clusters, one for the memory

data points with output equal to 0, the other cluster for the data points with output equal to

1. Furthermore, the points are Gaussian-distributed in the input space so that the shapes of

the clusters are ellipses. Referring to Figure 4-1, these restrictions are too strong for most

classification problems. Even if we extend Bayes classifier to consider multiple clusters, it

is still too hard to meet the requirement that the shapes of these clusters must be ellipses.

Another concern about Bayes classifier is that it needs a large number of parameters to

decide the centroids and the shapes of the Gaussian ellipses, this problem becomes more

severe when we employ multiple ellipses.

4. The idea of a decision tree [Quinlan, 93] is to partition the input space into small seg-

ments, and label these small segments with one of the various output categories. However,

conventional decision tree only does the partitioning to the coordinate axes. It is plausible

that with the growth of the tree, the input space can be partitioned into tiny segments so as

to recognize subtle patterns. However, overgrown trees lead to overfitting. More flexible

than the conventional decision tree, CART [Breiman et al, 84] and Linear Machine Deci-

sion Tree [Utgoff et al, 91] can divide the input space using oblique lines. However, any

nonlinear boundary may either make the tree overgrown or reduce the accuracy of the

classification.

In this thesis, we explore a locally weighted version of logistic regression which can be used as

a new memory-based classification method. Our method shares the properties of other mem-

ory-based classification methods. Besides, our method has some other good properties, includ-

ing simplicity, capability of extrapolating, and a known confidence interval. Concerning the

accuracy, our new method is competitive with others, supported by the experimental results.

Chapter 4: Logistic Regression as a Classifier 63

4.2 Global logistic regression

Locally weighted logistic regression can be used to approximate P(yq | Sp, xq). Let’s begin with

a very simple case with boolean output, shown in the following figure.

The straightforward way to approximate this function is to use two line segments to fit the dots,

which are also referred to as training data points. However, to be learnable, we want to use a

differentiable function to do the fitting instead of using two line segments. Logistic function,

which is also referred to as sigmoid function, can be employed here. Logistic function is a

monotonic, continuous function between 0 and 1, whose shape is shown as the grey curve in

the above figure. Mathematically, it is defined as,

(4-1)

where is the input vector of the query, and is the parameter vector. as the probability

for to be 1, i.e.

.

Therefore, deciding the output of a query is now equivalent to finding the value of .Global

logistic regression assumes that all data points share the same parameter vector with the query,

i.e.

x

y

y = 1

y = 0

πq
1

1 1 x
˜q

T,()β
˜

–()exp+
---=

x
˜q β

˜
πq

yq

πq P yq 1= Sp xq,()≡ Or, equivalently,

yq

1 with probability πq

0 with probability 1 πq–

=

β
˜

64 Chapter 4: Logistic Regression as a Classifier

While local logistic regression allows vary cross the input space, but it changes smoothly.

For example, if and are neighboring to each other, then we assume and must be

close to each other, too. Back to global logistic regression, a good estimate of should fit, or

in plain words, “go through”, all the training data points as well as possible. Mathematically,

the estimate of can be derived by maximizing the likelihood as following,

(4-2)

Global logistic regression is a well-established algorithm in statistical literature [McCullagh et

al, 89]. Although we discuss only the binary output case here, global logistic regression is ready

to be extended to multiple categorical output cases. We will talk about this later.

The simplest classification problem is illustrated as Figure 4-2. The input is one-dimensional,

which is represented by the horizontal axis; the output is boolean, represented by 0 or 1 on the

vertical axis. The small circles in the pictures are the data points in memory. Global logistic

regression works perfectly in the noise free case illustrated by Figure 4-2 (a), because the logis-

tic function curve goes through most of the data points in memory. Global logistic regression

also works in the noisy case shown as Figure 4-2 (b). Although the function curve moves mid-

way between the data points, the curve is close to most of the data points. In summary, global

logistic regression can be used as a noise tolerant classification method.

β1 β2 ... βN β= = = =

β
˜

i

x
˜1 x

˜2 β
˜

1
β
˜

2

β
˜

β
˜

LikG P yi Sp xi,()
i 1=

N

∏ πi

yi
1 πi–()

1 yi–

i 1=

N

∏= =

1

1 1 x
˜ i

T,()β
˜

–()exp+

yi 1 x
˜ i

T,()β
˜

–()exp

1 1 x
˜ i

T,()β
˜

–()exp+

1 yi–

i 1=

N

∏=

Chapter 4: Logistic Regression as a Classifier 65

The fatal weakness of global logistic regression is shown in Figure 4-2 (c). Since it contains

more than two segments, global logistic regression does not work. Recalling logistic function

is a monotonic function, that is the reason global logistic regression fails whenever there are

more than two segments. There are two approaches to solve this problem. One way to think is

that although one logistic function does not work, we can combine several logistic functions.

In fact, neural networks, especially feed-forward multi-layer perceptrons, can be regarded as

an implementation of this idea.

The second approach resorts to the localization paradigm. The idea of local logistic regression

is that although no single logistic function works well globally, in any local region a single

function should be capable of doing the classification.

There are several versions of local logistic regression that can be investigated. K-nearest neigh-

bor local regression would only select those neighboring data points, and ignores all others.

Locally weighted version of logistic regression does not ignore any data points in memory,

instead, it discriminates the data points by assigning weights to them.

Figure 4-2: (Global) logistic regression for classification.

Global logistic regression Global logistic regression
 works for simple pattern
 with noise.

Global logistic regression
does not work for complex
pattern.

works perfectly for simple
pattern.

(a) (b) (c)

x x x

y=1 y=1

y=0

y=1

y=0 y=0

66 Chapter 4: Logistic Regression as a Classifier

4.3 Locally Weighted Logistic Regression

4.3.1 Maximum Likelihood Estimation

Locally weighted logistic regression is very similar to the global logistic regression, except that

the locally weighted version assign a weight to . Differing from Equation 4-2, the

locally weighted version of likelihood is,

(4-3)

The weight is a function of the Euclidean distance from the i’th memory data point to the query.

Other metrics of distance are also possible depending on the specific domains. The in the

weighting function definition is referred to as Kernel width. The influence of Kernel width will

be discussed shortly. Due to the weights, those data points remote from the query have smaller

weights, while the neighboring memory data points have bigger weights.

Using Newton-Raphson algorithm, and through some algebraic manipulations, the maximum

likelihood estimate of can be simplified as,

(4-4)

Suppose there are N data points in the memory, each data point consists of a d-dimensional

input vector and a boolean output. X is then a matrix. The i’th row of X matrix is

(1, xi
T). And is a diagonal matrix, whose i’th diagonals element is, ,

where is the derivative of with respect to , i.e.,

. (4-5)

P yi Sp xi,()

LikL P yi Sp xi,()
wi

i 1=

N

∏= in which wi

distance xi xq,()2

Kw
2

--–

exp=

Kw

β
˜

β̂ r 1+() β̂ r() X
T

WX()
1–
X

T
We+=

N 1 d+()×

W N N× W i wiπ'i=

π'i πi β
˜

πi'
1 xi

T,()β–()exp

1 1 xi
T,()β–()exp+()

2
--

1

xi

 ≡

Chapter 4: Logistic Regression as a Classifier 67

is the weight defined in Equation 4-3. The last item, is a ratio of to . Newton-

Raphson algorithm starts from a random vector of , usually we assign to be zero vector.

The recursive process converges very quickly, usually no more than 10 loops. Once we get the

maximum likelihood estimate of , we can estimate the query’s .

Also notice that, is the asymptotic variance matrix of .

Now let us go back to the case of Figure 4-2 (c) and see if locally weighted logistic regression

classifier is capable of solving the problem where global logic regression fails. The result is

shown in Figure 4-3 (a). The circles are the memory data points. And each dot on the solid

curve, which is , is plotted by doing its own locally weighted regression at that local region.

Locally weighted logistic regression works well in this case. Also, in the harder case of Figure

4-3 (b), it still works. Notice, is influenced by the noise but not the distribution of the data

points.

wi e yi πi– π'i

β
˜

βˆ
˜

0()

β
˜

πq

X tWX() 1– βˆ
˜

πq

πq

Locally weighted logistic
regression works well
for this noise free multi-
segment classification.

Figure 4-3: Locally weighted logistic regression as a classification technique
works robustly.

(a) (b)
x

y=0

y=1

68 Chapter 4: Logistic Regression as a Classifier

4.3.2 Weighting Function and Kernel Width

Referring to Equation 4-3, , the weight can be adjusted by the Kernel width.When the Kernel

width is big, more data points have high weights. Therefore, a big Kw is usually preferred when

the noise level in memory is high. Extremely, when Kw goes to infinity, locally weighted logis-

tic regression is equivalent to the global one. When Kw is small, only those close neighbors can

effect the regression. Hence, a small Kw is good at recognizing the details of the memory. The

influence of Kw is demonstrated by Figure 4-4.

4.3.3 Confidence Interval

Our estimate is a point estimate, which is our best guess for the true value of . Reporting

only the point estimate is often unsatisfactory. Some measure of how close the point estimate

is likely to be the true value is required. The confidence interval is such a metric.

The confidence interval of is an interval of plausible values for , ; the probabil-

ity or the confidence for the true value of falling into this interval is , in which

is the confidence level. Usually we pre-define a confidence level, then decide the lower and

upper bounds, πL and πU, which are also effected by the density and consistency (noise level)

of the data points in the neighborhood of xq.

wi

Small K reduces bias Big K smoothes noise

(a) (b)

Figure 4-4: Kernel width adjusts the weighting function.

y=0

y=1

x
y=0

y=1

x

π̂q πq

πq πq πL πU,[]

πq 100 1 α–()%

α

Chapter 4: Logistic Regression as a Classifier 69

Referring to Equation 4-1, πis a monotonic function of ; hence, to calculate the lower

and upper bounds, we need know the lower and upper bounds of . Referring to Sub-

section 4.3.1, we can calculate the asymptotic variance of which is , where

is decided by the memory data points and is effected by the distances from the query to the

memory data points. Notice that the asymptotic variance of is likely to be small when there

are more data points in the memory, especially in the neighborhood of the query. It is straight-

forward to calculate the confidence interval of based on the upper and lower bounds of

.

The confidence intervals of the cases of Figure 4-3 (a) and (b) are plotted in Figure 4-5 (a) and

(b). When the data points distribute uniformly as Figure 4-5 (a), the confidence interval is quite

consistent. Otherwise, the confidence interval varies cross the input space.

According to ’s definition, referring to Equation 4-5, when is close to 1.0, we tend to

predict that the query’s output yq is likely to be 1. However, if at the same time ’s confidence

interval is too big, we should be conservative about our prediction. Figure 4-5 (b) shows such

a situation: is almost zero, therefore, if we only rely on , we should predict the output

will be 0. But since the confidence interval is very wide, we should be aware that there is still

a lot of chance for the output yq to be 1.

1 xq
T,()β

˜
1 xq

T,()β
˜

β̂q X
T

WX()
1–

X

W

β̂q

π̂q

xqβˆ q

The upper curve and the
lower one are the two
boundaries of the confi-
dence interval.

The CI is influenced by
the distribution of the
memory data and the noise.

(a) (b)

Figure 4-5: Confidence intervals for classification.

x x
y=0

y=1

y=0

y=1

πq' π̂q

π̂q

π̂q π̂q

70 Chapter 4: Logistic Regression as a Classifier

Confidence interval is helpful for active learning and/or experimental designs. Wherever the

confidence interval is wide, we need more data points in that region.

4.3.4 Multi-categorical classification inference

Up to now, we focus on boolean classification. In case the output has more than two output cat-

egories, locally weighted logistic regression method is still useful. But we should do some

modifications.

1. Suppose there are m output categories, we can represent the output by a m-dimensional

vector. If a data point falls into the first category, its output, , is ; if it is in

the second category, is . In general, the distribution of output is multino-

mial, in the form of,

where the probability for the data point falling into the j’th category.

2. We assume is decided by a function similar to logistic function,

Notice that the sum of , j = 1, ..., m, is 1.0. And for each output category, there is a uni-

fying ; totally, there are m of them.

3. The likelihood can be constructed following the descriptions in Section 4.2 and section

4.3. For example, the global likelihood, which assumes all data points share the same , is

defined by Equation 4-6,

y
˜

1 0 ... 0, , ,[] T

y
˜

0 1 ... 0, , ,[] T

P y
˜

q
Sp x

˜q,() π1

y
˜

qπ2

y
˜

q
... πm

y
˜

q πj

y
˜

q

j 1=

m

∏= =

πj

πj

πj 1 x
˜q

T,()β
˜

j
()exp() 1 x

˜q
T,()β

˜
j

()exp

j 1=

m

∑⁄=

πj

β
˜

j

β
˜

Chapter 4: Logistic Regression as a Classifier 71

(4-6)

Now it is straightforward to follow the same inferences described in Sections 4.3 to figure out

the locally weighted regression of and the confidence interval of .

4.4 Comparison Experiment

Artificial Experiments

We artificially generate three data sets, each data consists of two input attributes (2-d input) and

a boolean output. In Figure 4-6, we represent those data points with output values equal to 0 by

circles, and represent the other data points, whose outputs are 1, by crosses.

Figure 4-6 (a-c) are the contours of the values corresponding to three different memory data

sets. Figure 4-6 (a) shows a simple case, in which locally weighted logistic regression does a

perfect job. Figure 4-6 (b) is similar to Figure 4-6 (a) except that, the “boundary” of the two

regions is messier, and there is noise involved as well. In this case, value increases from 0

to 1, starting from the bottom left corner to the top right one; hence, locally weighted logistic

regression works well, too. The small gradient of the contour of shows the influence of the

inconsistency (noise) of the data points in memory. Figure 4-6 (c) is the hardest case, in which

locally weighted logistic regression still works well. Figure 4-6 (d) is the contour of confidence

interval for the same memory as Figure 4-6 (c). It is apparent that the memory data points’

noise level, as well as their distribution and density, influence the confidence interval.

LikG β
˜

() P y
˜

i
Sp x

˜ i,()
i 1=

N

∏ πj

yi

j 1=

m

∏
i 1=

N

∏= =

β
˜

q
πq

π̂q

π̂q

π̂q

72 Chapter 4: Logistic Regression as a Classifier

Real World Datasets

We use four binary output data sets from UCI’s machine learning dataset repository, Ionos.,

Pima., Breast., and Bupa. We try six different classifiers, including nearest neighbor method (1-

Nearest), k-nearest neighbors (k-Nearest), Kernel regression (Kernel), conventional Bayes

classifier with two clusters (Bayes), C4.5 decision tree (Decision), feedforward perceptron

(Neural), global logistic regression (Global Logistic) and our locally weighted logistic regres-

sion method (Local Logistic). The dimensionalities of the inputs vary from 6-d to 34-d.

We split each data set into two parts, the first part contains two thirds of the data points, which

are used as the memory or the training dataset. The remaining one third of the data points are

used as the test set. We can approximate the accuracy of a certain method for a certain dataset

100 200 300 400 500

100

200

300

400

500

Logistic Contour

Contours from 0.1 to 0.9 in increments of 0.1
Key: 0.1 0.3 0.4 0.5 0.7 0.8

0.0903

0.0443

0.571

0.0629

0.419

0.929

0.607

0.881

0.984

100 200 300 400 500

100

200

300

400

500

Logistic Contour

Contours from 0.1 to 0.9 in increments of 0.1
Key: 0.1 0.3 0.4 0.5 0.7 0.8

0.000805

0.00148

0.996

0.00109

0.00971

0.996

0.996

0.997

0.996

100 200 300 400 500

100

200

300

400

500

Logistic Contour

Contours from 0.1 to 0.9 in increments of 0.1
Key: 0.1 0.3 0.4 0.5 0.7 0.8

0.00182

0.000822

0.0392

0.000822

0.0122

0.997

0.0392

0.997

0.997

100 200 300 400 500

100

200

300

400

500

Contours

(a) (b)

(c) (d)

Figure 4-6: Three artificially generated data sets as the testbeds of locally
weighted logistic regression classifier.

Chapter 4: Logistic Regression as a Classifier 73

by the error rate, which is the ratio of the number of the failures to the number of the testing

data points. For the same dataset, the lower the error rate, the better the classification method

performs.

With different Kernel width, locally weighted logistic regression may have different accuracies.

We split the range of the Kernel width into ten equal-length steps, and tried the logistic regres-

sions using these ten different Kernel widths, so as to find the optimal Kernel width. Similarly,

for k-nearest neighbor method and kernel regression, we enumerated parameter k from 10 to

100 with step 10; for perceptron, we tried one-hidden layer feedforward perceptron with 1 to

10 hidden nodes. In this way, we found the best parameters for the various machine learning

methods.

For each dataset, we shuffled it five times; each time we split it into training set and testing set.

Hence, for each dataset by each method, we got five error-rates which were the best perfor-

mances of the method with the tuned-up parameter(s). We recorded the mean values of these

error-rates in Table 4-1, along with the standard deviations in parentheses.

 Table 4-1: Comparison of logistic classifier with other methods

Error rate (%) Ionos. (34-d) Pima (8-d) Breast (9-d) Bupa (6-d)

1-Nearest 12.7 (2.5) 33.9 (1.8) 4.9 (0.6) 40.0 (2.4)

k-Nearnest 13.9 (2.9) 31.5 (4.7) 3.3 (0.5) 37.5 (5.8)

Kernel 12.7 (3.3) 30.9 (3.2) 3.3 (0.6) 37.3 (2.0)

Bayes 12.9 (1.2) 25.3 (2.3) 3.4 (1.2) 34.2 (3.6)

Decision 9.2 (2.1) 28.6 (3.0) 4.2 (1.1) 35.8 (3.2)

Neural 10.5 (3.2) 33.4 (2.0) 3.2 (0.6) 32.1 (4.5)

Global Logistic 12.4 (0.7) 24.9 (3.0) 3.9 (1.4) 34.4 (3.4)

Local Logistic 13.0 (0.4) 22.5 (2.8) 3.1 (0.7) 31.0 (2.7)

74 Chapter 4: Logistic Regression as a Classifier

The experiments show that the accuracy of the locally weighted logistic regression method

(Local Logistic) is competitive compared with other classification method. Some remarks are

listed as following,

1. It is not surprising that locally weighted logistic regression is more accurate in most cases

than 1-nearest neighborhood, k-nearest neighborhood, Kernel regression, conventional

Bayes classifier, C4.5 decision tree, and global logistic regression according to our discus-

sion in Section 4.1.

2. Global logistic regression’s performance is similar to that of the conventional Bayes clas-

sifier with two clusters. But global logistic regression is computationally cheaper than the

conventional Bayes classifier. Suppose the input space’s dimensionality is d and the mem-

ory size is N, the computation cost of locally weighted logistic regression is

, while that of the conventional Bayes classifier with improved efficiency

by some tricks is , where k is the number of clusters.

3. Concerning neural networks, locally weighted logistic regression does not outperform it

in accuracy. Instead, an advantage comes from the general good properties of the memory-

based approach over non-memory-based ones. As mentioned in the beginning of this

chapter, Section 4.1, as well as [Atkeson et al., 97], because memory-based learning does

not process data until the query arrives, the parameters of the logistic regression are not

fixed in advance. When we update the memory, unlike neural network, less interference

will happen, because the previous arrived memory data points are treated equally as the

new comers. And by adjusting the parameters, we can shift the logistic regression continu-

ously along the global-local spectrum.

4. Locally weighted logistic regression performs poorly on the Ionos dataset. The reason is

that the dimensionality of the input is very high (34-d). Maybe many input attributes are

irrelevant to the classification but only confuse the classifiers. When we selected the first,

O d
3

d N×+()

O d
3

N d N k××+×()

Chapter 4: Logistic Regression as a Classifier 75

the fourth and the fifth attributes to be input, the mean value of error-rate of the local logis-

tic classifier dropped from 13.0% to 10.7%, with standard deviation 0.7%.

To eliminate those less important input variables, recall that locally weighted logistic

regression estimates the parameter vector . In fact, each element of indicates the sig-

nificance of the corresponding input attribute for classification. If one element of is

close to zero, it implies that the corresponding input attribute is not very relevant to the

classification job. We can get rid of the irrelevant input attributes using this heuristic.

Some preliminary experiments showed that the selection result was quite consistent with

the nodes of decision tree.

4.5 Summary

In this thesis, we explore a locally weighted version of logistic regression which can be used as

a new memory-based classification method. Our method shares the properties of other mem-

ory-based classification methods. Besides, our method has some other desirable properties,

including simplicity, competitive accuracy, capability of extrapolating, and confidence interval.

In Chapter 5 and Chapter 6, we will discuss the issue about how to improve the efficiency of

locally weighted logistic regression as well as other memory-based methods.

β β

β

76 Chapter 4: Logistic Regression as a Classifier

77

Chapter 5

Efficient Memory Information Retrieval

In this chapter, we will talk about two topics: (1) What is a kd-tree? (2) How can we use kd-

trees to speed up the memory-based learning algorithms? Since there are many details in the

second topic, we only discuss how to improve the efficiency of Kernel regression in this chap-

ter, to demonstrate the approach in principle. In next chapter, we will explain the details of

applying kd-tree techniques to improve the efficiency of locally linear regression and locally

weighted logistic regression.

5.1 Efficient information retrieval

Suppose there are a set of memory data points whose input space is 2-dimensional, shown in

Figure 5-1. Given a query (xq, yq), a task of information retrieval is to find this query’s neigh-

boring memory data points. The brute force approach is to measure the distances from this

query to each of the memory data points. Then based on these distances, it is straightforward

to decide which memory data points are the query’s neighbors. The distance may be Euclidean

or another metric depending on the specific domain. The drawback of the brute force method

is obvious: since its computational cost is , where N is the memory size and d is the

dimensionality of the input space. When the memory size N becomes very large, its costs will

increase, too.

O N d×()

78 Chapter 5: Efficient Memory Information Retrieval

To improve the efficiency of finding the neighbors, we can partition the input space of the mem-

ory data points into many cells by means of a grid. When a query arrives, we can consult the

cell where the query locates and its neighboring cells, instead of visiting all the memory data

points individually. In this way, the computational cost shrink from to ,

where n is the number of memory data points in the concerned cell(s). (If we neglect the cost

of finding the cell where the query resides.) The grid method performs the best when the mem-

ory data points distribute uniformly, so that n tends to be N / G, in which G is the number of

grids in the whole input space. However, there is no guarantee that the memory data points dis-

tribute uniformly forever and wherever. Sometimes most of the memory data points are packed

in only a limited number of cells, while the other cells are almost vacant. Therefore, the contri-

bution of the grid method to the efficiency is not reliable.

The kd-tree technique [Preparata et al, 85] is similar to the grid method in the sense that it also

partitions the input space into many cells. However, the partition is flexible with respect to the

density of the data points in the input space. Wherever, the density is high in the input space,

the resolution of the kd-tree’s partition at that region is also high, so that the cells tend to be

x1

x2

Figure 5-1: Grid for efficiency information retrieval.

Query

Query

O N d×() O n d
2×()

Chapter 5: Efficient Memory Information Retrieval 79

small. Otherwise, for those regions where there are only a limited number of memory data

points, the partition resolutions are low, and the cells are large.

5.2 Kd-tree Construction and Information Retrieval

A kd-tree is a binary tree that recursively splits the whole input space into partitions, in a man-

ner similar to a decision tree [Quinlan, 93] acting on real-valued inputs. Each node in the kd-

tree represents a certain hyper-rectangular partition of the input space; the children of this node

denote subsets of the partition. Hence, the root of the kd-tree is the whole input space, while

the leaves are the smallest possible partitions this kd-tree offers. And each leaf explicitly

records the data points that reside in the leaf. The tree is built in a manner that adapts to the

local density of input points and so the sizes of partitions at the same level are not necessarily

equal to each other.

In our formulation of the kd-tree structure, each node records the hyper-rectangle covered by

it. This is defined as the smallest bounding box that contains all the data points owned by this

node of the tree. Each non-leaf node has two children representing two disjoint subregions of

the parent node. The break between the children is defined by two values: split_d is the

splitting dimension, which determines which component of input space the children will be

split upon; split_v determines the numerical value at which each split occurs. The data

points owned by the left child of a node are those data points owned by the node which are less

than value split_v in input component split_d. The right child contains the other data

points. A sample kd-tree is shown in Figure 5-2.

To construct a tree from a batch of training data points in memory, we use a top-down recursive

procedure. This is the most standard way of constructing kd-trees, described, for example, in

[Preparata et al., 85] [Omohundro, 91]. In our work, we use the common variation of splitting

a hypercube in the center of the widest dimension instead of at the median point. This method

of splitting does not guarantee a balanced tree, but leads to generally more cubic hyper-rectan-

80 Chapter 5: Efficient Memory Information Retrieval

gles, which has empirically proved better than other schemes (pathologically imbalances are

conceivable, but trivial modifications to the algorithm prevent that.) The cost of making a tree

from N data points is O(Nd logN).

The base case of the recursion occurs when a node is created with Nmin or fewer data points.

Then those data points are explicitly stored in the leaf node. In our experiments, Nmin = 2.

Queries

Figure 5-2: To implement the grouping idea, we use hyper-rectangles with
kd-tree. To find the neighborhood of a certain query (triangle), we can
recursively search the tree from the root towards to the leave where the query
resides. For different query (reversed triangle), we can use the same kd-tree
but choose different nodes.

*

Chapter 5: Efficient Memory Information Retrieval 81

To incrementally add a new data point to the tree, the leaf node containing the point is deter-

mined (O(logN) cost). The data point is inserted there (and a new subtree is recursively built if

the number of nodes exceeds Nmin).

Given a query (xq, yq), to find those memory data points whose input vectors are close to xq, we

can recursively search the tree from the root towards to leaves, referring to Figure 5-2, with the

triangle query. According to the pre-defined range of “neighborhood”, it is straightforward to

find those branches of the kd-tree, which are close to the branches where the query resides. Two

issues to be noticed:

1.With different ranges of the “neighborhood”, the “neighboring” branches can be different.

The neighboring branches with respect to a strict defined neighborhood is a subset of those

neighboring branches corresponding to a loose definition. This characteristic is desirable,

because it allows us to find those neighboring data points corresponding to any definition of

the neighborhood along the local-global spectrum.

2.Although we will use the kd-tree to find a set of neighboring data points, it is also possible to

find the “exact” nearest neighboring data point. For the example in Figure 5-2 with the

reversed triangle query, to find its nearest neighbor data point, we wish we could search

from the root of the tree down towards to the leaf where the query locates, so that the cost is

, where N is the memory size. Unfortunately, it is possible that its nearest neigh-

boring data point is in another leaf of a remote branch of the kd-tree, marked with “*” in the

diagram. More theoretical analysis refers to [Kleinberg, 97]. The standard nearest neighbor

algorithm, [Preparata et al, 85] [Moore, 90], avoids this problem while still only requiring

 time.

O Nlog()

O Nlog()

82 Chapter 5: Efficient Memory Information Retrieval

5.3 Cached Kd-tree for Memory-based Learning

The goal of our exploring kd-trees is not to find the nearest neighbor, and not only to find a set

of nearest neighbors, but mainly to enhance the efficiency of the memory-based learning meth-

ods. The basic principle is to cache useful statistical information into the kd-tree nodes, so that

when we do the memory-based learning process, instead of visiting every relevant memory data

point, we mainly rely on the statistical information in the tree nodes. In this chapter, we focus

on using this cached kd-tree to speed up Kernel regression, to demonstrate the approach in gen-

eral.

Kernel regression

In Chapter 2, we discussed using Kernel regression’s idea to approximate P(yq | Sp, xq), i.e. the

probability that a given query data point (xq, yq) belongs to a system Sp, where the knowledge

of Sp comes from a set of memory data point, (x1, y1) ..., (xN, yN), which is the observations of

Sp’s previous behavior. Cached kd-trees can improve the efficiency of Kernel regression (for

example, [Franke, 82]), not only for the approximation of P(yq | Sp, xq), but also for the general

purpose use. As a popular machine learning method, Kernel regression is often used to do pre-

diction: given an input vector xq, which is called query, Kernel regression predicts its output,

, based on the memory data points (x1, y1), ..., (xN, yN). We assume all the memory data

points were generated by an identical system.

Kernel regression use the weighted average of the outputs of all the memory data points to pre-

dict :

(5-1)

yq
ˆ xq()

yq
ˆ xq()

yq
ˆ xq() wiyi

i 1=

N

∑

wi

i 1=

N

∑

⁄=

Chapter 5: Efficient Memory Information Retrieval 83

where wi is the weight assigned to the i’th datapoint in our memory, and is large for points close

to the query and almost zero for points far from the query. It is usually calculated as a decreas-

ing function of Euclidean distance, for example by Gaussian:

As we have mentioned previously, Kw is the Kernel width. The bigger the parameter Kw is, the

flatter the weight function curve is, which means that many memory points contribute quite

evenly to the regression. As Kw tends to infinity the predictions approach the global average of

all points in the database. If the Kw is very small, only closely neighboring data points make a

significant contribution. Kw is an important smoothing parameter for kernel regression. If the

data is noise free then a small Kw will avoid smearing away fine details in the function. If the

data is relatively noisy, we expect to obtain smaller prediction errors with a relatively large Kw.

This is illustrated in Figure 5-3.

The drawback of kernel regression is the expense of enumerating all the distances and weights

from the memory points to the query. This expense is incurred every time a prediction is

required. Several methods have been proposed to address this problem, reviewed as following:

wi Const exp
xq xi, 2

2Kw
2

---------------------–

×=

K is small
K is big

K is big
K is small

Figure 5-3: For the noiseless data in the top example, a small K gives the best
regression (in terms of future predictive accuracy). For the noisy data in the bottom
example, a large K is preferable.

84 Chapter 5: Efficient Memory Information Retrieval

1.[Preparata et al, 85] proposed a range-search solution. Similar to our cached kd-tree method,

the range-search solution finds all points in the kd-tree that have significant weights, and

then only sum together the weighted components of those points. This is only practical if the

kernel width Kw is small. If it is large, all the memory data points may have significant

weights, but with only small local variations, thus range searching would sum all the points

individually. Even in cases of small kernel widths, but if there are many data points in the

neighborhood, the range search method will need to search all the data points individually

and may still end up with a large computational cost.

2.Another solution to the cost of conventional Kernel regression is editing (or prototypes):

most data points are forgotten and only particularly representative ones are used (e.g.

[Kibler and Aha, 88] [Skalak, 94]). Kibler and Aha extended this idea further by allowing

data points to represent local averages of sets of previously-observed data points. This can

be effective, and unlike range-searching can be applicable even for wide kernel widths.

However, the degree of local averaging must be decided in advance, and queries cannot

occur with different kernel widths without rebuilding the prototypes. A second occasional

problem is that if we require very local predictions, the prototypes must either lose local

details by averaging, or else all the data points are stored as prototypes.

3.Decision trees and kd-trees have been previously used to cache local mappings in the tree

leaves [Grosse, 89], [Moore, 90], [Omohundro, 91], [Quinlan, 93]. These algorithms pro-

vide fast access once the tree is built, but a new structure needs to be built each time new

learning parameters, such as Kernel width, are required. Furthermore, the resulting predic-

tions from the tree have substantial discontinuities between boundaries. Only in [Grosse, 89]

is continuity enforced, but at the cost of tree-size, tree-building-cost and prediction-cost all

being exponential in the number of input variables.

Chapter 5: Efficient Memory Information Retrieval 85

Computing the kernel regression sums

Now it is time for us to use the cached kd-tree to improve the efficiency of Kernel regression,

and at the same time avoid the drawbacks of the other competing methods.

Recall that each kd-tree node represents a hyper-rectangle sub-region of the input space, which

covers a set of memory data points. Assume in one node there are n data points, and corre-

sponding to a certain query, these n data points’ weights are all close to a value w; in other

words, the weight of the i’th data point in this node is wi = w + ξi, where all ξi’s are small.

Referring to Equation 5-1, when performing Kernel regression, we need to accumulate two

sums over all data points in memory, including these n data points in this node,

 and

Restricting our attention to summations over the n data points in the concerned kd-tree node,

we have,

Providing we know n, w and Σyi for the current node, we can therefore compute an approxima-

tion to Σwiyi and Σwi in constant time without needing to sum individual data points contained

in the node. This approximation to the partial sums is good to the extent that Σεiyi is small with

respect to wΣyi and Σεi is small with respect to nw.

Therefore, we should cache two other pieces of information into each kd-tree node in conjunc-

tion with split_v and split_d: the number of data points below the current node,

n_below, and the sum Σyi of all output values of the data points contained in the node, sum.

These are two of the three values needed to compute the contribution of a kd-tree node to the

partial sums in Kernel regression. The third component, w, depends upon the location of the

query and is determined dynamically in a manner described shortly.

wiyi∑ wi∑

wiyi∑ w εi+()yi∑ w yi∑ εiyi∑+= = and

wi∑ w εi+()∑ nw εi∑+= =

86 Chapter 5: Efficient Memory Information Retrieval

With such cached information in each kd-tree node, we can efficiently approximate Σwiyi and

Σwi, summed over all data points in the kd-tree, so as to speed up the process of Kernel regres-

sion. This is performed by a top-down search over the tree. At each node we make a decision

between:

1.(Cutoff) Treat all the points in this node as one group (a cheap operation) or

2.(Recurse) search the children.

We will use the cutoff option if we are confident that all weights inside the node are similar.

Given the current query xq and the hyper-rectangle of the current node it is an easy matter to

compute Dmin and Dmax: the minimum and maximum possible distances of any datapoint in

this node to the query (computational cost is linear in the number of dimensions). From these

values one can then compute the maximum and minimum possible weights wmax and wmin of

any data points owned by this node, since the weight of a point is a decreasing function of dis-

tance to the query. We thus decide if wmax and wmin are close enough to warrant the cut-off

option.

The search is thus a recursive procedure which returns two values: sum-weights and sum-wy. If

the cutoff option is taken, then estimate the weight of all data points as

and return:

Dmax

xq
Dmin

w wmin wmax+() 2⁄=

sum-weights n_below w×=

sum-wy sum w×=

Chapter 5: Efficient Memory Information Retrieval 87

If the cutoff option is not taken, recursively compute sum-weights and sum-wy for the left and

right children, and then return:

sum-weights = sum-weights(left) + sum-weights(right)

sum-wy = sum-wy(left) + sum-wy(right)

Search cutoffs

Last section described how we can make our approximation arbitrarily accurate by bounding

the maximum deviation we will permit from the true weight estimate with a value εmax > 0 and

then making εmax arbitrarily small. Thus the simplest cutoff rule in the kd-tree search would be

to cutoff if wmax - wmin < εmax. It is easy to show that this guarantees that the total sum of abso-

lute deviations |Σεi| is less than NTεmax / 2 where NT is the number of points in the tree. There

are, however, other possible cutoff criteria which provide arbitrary accuracy in the limit, but

which, when used as an approximation, have more satisfactory properties.

The simple cutoff rule does not take into account that a larger total error will occur if the node

contains very many points than if the node contains only a few points. It does also not account

for the fact that in a practical case we are less concerned about the absolute value of the sum of

deviations |Σεi| but rather the size of |Σεi| relative to the sum of the weights Σwi. Some simple

analysis reveals a cutoff criterion to satisfy both of these intuitions. Cutoff only if

(wmax - wmin) NB < τ Σwi

where NB is the number of data points below the current node. Simple algebra reveals that this

guarantees

| Σεi | < 0.5 G τ Σwi

where G is the number of groups finally used in the search (and thus G < NT, hopefully consid-

erably less). Notice that this cutoff rule requires us to know Σwi in advance, which of course

88 Chapter 5: Efficient Memory Information Retrieval

we do not. Fortunately the sum of weights obtained so far in the search can be used as a valid

lower bound, and so the real algorithm makes a cutoff if

where τ is a system constant.

5.4 Experiments and Results

Let us review the performance of the Kernel regression with the help of cached kd-tree in com-

parison to the conventional Kernel regression. In the first experiment we use a trigonometric

function of two inputs with added noise: xi = uniformly generated random vector with all com-

ponents between 0 and 100 and yi = a function of xi (which ranges between 0 and 100 in height),

with gaussian noise of standard deviation 10.

10,000 data points were generated. Experiments were run for different values of kernel width

Kw. In all experiments, the cutoff threshold τ was 0.005. Figure 5-4 (a1) shows the test-set error

on 1000 test points for both regular kernel regression (“Regular KR”) and cached kd-tree’s ker-

nel regression (“Tree KR”) graphed for different values of Kw. The values are very close, indi-

cating that Tree KR is providing, for a wide range of kernel widths, a very close approximation

to Regular KR. Figure 5-4 (a2) shows the computational cost (in terms of the summations that

dominate the cost of KR) of the two methods. Regular KR sums all points, and so is a constant

10,000 in cost. Tree KR is substantially cheaper for all values of Kw, but particularly so for very

small and very large values.

Figures 5-4 (b1) and (b2) show corresponding figures for a similar trigonometric function of

five inputs. This still shows similar prediction performance as Regular KR. The cost of kd-

tree’s Kernel regression is still always less than Regular KR, but in the worst case the compu-

tational saving is only a factor of three (when Kw = 40, Tree KR cost = 3,200). This is not an

wmax wmin–()NB

weight so far in search
-- τ<

Chapter 5: Efficient Memory Information Retrieval 89

especially impressive result. However, for any fixed dimensionality and kernel width, costs rise

sub-linearly (in principle logarithmically) with the number of data points. To check this, we ran

the same set of experiments for a dataset of ten times the size: 100,000 points. The results, in

Figure 5-4 (c1) and (c2), show that with this large increase in data, the effectiveness of cached

kd-tree’s KR becomes more apparent. For example, consider the Kw = 40 case. With 100,000

data points instead of 10,000, the cost is only increased from 3,200 to 5,700 while the cost of

Regular KR (of course) increased from 10,000 to 100,000.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

K

E
rr

o
r

Comparison of Kdtree and Kernel Errors

______x______ Multires KR

......o...... Regular KR

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

K

C
o
s
t

Comparison of The Two KRs Costs

____x____ Multires KR

----+---- Regular KR

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

11

K

E
rr

o
r

Comparison of Kdtree and Kernel Errors, 5D

___x___ Multires KR

........o........ Regular KR

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

K

C
o
s
t

Comparison of The Two KRs Costs, 5D

----+---- Regular KR

____x____ Multires KR

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

K

E
rr

o
r

Comparison bet/ Two KRs Errors

___x___ Multires KR

.......o....... Regular KR

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
x 10

4

K

C
o

s
t

Comp. Of The Costs Of The Two KRs, 5-d, Huge Mem

Figure 5-4: Comparison between the errors (*1) and the costs (*2) between regular
kernel regression versus cached kd-tree’s one. In the cases of (a*), the dataset is of 2-
d inputs, of size 10,000. In (b*), 5-d inputs, dataset size 10,000. In (*c), 5-d inputs,
100,000 data points.

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

10,000 data points, 2-d 10,000 data points, 5-d 100,000 data points, 5-d

90 Chapter 5: Efficient Memory Information Retrieval

Investigating the τ threshold parameter

Next, we will examine the effect of the τ parameter on the behavior of the algorithm. As τ is

increased we expect the computational cost to be reduced, but at the expense of the accuracy

of the predictions in comparison to the regular KR. The results in Figure 5-5 agree with this

expectation: the left hand graph shows that for 2-d, 3-d, 4-d and 5-d datasets (each with 10,000

points) the proportional error between cached kd-tree’s and regular regression increases with

τ. The right hand graph shows a corresponding decrease in computational cost.

Real datasets

In another experiment, we ran cached kd-tree’s KR on data from several real-world and robot-

learning datasets. Further details of the datasets can be found in [Maron et al, 94]. They include

an industrial packaging process for which the slowness of prediction had been a reasonable

cause for concern. Encouragingly, cached kd-tree’s KR speeds up prediction by a factor of 100

with no discernible difference in prediction quality between cached kd-tree’s and regular KR.

This and other results are tabulated below. The costs and error values given are averages taken

(a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000
Crit --> cost

Crit

C
o

s
t

2d

3d

4d

5d

τ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

40

60

80

100

120

140

160

180

Crit

(K
d

tr
e

e
 e

rr
o

r
-

K
e

rn
e

l
e

rr
o

r)
/K

e
rn

e
l
e

rr
o

r
x
 1

0
0

%

Crit --> Error ratio

2d

3d

4d

5d

Figure 5-5: (Upper) the relative accuracy and (lower) the computational
cost of kd-tree’s KR against τ --- the cutoff threshold.

τ τ

Chapter 5: Efficient Memory Information Retrieval 91

over an independent test set. Notably, the datasets with the least savings were pool, which had

few data points, and robot, which was high dimensional.

High dimensional, non-uniform data

Our final experiment concerned the question of how well the method performs if the number

of input variables is relatively large, but if the attributes are not independent. For example, a

common scenario in robot learning is for the input vectors to be embedded on a lower-dimen-

sional manifold. We performed two experiments, each with 9 inputs and 10,000 data points. In

the first experiment, the components of the input vectors were distributed uniformly randomly.

In the second experiment the input vectors were distributed on a non-linear 2-d manifold of the

9-d input space. The results were:

 Table 5-1: Real dataset test of cached kd-tree’s kernel regression

Domain
Dataset

Size
Dim of
Input

Regular
KR Cost

Tree’s KR
Cost

Regular
KR Err.

Tree’s KR
Error

Energy 2144 5-d 2144 232.9 1.687 1.690

Package 32000 3-d 32000 289.0 6.07 6.09

Pool 213 3-d 213 50.7 2.125 2.123

Protein 4664 3-d 4664 383.8 1.036 1.106

Robot 871 14-d 871 225 6.354 6.976

 Table 5-2: Cached kd-tree’s kernel regression for sub-manifold cases

9-d uniform 9-d inputs on 2-d manifold

Regular KR cost 10,000 10,000

Cached kd-tree’s KR cost 3,100 430

Regular KR mean testset error 13.07 1.06

Cached kd-tree’s KR mean testset error 13.08 1.15

92 Chapter 5: Efficient Memory Information Retrieval

The results indicate that, as would be expected, the cost advantage of cached kd-tree’s KR is

not large (a factor of 3) for 9-d uniform inputs, but is far better if the inputs are distributed

within a lower-dimensional space.

5.5 Summary

Kernel regression with the help of the cached kd-tree is preferable in case the application needs

the following properties:

•Flexibility to work throughout the local/global spectrum.

•The ability to make predictions with different parameters without needing a retraining

phase.

In addition, cached kd-tree’s Kernel regression has a number of additional flexibilities. Once

the kd-tree structure is built, it is possible to make different queries with not only different ker-

nel widths Kw, but also different Euclidean distance metrics, with subsets of attributes ignored,

or with some other distance metrics such as Manhattan. It is also possible to apply the same

technique with different weight functions and for classification instead of regression.

Dimensionality is a weakness of cached kd-tree’s Kernel regression. Diminishing returns set in

above approximately 10 dimensions if the data points are distributed uniformly. This is an

inherent problem for which no solution seems likely because uniform data points in high

dimensions will have almost all data points almost exactly the same distance apart, and a useful

notion of locality breaks down.

This chapter discussed an efficient implementation of kernel regression. In next chapter, we

will apply exactly the same algorithm to locally weighted linear regression and locally

weighted logistic regression, in which a prediction fits a local polynomial or a local logistic

function to minimize the locally weighted sum squared error. The only difference is that each

node of the kd-tree stores the regression design matrices of all points below it in the tree. This

Chapter 5: Efficient Memory Information Retrieval 93

permits fast prediction and also fast computation of confidence intervals and analysis of vari-

ance information.

94 Chapter 5: Efficient Memory Information Retrieval

95

Chapter 6

Using Kd-trees for Various Regressions

In last chapter, we discussed how to use kd-tree to make kernel regression more efficient. In

fact, kd-tree can be used for other regressions, too. In this chapter, we will introduce how to

apply it to speed up locally weighted linear regression and locally weighted logistic regression.

6.1 Locally Weighted Linear Regression

Linear regression can be used as a function approximator. Given a set of memory data points,

known as training data points, a global linear regression finds a line with parameters such that

the sum of the residual squares from the training data points to the line is minimized. In the

example of Figure 6-1(a), each data point has one input and one output. A global linear regres-

sion finds a line,

with β0 and β1, so that the sum of the residual squares is minimized, i.e.,

ŷ x() β0 β1x+=

βo β1,() minarg yi ŷ xi()–()2

i 1=

N

∑ minarg yi βo β1xi––()2

i 1=

N

∑= =

96 Chapter 6: Using Kd-trees for Various Regressions

By global, we mean β0 and β1 are fixed for any possible x. Obviously, this linear function

approximator would not work for any non-linear functions. That is the reason we have more

interest in locally weighted linear regression.

Locally weighted regression assumes for any local region around a query point, xq, the relation-

ship between the input and output is linear. To construct the local function approximator, the

local linear parameters can be approximated by minimizing the weighted sum of residual

squares. For the example as shown in Figure 6-1(b), the weighted sum of residual squares is

The weight, wi, is usually a function of the Euclidean distance from the i’th training data points

to the query, || xq - xi ||. A popular form of the function is Gaussian.

After some algebra which requires no gradient descent, the linear parameters can be obtained

directly by,

X

Y

X

Y

Query

Local linear model
at a certain query

As you vary the
query, you get
this curve.

(a) (b)

Figure 6-1: (a) A global linear regression (b) A locally weighted linear regression.

wi
2

yi βo β1xi––()
2

i 1=

N

∑

Chapter 6: Using Kd-trees for Various Regressions 97

(6-1)

where X is a N-row M-column matrix, N is the number of the training data points in memory,

M is the dimensionality of the input space plus 1. If the input vector of the k’th data point in

memory is xk, the k’th row of X is (1, xk
T). Y is a vector consisting of the training data points’

outputs. W is a diagonal matrix, whose k’th element is the square of the weight of the k’th train-

ing data point, wk
2.

6.2 Efficient locally weighted linear regression

As we have known in last section, the crucial thing to improve the efficiency of locally

weighted linear regression is to speed up the calculation of XTWX and XTWY. Since W is a diag-

onal matrix, XTWX and XTWY can be transformed as,

and

in which vector xi corresponds to the i’th row of X, and yi is the i’th element of Y vector.

Recall that the kd-tree is a binary tree, the root of the tree covers the whole input space, hence

contains all the training data points in memory. The root can be split into two nodes: the left

node and the right node, each of them covers a partition of the input space. Furthermore, the

left node can be split into another pair of nodes, so does the right node. Hence, in the second

layer there are four nodes at most. Therefore, to calculate XTWX of all the memory data points,

we can follow a recursion process,

β̂ X
T

WX()
1–

X
T

WY()=

X
T

WX wi
2
xixi

T

i 1=

N

∑= X
T

WY wi
2
xiyi

i 1=

N

∑=

98 Chapter 6: Using Kd-trees for Various Regressions

in which N is the total number of training data points in memory, the sum of NLeft and NRight,

as well as the sum of NLeftLeft, NLeftRight, NRightLeft, and NRightRight, are equal to N.

Hence, to calculate XTWX of the root, or any other node of the kd-tree, we can recursively sum

its two children’s XTWX’s. A leaf’s XTWX can be calculated according to the definition:

However, this recursion process does not bring us any gain in computational efficiency, because

it still visits every training data point in memory. But sometimes we may be able to cutoff the

computation at a node, if all the memory data points within this node have near-identical

weights. In other words,

(6-2)

X
T

WX()Root wi
2
xixi

T

i 1=

N

∑= wi
2
xixi

T

i 1=

NLeft

∑ wi
2
xixi

T

i 1=

N Right

∑+=

X
T

WX()Left= X
T

WX()Right+

wi
2
xixi

T

i 1=

N LeftLeft

∑ wi
2
xixi

T

i 1=

NLeftRight

∑ wi
2
xixi

T

i 1=

N RightLeft

∑ wi
2
xixi

T

i 1=

N RightRight

∑+ + +=

X
T

WX()LeftLeft X
T

WX()LeftRight X
T

WX()RightLeft X
T

WX()RightRight+ + +=

X
T

WX()Leaf wi
2
xixi

T

i 1=

NLeaf

∑=

X
T

WX)Node wi
2
xixi

T

i 1=

N Node

∑ wNode
2

xixi
T

i 1=

N Node

∑

≈ wNode
2

X
T

X()Node= =

If wi i 1 … N Node are near identical., , ,=,

Chapter 6: Using Kd-trees for Various Regressions 99

This scenario happens for three reasons:

• All data points within the node are so far from the query vector, xq, that their weights are

near zeroes.

• All the data points are close together, providing no room for weight variation.

• The weight function varies negligibly over the partition of the input space covered by the
current node.

Given a certain query, xq, and a certain node, to judge if any of these situations happens, we can

rely on the comparison of the lower bound and the upper bound of the weights of the memory

data points within this node. Roughly speaking, if the difference between the upper bound and

the lower bound is smaller than a threshold, then Equation 6-2 holds and the cutoff is permitted.

Further discussion on the threshold will come latter in this section. To calculate the lower

bound and the upper bound of the weights, recall that each node of the kd-tree corresponds to

a hyper-rectangular partition of the input space, thus, given a query, xq, it is straightforward to

calculate the longest and the shortest distances from the query to the concerned hyper-rectan-

gle. Because the weight function is a monotonic function of the distance, it is not difficult to

calculate the lower bound and the upper bound of the weights based on the range of the dis-

tance.

Therefore, to calculate XTWX for all the data points in memory, we can follow the recursive

algorithm listed in Figure 6-2.

Similarly, we can efficiently calculate XTWY. But be aware that we need to cache XTX and XTY

into each node of kd-tree. When we build a kd-tree, we calculate XTX and XTY for each node,

from the leaves in the bottom, upward to the root. Once this is done, the kd-tree is ready to han-

dle any queries. When a query occurs, we follow the recursion algorithm in Figure 6-2, from

100 Chapter 6: Using Kd-trees for Various Regressions

the root downward to the leaves, to calculate (XTWX)Root, as well as (XTWY)Root, then we can

do the locally weighted linear regression.

Concerning the threshold in Figure 6-2, a simple way is to assign a fixed one, ε, and see if Wmax

- Wmin < ε. However, this is dangerous. Suppose a query is far away from all the memory data

points, then even the root node of the kd-tree may satisfy wmax - wmin < ε, so that all the memory

data points have the same weight, . This means that the prediction of the

output of the query will be equal to the mean value of all the memory data points’ outputs, i.e.,

.

This may be wildly different from the non-approximate linear regression without kd-tree,

which takes the prediction as an extrapolation of the linear function fitting those memory data

points, referring to Figure 6-3,

calc_linear_XtWX(Node, Query)

{

1. Compute Wmin(Node, Query) and Wmax(Node, Query);

2. If (Wmax - Wmin) < Threshold

 Then

Node->XtWX = 0.25 * (Wmax + Wmin)2 * Node->XtX;

 Else

(Node->Left)->XtWX = calc_XtWX(Node->left, Query);

(Node->Right)->XtWX = calc_XtWX(Node->right, Query);

Node->XtWX = (Node->Left)->XtWX + (Node->Right)->XtWX;

3. Return result;

}

Figure 6-2: Using divide-and-conquer algorithm to calculate XtWX of a node.

0.5 wmax wmin+()×

ŷq yi

i 1=

N

∑

N⁄=

Chapter 6: Using Kd-trees for Various Regressions 101

This problem can be solved by setting ε to be a fraction of the total sum of weights involved in

the regression: for some small fraction τ. So we would then like to cutoff

if and only if, . But we do not know the value of

before we begin the prediction, and computing it would not be desirable (cost O(N)). Instead,

we estimate a lower bound on . If, during the computation so far, we have accumu-

lated sum-of-weights, wsofar, and if currently we are visiting the Node’th node in the kd-tree

and there are NNode within this node, then,

.

Therefore, the improved cutoff condition is to judge if,

. (6-3)

6.3 Technical details

There are several details which we summarize briefly here,

X

Y

Query

Non-approx. linear regression prediction

Approximate prediction with wrong threshold.

Figure 6-3: The danger of a wrong threshold of the cutoff condition.

ε τ N

k 1=
wk∑×=

wmax wmin– τ N

k 1=
wk∑×< N

k 1=
wk∑

N

k 1=
wk∑

wSoFar N Nodewmin
N

k 1=
wk∑≤+

wmax wmin– τ wSoFar N Nodewmin+()<

102 Chapter 6: Using Kd-trees for Various Regressions

• To ensure numerical stability of this algorithm, all attributes must be pre-scaled to a hyper-

cube centered around the origin.

• The cost of building the tree is , where M is the input space’s dimension-

ality plus 1, and N is the number of data points in memory. It can be built lazily, (growing

on-demand as queries occur) and data points can be added in time,

though occasional rebalancing may be needed. The tree occupies space. Huge

memory savings are possible if nodes with fewer than M data points are not split, but instead

retain the data points in a linked list.

• Instead of always searching the left child first it is advantageous to search the node closest to

xq first. This strengthens the wSoFar bound.

• Ball trees [Omohundro, 91] plays a similar role to kd-trees used for range searching, but it is

possible that a hierarchy of balls, each containing the sufficient statistics of data points they

contain, could be used beneficially in place of the bounding boxes we used.

• The algorithms can be modified to permit the k nearest neighbors of xq to receive a weight of

1 each no matter how far they are from the query. This can make the regression more robust.

6.4 Empirical Evaluation

We evaluated five algorithms for comparison.

First of all, we examined prediction on a dataset ABALONE from UCI repository, with 10

inputs and 4177 data points; the task was to predict the number of rings in a shellfish. In these

experiments we removed a hundred data points at random as a testset, and examined each algo-

rithm performing a hundred predictions; all variables were scaled to [0..1], and a kernel width

of 0.03 was used. As Table 6-2 shows, the Regular method took almost a second per prediction.

O M
2
N N Nlog+()

O M
2

Tree depth×()

O M
2
N()

Chapter 6: Using Kd-trees for Various Regressions 103

Regzero saved 20% of that. Tree reduced Regular’s time by 50%, producing identical predic-

tions (shown by the identical mean absolute errors of Regular, Regzero, and Tree). The

Approx. algorithm gives an eighty-fold saving compared with Tree, and the Fast algorithm is

about three times faster still. What price do Approx. and Fast pay in terms of predictive accu-

racy? Compare the standard error of the dataset (2.65 if the mean value of the training data

points’ outputs was always given as the predicted value) against Tree’s error of 1.65, Approx.’s

error of 1.67, and Fast’s error of 1.71. We notice a small but not insignificant penalty relative

to the percentage variance explained.

The above results are from one run on a testset of size 100. Are they representative? Table 6-3

should reassure that reader, containing averages and confidence intervals from 20 runs with dif-

ferent randomly chosen testsets. The bottom row shows that the error of Approx. and Fast rel-

ative to the Regular algorithm is confidently estimated as being small.

 Table 6-1: Five linear regression algorithms

Regular Direct computation of XTWX as .

Regzero
Direct computation of XTX with an obvious and useful tweak. Whenever

wk = 0, do not bother with O(M2) operation of adding wkxk xk
T.

Tree The near-exact tree based algorithm. (we set τ = 10-7).

Approx. The approximate tree-based algorithm with τ = 0.05.

Fast
A wildly approximate tree-based algorithm with τ = 0.5. This gives an
extremely rough approximation to the weight function.

 Table 6-2: Costs and errors predicting the ABALONE dataset

Regular Regzero Tree Approx. Fast

Millisecs per prediction 980 800 460 5.7 1.7

Mean absolute error 1.65 1.65 1.65 1.67 1.71

N

k 1=
wk

2
xkxk

T∑

104 Chapter 6: Using Kd-trees for Various Regressions

We also examined the algorithms applied to a collection of five UCI-repository datasets and one

robot dataset (described in [Atkeson et al., 97]). Table 6-4 shows results in which all datasets

had the same local model: locally weighted linear regression with a kernel width of 0.03 on the

unit-scaled input attributes. Table 6-5 shows the results on a variety of different local polyno-

 Table 6-3: Millisecs to do the predictions, errors of the predictions, and
errors relative to Regular.

Algorithms: Regular Regzero Tree Approx. Fast

Millisecs

Abs. Error Mean

Excess error
compared w/ Regular

Table 6-4: Performance on 5 UCI datasets and one robot dataset. All use
locally weighted linear regression with kernel width 0.03

Regular Regzero Tree Approx. Fast

Heart, 3-d,
170 datapnts.
StdErr. 0.43

Cost 42.16 32.95 21.23 18.93 14.12

Error 0.27 0.28 0.28 0.28 0.28

Pool, 3-d,
153 datapnts.
StdErr. 2.21

Cost 34.65 33.45 22.33 4.41 0.80

Error 0.63 0.63 0.63 0.63 0.62

Energy, 5-d,
2344 datapnts.
StdErr. 286.07

Cost 535.87 484.30 323.37 5.11 1.10

Error 11.93 11.93 11.93 15.15 21.60

Abalone,10-d,
4077 datapnts.

StdErr. 2.66

Cost 964.00 806.00 469.00 5.80 1.70

Error 1.65 1.65 1.65 1.67 1.71

MPG, 9-d,
292 datapnts.
StdErr. 6.82

Cost 70.10 55.18 34.35 11.61 2.00

Error 1.92 1.92 1.92 1.92 1.93

Breast, 9-d,
599 datapnts.
StdErr. 0.3

Cost 143.40 126.18 59.88 13.82 6.21

Error 0.03 0.03 0.03 0.03 0.02

982.0 2.5± 814. 3.3± 468. 0.8± 6.00 0.2± 1.70 0.04±

1.534 0.062± 1.534 0.062± 1.534 0.062± 1.536 0.061± 1.556 0.063±

0 0± 0 0± 0 0± 0.023 0.034± 0.032 0.032±

Chapter 6: Using Kd-trees for Various Regressions 105

mial models. The pattern of computational savings without serious accuracy penalties is con-

sistent with our earlier experiment.

The above examples all have fixed kernel widths. There are datasets for which an adaptive ker-

nel-width (dependent on the current xq) are desirable. At this point, two issues arise: the statis-

tical issue of how to evaluate different kernel widths (for example, by the confidence interval

width on the resulting prediction, or by an estimate of local variance, or by an estimate of local

data density) and the computational cost of searching for the best kernel width for our chosen

criterion. Here we are interested in the computational issue and so we resort to a very simple

criterion: the local weight, .

 Table 6-5: Same experiments, but with a variety of models. The models
were selected by cross-validation depending on the specific domains.

Regular Regzero Tree Approx. Fast

Heart, Kernel regress.
kw = 0.015

Cost 37.86 25.84 14.32 13.42 0.50

Error 0.22 0.22 0.22 0.22 0.24

Pool, Loc. wgted quad.
regress., kw = 0.06

Cost 36.05 35.95 25.43 8.12 1.20

Error 0.63 0.63 0.63 0.63 0.62

Energy, LW Quad.
regress. without cross

terms

Cost 546.48 356.12 202.29 25.53 1.60

Error 6.12 6.12 6.12 6.03 7.50

Abalone, LW Linear
regress. ignore 1 input.

Cost 958.90 717.34 203.91 2.35 1.40

Error 1.33 1.33 1.33 1.33 1.34

MPG, Using all inputs
but only has three in

the dist. metrics

Cost 66.79 54.18 8.41 1.70 1.20

Error 1.95 1.95 1.95 1.94 1.92

Breast, Only use five
out of ten inputs.

Cost 44.06 43.96 2.20 2.20 0.50

Error 0.01 0.01 0.01 0.01 0.02

wi∑

106 Chapter 6: Using Kd-trees for Various Regressions

We artificially generated a dataset with 2-dimensional inputs, for which a variable kernel width

is desirable. When evaluated on a testset of 100 data points we saw that no fixed kernel width

did better than a mean error of 0.20 (Table 6-6, first two columns). We chose the simplest imag-

inable adaptive kernel-width prediction algorithm: on each top level prediction make eight

inner-loop predictions make eight inner-loop predictions, with the kernel widths {2-2, 2-3, ...,

2-9}; then choose to predict with the kernel width that produces a local weight closest to

some fixed goal weight. For dense data a small kernel width will thus be chosen, and for sparse

data the kernel will be wide. The results are striking: The middle two columns of Table 6-6

reveal that for a wide range of goal-weights a testset error of 0.10 is achieved. At the same time,

as the rightmost three columns show, the approximate methods continue to win computation-

ally.

 Table 6-6: Prediction-time optimization of kernel width.

Using fixed Kernel
width

Using variable
Kernel width

Using variable Kernel width
Goal weight is 8.0

Kernel
width

Mean
error

Goal
weight

Mean
error

Algorithm
Mean
error

Millisecs per
prediction

0.25000 0.41 64 0.19 Regular 0.104 2000

0.12500 0.24 32 0.13 Regzero 0.104 1400

0.06250 0.24 16 0.11 Tree 0.104 395

0.03125 0.22 8 0.10 Approx. 0.103 181

0.01562 0.29 4 0.10 Fast 0.107 165

0.00781 0.37 2 0.11

0.00391 0.41 1 0.15

0.00195 0.51 0.5 0.51

wi∑

Chapter 6: Using Kd-trees for Various Regressions 107

6.5 Kd-tree for logistic regression

Recall in Chapter 5, locally weighted logistic regression is to approximate the parameter vector

 in the following formula,

(6-4)

To do so, we should follow the Newton-Raphson recursion:

(6-5)

Suppose there are N training data points in memory, each training data point consists of a d-

dimensional input vector and a boolean output. X is a matrix. The i’th row of X

matrix is (1, xi
T). And is a diagonal matrix, whose i’th element is ,

where is a scalar, which is the derivative value of with respect to the current estimate of

 at the query xq:

(6-6)

For example, when a training data point’s input is xi = [2], while the current estimate of β is

[0.5, 1]T, then πi' is equal to 0.07. As mentioned above, the i’th element of W diagonal matrix

is also decided by the weight, , which is a function of the distance from the i’th training data

point to the query xq. The last item, is the ratio of to , i.e. . New-

ton-Raphson starts from a random estimate of , usually we assign to be zero vector.

Although it is not strictly proved, usually with no more than 10 loops, the recursive process

comes to a satisfactory estimate of .

β

P yq 1= Sp xq,() πq
1

1 1 xq
T,[]β–()exp+

---= =

β̂ r 1+() β̂ r() X
T

WX()
1–
X

T
We+=

N 1 d+()×

W N N× W i wi
2π'i=

π'i πi

β

πi'
1 xi

T,[]β–()exp

1 1 xi
T,[]β–()exp+{ }

2
--

β β̂ r()=

=

wi

e yi πi– π'i e yi πi–() πi'⁄=

β βˆ 0()

β

108 Chapter 6: Using Kd-trees for Various Regressions

Now, our task is that what information we should cache into the nodes of kd-tree, so that we

can approximate XTWX and XTWe quickly without any significant loss of the accuracy. The

most important characteristic of the cached information is that it must be independent from any

specific query, because we want to exploit the same cached information to handle various que-

ries.

Our solution is to cache , and , which are expressed as 1TX,

XTX, and XTY, too.

To calculate (XTWX)Node of a particular kd-tree node, we can either do it precisely following

its definition:

(6-7)

where is the derivative value of the logistic function defined in Equation 6-6, is the

weight of the i’th data point with respect to the query.

When all the weights, wi, , are near identical, and so are the derivative values, πi’,

, we can approximate (XTWX)Node as,

(6-8)

There are three scenarios that the weights, wi, within a kd-tree node, are near identical, referring

to Section 6-2. Hence, the cutoff condition and the threshold discussed in Section 6-2 should

be employed for logistic regression, too. In other words, to make Equation 6-8 hold, the con-

cerned kd-tree node should satisfy:

(6-9)

xi
i Node∈

∑ xixi
T

i Node∈
∑ yixi

i Node∈
∑

X
T

WX()Node wi
2πi'xixi

T

i Node∈
∑=

πi' wi

i Node∈

i Node∈

X
T

WX()Node w
2π' xixi

T

i Node∈
∑≈ w

2π'X
T

X=

wmax wmin– τ wSoFar N Nodewmin+()<

Chapter 6: Using Kd-trees for Various Regressions 109

To tell if the derivative values, πi’, , do not differ too much, it looks that we can use

a simple fixed threshold, ε1:

However, it is not easy to find the upper bound and lower bound of πi’. Referring to Figure 6-

4 (a) and (b), if Equation 6-10 holds,

(6-10)

the gap between and must be small, too. Since logistic function is monotonic, usu-

ally we can rely on the calculation of the logistic function values at the corners of the hyper-

rectangle region in the input space represented by the kd-tree node, to find and .

Therefore, given a specific query xq in conjunction with a certain estimate of β, to calculate

(XTWX)Root efficiently, we can recursively sum the two XTWX’s of the child nodes from the root

on the top of the kd-tree downward to the leaves, in a way similar to that of locally weighted

linear regression described in Figure 6-2. Sometimes the recursion can be cut off if both the two

conditions in Equation 6-9 and 6-10 are satisfied, then the XTWX of that node can be approxi-

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

x

de
riv

at
iv

e(
lo

gi
st

ic
)

Derivative of logistic function

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

y = 1 / (1 + exp(−x))

Figure 6-4: (a) The derivative function of logistic, which has symmetric two
tails close to zero and a peak in the center. (b) The logistic function which is
monotonic between 0 and 1.

(a) (b)
[1, xq

T] β [1, xq
T] β

π'

1 x
q
T, β

 exp

1 1 x
q
T

, β
 exp+

2

---=

π 1

1 1 x
q
T, β

 exp+

--=

i Node∈

π'max π'min– ε1<

πmax πmin– ε1<

π'max π'min

πmax πmin

110 Chapter 6: Using Kd-trees for Various Regressions

mated as . Thus, we need to cache into each node of the kd-tree before any query

occurs.

More interestingly, notice that in Figure 6-4(a), the derivative of logistic function with respect

to the scalar, , has a pair of long tails close to zero. That means, when the scalar

deviates from the origin, the derivative value, π’, approaches zero quickly; and when

the π'max value of a kd-tree’s node is near zero, it is unnecessary to calculate the XTWX matrix

of that node, because it must be a zero matrix according to .

Now, let’s consider XTWe of the training data points within a kd-tree’s node, according to its

definition,

(6-11)

In case the following two conditions are satisfied: (1) all the individual weights, wi, ,

are near identical, (2) all the predictions, πi, , are near identical, XTWe can be approx-

imated as,

(6-12)

Concerning the first cutoff condition related to the weights, we can use Equation 6-9 again to

tell if the situation happens. Concerning the second cutoff condition about the prediction πi, we

can pre-define a fixed threshold, ε2, to see if the following relationship is satisfied,

(6-13)

w
2π'X

T
X X

T
X

1 xq
T,[]β

1 xq
T,[]β

X
T

WX()Node w
2π'max X

T
X()Node≤

X
T

We()Node X
T

W
Y π–

π'

Node
xiwi

2πi'
yi πi–

πi'

i Node∈

∑= =

wi
2
yixi

i Node∈
∑ wi

2πixi
i Node∈

∑–=

i Node∈

i Node∈

X
T

We()Node wNode
2

yixi
i Node∈

∑ wNode
2 πNode xi

i Node∈
∑–≈

wNode
2

XY wNode
2 πNode1

T
X–=

πmax πmin– ε2<

Chapter 6: Using Kd-trees for Various Regressions 111

This cutoff condition is the same as Equation 6-10; furthermore, usually threshold ε2 can be

assigned to be equal to threshold ε1. Referring to Figure 6-4(b), the function curve of πi

becomes flat when deviates from the origin. Hence, there should be many chances for

Equation 6-13 to hold. To find πmax and πmin, we can calculate the π values at the corners of

the hyper-rectangular partition of the input space which the kd-tree node corresponds to.

In summary, to quickly approximate XTWX and XTWe, first of all, we should calculate 1TX,

XTX, and XTY for each kd-tree node respectively, and cache them into each node in conjunction

with the number of data points within the node, num, split_d and split_v. When a query

occurs, we follow a recursive algorithm similar to that of Figure 6-2, except that the cutoff con-

ditions are different. The pseudo-code of the recursive algorithm for logistic regression is listed

as Figure 6-5.

6.6 Empirical evaluation

In this section, we want to evaluate the performance of cached kd-tree’s locally weighted logis-

tic regression in two aspects: (1) how fast is it in comparison with the non-approximate locally

weighted logistic regression? (2) how much does it lose in the accuracy?

We used again the four datasets from the UCI data repository which have been used in Section

4.4. Similar to the experiments we have done in Section 4.4, we shuffled the datasets five times

each. Every time, we selected one third of the data points as the testing dataset, used the remain-

ing two-thirds of the dataset as the training dataset. For every data point in the testing dataset,

we assigned the input as a query, used locally weighted logistic regression based on the training

dataset to predict its output, and compared the prediction with the real output of the data point

to see if locally weighted logistic regression did correct job. We defined the error rate as the

ratio of the number of wrong predictions to the number of total testing data points. Hence, the

1 xq
T,[]β

112 Chapter 6: Using Kd-trees for Various Regressions

calc_logistic_XtWX(Node, Query, est_Beta, W_SoFar)

{

1. Compute Wmin(Node, Query) and Wmax(Node, Query);

2. Computer dev_Pi_min(Node, est_Beta), dev_Pi_max(Node, est_Beta);

3. If (Wmax - Wmin) < τ * (W_SoFar + Node->num * Wmin)

and (Pi_max - Pi_min) < ε

Then Node->XtWX = 0.125 * (Wmax + Wmin)2

* (dev_Pi_max + dev_Pi_min) * Node->XtX;

 Else

(Node->Left)->XtWX =

calc_logistic_XtWX(Node->left, Query, est_Beta, W_SoFar);

(Node->Right)->XtWX = calc_logistic_XtWX(Node->right, ...);

Node->XtWX = (Node->Left)->XtWX + (Node->Right)->XtWX;

Update W_SoFar to include 0.25 * (Wmax + Wmin)2;

4. Return Node->XtWX;

}

calc_logistic_XtWe(Node, Query, est_Beta, W_SoFar)

{

1. Compute Wmin(Node, Query) and Wmax(Node, Query);

2. Computer Pi_min(Node, est_Beta), Pi_max(Node, est_Beta);

3. If (Wmax - Wmin) < τ * (W_SoFar + Node->num * Wmin)

and (Pi_max - Pi_min) < ε

Then Node->XtWe = 0.25 * (Wmax + Wmin)2 * (Node->XtY

- 0.5 * (Pi_max + Pi_min) * Node->1tX);

 Else

(Node->Left)->XtWe =

calc_logistic_XtWe(Node->left, Query, est_Beta, W_SoFar);

(Node->Right)->XtWe = calc_logistic_XtWX(Node->right, ...);

Node->XtWX = (Node->Left)->XtWe + (Node->Right)->XtWe;

Update W_SoFar to include 0.25 * (Wmax + Wmin)2;

4. Return Node->XtWe;

}

Figure 6-5: Using the cached information of kd-tree to quickly approximate the
XtWX and XtWe for locally weighted logistic regression.

Chapter 6: Using Kd-trees for Various Regressions 113

lower the error rate, the more accurate the locally weighted logistic regression algorithms are.

Since for every raw UCI dataset, we shuffled it for five times, thus we got five error rates. In

Table 6-7, we listed the mean values of the error rates in conjunction with their standard devi-

ations. In this way, we want to reassure the readers the representativeness of our results.

The first two rows of Table 6-7 are the performance of the regular locally weighted logistic

regression without the help of cached kd-tree. As we expected, the error rates (in the second

row) are exactly the same as those in Table 4-1. The first row recorded the milliseconds it took

the regular locally weighted logistic regression to do one prediction for each datasets. As we

have noticed, the computational cost varies a lot from 119.20 to 880.20. That is because the

datasets have various dimensionalities of the input space which range from 6 to 34, also

because the sizes of the training datasets differ a lot from 230 to 512.

The third and the fourth rows show the performance of the cached kd-tree’s locally weighted

logistic regression1. We expected that the improved logistic regression was much faster than

the regular one while it did not lose too much in the accuracy. To make the comparison easier

to follow, in the fifth row we calculated the multiplications of the costs of the regular logistic

 Table 6-7: Performance on 4 UCI datasets

Ionos.

234 datapnts
34 dim

Pima

512 datapnts
8 dim

Breast

191 datapnts
9 dim

Bupa

230 datapnts
6 dim

Non-
approx.

Cost

Error (%)

Kd-tree
Cost

Error (%)

Cost gain 0.971 48.75 36.36 103.22

Accuracy loss -38.93% 4.00% 0.0% 2.26%

880.20 5.63± 263.20 1.48± 119.20 7.85± 548.10 4.47±

13.0 0.4± 22.5 2.8± 3.1 0.7± 31.0 2.7±

906.20 11.19± 5.40 0.13± 8.28 1.09± 5.03 0.04±

7.9 2.8± 23.4 3.0± 3.1 1.2± 31.7 2.2±

114 Chapter 6: Using Kd-trees for Various Regressions

regression to those of the kd-tree’s. As we see in the table, “Bupa” dataset, which is of low

dimensionality with fairly small number of data points, benefited the most from the cached kd-

tree: the efficiency improved more than 100 times. “Breast” dataset has a medium dimension-

ality and the number of data points is small. But still, the cached kd-tree improved the efficiency

of locally weighted logistic regression 36 times. “Pima” consists of more data points, so it is

not surprising that its multiplication is higher than that of “Breast”’s. “Ionos.” is a special

dataset because its dimensionality is high. In this case, cached kd-tree does not help to save the

computational cost, instead it slightly enlarges the cost.

However, an interesting thing is that cached kd-tree improved the accuracy of locally weighted

logistic regression applied to the “Ionos.” dataset: the error rate dropped from 13.0% to 7.9%,

in other words, the accuracy improved 38.93%, as shown in the last row in the table. Other

datasets like “Pima” and “Bupa” did lose some accuracy, but not significantly.

6.7 Summary

In Chapter 5, we explored the use of kd-trees with some cached information, and we found

improvements in the efficiency of kernel regression. In this chapter, we discussed how to cache

different information into the kd-tree’s node so as to improve the efficiency of locally weighted

linear regression and locally weighted logistic regression. We found that for different memory-

based learning, the cached information is different. Consequently, the cutoff thresholds should

also be modified. Cached kd-trees can help both locally weighted linear regression and locally

weighted logistic regression improve their computational efficiency, and at the same time not

sacrifice their accuracy too much. This contribution is more significant when the size of the

training dataset becomes larger. The limitation of cached kd-tree is that when the input space’s

1. There are several control knobs for cached kd-tree’s locally weighted logistic regression: Kernel width
(kw), the fraction parameter for the weight’s cutoff (τ), the fixed thresholds for the derivative and the
prediction (ε1 and ε2). We found that the prediction accuracy is not very sensitive to ε1 and ε2, so we set
both of them as 0.01.τ is also assigned to be 0.01. But Kernel width (kw) varies from dataset to dataset,
tuned up by cross-validation.

Chapter 6: Using Kd-trees for Various Regressions 115

dimensionality is higher than 10, a kd-tree cannot help to improve the efficiency too much. Fur-

ther research needs to be done combat the curse of dimensionality.

116 Chapter 6: Using Kd-trees for Various Regressions

117

Chapter 7

Feature Selection

Feature selection is not used in the system classification experiments, which will be discussed

in Chapter 8 and 9. However, as an autonomous system, OMEGA includes feature selection as

an important module.

7.1 Introduction

A fundamental problem of machine learning is to approximate the functional relationship f()

between an input and an output Y, based on a memory of data points,

, i = 1, ..., N, usually the Xi’s are vectors of reals and the Yi’s are real numbers. Some-

times the output Y is not determined by the complete set of the input features ,

instead, it is decided only by a subset of them , where . With suf-

ficient data and time, it is fine to use all the input features, including those irrelevant features,

to approximate the underlying function between the input and the output. But in practice, there

are two problems which may be evoked by the irrelevant features involved in the learning pro-

cess.

1. The irrelevant input features will induce greater computational cost. For example, using

cached kd-trees as we discussed in last chapter, locally weighted linear regression’s com-

putational expense is O(m3 + m2 log N) for doing a single prediction, where N is the num-

X x1 x2 ... ,, , xM{ }=

X i Y i,{ }

x1 x2 ... ,, , xM{ }

x 1() x 2() ... x m(), , ,{ } m M<

118 Chapter 7: Feature Selection

ber of data points in memory and m is the number of features used. Apparently, with more

features, the computational cost for predictions will increase polynomially; especially

when there are a large number of such predictions, the computational cost will increase

immensely.

2. The irrelevant input features may lead to overfitting. For example, in the domain of med-

ical diagnosis, our purpose is to infer the relationship between the symptoms and their cor-

responding diagnosis. If by mistake we include the patient ID number as one input feature,

an over-tuned machine learning process may come to the conclusion that the illness is

determined by the ID number.

Another motivation for feature selection is that, since our goal is to approximate the underlying

function between the input and the output, it is reasonable and important to ignore those input

features with little effect on the output, so as to keep the size of the approximator model small.

For example, [Akaike, 73] proposed several versions of model selection criteria, which basi-

cally are the trade-offs between high accuracy and small model size.

The feature selection problem has been studied by the statistics and machine learning commu-

nities for many years. It has received more attention recently because of enthusiastic research

in data mining. According to [John et al., 94]’s definition, [Kira et al, 92] [Almuallim et al., 91]

[Moore et al, 94] [Skalak, 94] [Koller et al, 96] can be labelled as “filter” models, while [Caru-

ana et al., 94] [Langley et al, 94]’s research is classified as “wrapped around” methods. In the

statistics community, feature selection is also known as “subset selection”, which is surveyed

thoroughly in [Miller, 90].

The brute-force feature selection method is to exhaustively evaluate all possible combinations

of the input features, and then find the best subset. Obviously, the exhaustive search’s compu-

tational cost is prohibitively high, with considerable danger of overfitting. Hence, people resort

Chapter 7: Feature Selection 119

to greedy methods, such as forward selection. In this paper, we propose three greedier selection

algorithms in order to further enhance the efficiency. We use real-world data sets from over ten

different domains to compare the accuracy and efficiency of the various algorithms.

7.2 Cross Validation vs. Overfitting

The goal of feature selection is to choose a subset of the complete set of input features

so that the subset can predict the output Y with accuracy comparable

to the performance of the complete input set X, and with great reduction of the computational

cost.

First, let us clarify how to evaluate the performance of a set of input features. In this chapter we

use a very conservative form of feature set evaluation in order to avoid overfitting. This is

important. Even if feature sets are evaluated by testset cross-validation or leave-one-out cross

validation, an exhaustive search of possible feature-sets is likely to find a misleadingly well-

scoring feature-set by chance. To prevent this, we use the cascaded cross-validation procedure

in Figure 7-1, which selects from increasingly large sets of features (and thus from increasingly

Xs

X x1 x2 ... , xM, , ,{ }= Xs

1. Shuffle the data set and split into a training set of 70% of the
data and a testset of the remaining 30%.

2. Let j vary among feature-set sizes: j = (0 , 1 , 2 , ... , m)

a. Let fsj = best feature set of size j, where “best” is mea-
sured as the minimizer of the leave-one-out cross-valida-
tion error over the training set.

b. Let Testscorej = the RMS prediction error of feature set fsj
on the test set.

End of loop of (j).

3. Select the feature set fsj for which the test-set score is min-
imized.

Figure 7-1: Cascaded cross-validation procedure for finding
the best set of up to m features.

120 Chapter 7: Feature Selection

large model classes). The score for the best feature set of a given size is computed by an inde-

pendent cross-validation from the score for the best size of feature set.

Two notes about the procedure in Figure 7-1: First, the choice of 70/30 split for training and

testing is somewhat arbitrary, but is empirically a good practical ratio according to more

detailed experiments. Second, note that Figure 7-1 does not describe how we search for the best

feature set of size j in Step 2a. This is the subject of Section 7-3.

To evaluate the performance a feature selection algorithm is more complicated than to evaluate

a feature set. This is because in order to evaluate an algorithm, we must first ask the algorithm

to find the best feature subset. Second, to give a fair estimate of how well the feature selection

algorithm performs, we should try the first step on different datasets. Therefore, the full proce-

dure of evaluating the performance of a feature selection algorithm, which is described in Fig-

ure 7-2, has two layers of loops. The inner loop is to use an algorithm to find the best subset of

features. The outer loop is to evaluate the performance of the algorithm using different datasets.

7.3 Feature selection algorithms

In this section, we introduce the conventional feature selection algorithm: forward feature

selection algorithm; then we explore three greedy variants of the forward algorithm, in order to

improve the computational efficiency without sacrificing too much accuracy.

7.3.1 Forward feature selection

The forward feature selection procedure begins by evaluating all feature subsets which consist

of only one input attribute. In other words, we start by measuring the Leave-One-Out Cross

Validation (LOOCV) error of the one-component subsets, {X1}, {X2}, ..., {XM}, where M is the

input dimensionality; so that we can find the best individual feature, X(1).

Chapter 7: Feature Selection 121

Next, forward selection finds the best subset consisting of two components, X(1) and one other

feature from the remaining M - 1 input attributes. Hence, there are a total of M - 1 pairs. Let’s

assume X(2) is the other attribute in the best pair besides X(1).

Afterwards, the input subsets with three, four, and more features are evaluated. According to

forward selection, the best subset with m features is the m-tuple consisting of X(1), X(2), ..., X(m),

while overall the best feature set is the winner out of all the M steps. Assuming the cost of a

LOOCV evaluation with i features is C(i), then the computational cost of forward selection

searching for a feature subset of size m out of M total input attributes will be

.

For example, the cost of one prediction with one-nearest-neighbor as the function approxima-

tor, using a kd-tree with j inputs, is O(j log N) where N is the number of datapoints. Thus, the

Figure 7-2: Full procedure for evaluating feature
selection of up to m attributes.

1. Collect a training data set from the specific domain.
2. Shuffle the data set.
3. Break it into P partitions, (say P = 20)
4. For each partition (i = 0, 1, ..., P-1)

a. Let OuterTrainset(i) = all partitions except i.
b. Let OuterTestset(i) = the i’th partition
c. Let InnerTrain(i) = randomly chosen 70% of the Outer-

Trainset(i).
d. Let InnerTest(i) = the remaining 30% of the OuterTrain-

set(i).
e. For j = 0, 1, ..., m

Search for the best feature set with j components,
fsij.using leave-one-out on InnerTrain(i)
Let InnerTestScoreij = RMS score of fsij on InnerT-
est(i).

End loop of (j).
f. Select the fsij with the best inner test score.
g. Let OuterScorei = RMS score of the selected feature set

on OuterTestset(i)
End of loop of (i).

5. Return the mean Outer Score.

MC 1() M 1–()C 2() ...+ + M m– 1+()C m()+

122 Chapter 7: Feature Selection

cost of computing the mean leave-one-out error, which involves N predictions, is O(j N log N).

And so the full cost of feature selection using the above formula is O(m2 M N log N).

To find the overall best input feature set, we can also employ exhaustive search. Exhaustive

search begins with searching the best one-component subset of the input features, which is the

same in the forward selection algorithm; then it goes to find the best two-component feature

subset which may consist of any pairs of the input features. Afterwards, it moves to find the

best triple out of all the combinations of any three input features, etc. It is straightforward to

see that the cost of exhaustive search is the following:

Compared with the exhaustive search, forward selection is much cheaper.

However, forward selection may suffer because of its greediness. For example, if X(1) is the best

individual feature, it does not guarantee that either {X(1), X(2)} or {X(1), X(3)} must be better than

{X(2), X(3)}. Therefore, a forward selection algorithm may select a feature set different from that

selected by exhaustive searching. With a bad selection of the input features, the prediction

of a query may be significantly different from the true .

7.3.2 Three Variants of Forward Selection

In this subsection, we will investigate the following two questions based on empirical analysis

using real world datasets mixed with artificially designed features.

1. How severely does the greediness of forward selection lead to a bad selection of the input

features?

2. If the greediness of forward selection does not have a significantly negative effect on

accuracy, how can we modify forward selection algorithm to be greedier in order to

MC 1() M
2

 C 2() ...
M
m

 C m()+ + +

Ŷ q

Xq x1 x2 ... ,xM, ,{ }= Y q

Chapter 7: Feature Selection 123

improve the efficiency even further?

We postpone the first question until the next section. In this chapter, we propose three greedier

feature selection algorithms whose goal is to select no more than m features from a total of M

input attributes, and with tolerable loss of prediction accuracy.

Super Greedy Algorithm

Do all the 1-attribute LOOCV calculations, sort the individual features according to their

LOOCV mean error, then take the m best features as the selected subset. We thus do M compu-

tations involving one feature and one computation involving m features. If nearest neighbor is

the function approximator, the cost of super greedy algorithm is O((M + m) N log N).

Greedy Algorithm

Do all the 1-attribute LOOCVs and sort them, take the best two individual features and evaluate

their LOOCV error, then take the best three individual features, and so on, until m features have

been evaluated. Compared with the super greedy algorithm, this algorithm may conclude at a

subset whose size is smaller than m but whose inner testset error is smaller than that of the m-

component feature set. Hence, the greedy algorithm may end up with a better feature set than

the super-greedy one does. The cost of the greedy algorithm for nearest neighbor is O((M + m2)

N log N).

Restricted Forward Selection (RFS)

1. Calculate all the 1-feature set LOOCV errors, and sort the features according to the cor-

responding LOOCV errors. Suppose the features ranking from the most important to the

least important are .

2. Do the LOOCVs of 2-feature subsets which consist of the winner of the first round, X(1),

along with another feature, either X(2), or X(3), or any other one until X(M / 2). There are

X
1() X

2() ... X
M(), , ,

124 Chapter 7: Feature Selection

of these pairs. The winner of this round will be the best 2-component feature subset

chosen by RFS.

3. Calculate the LOOCV errors of subsets which consist of the winner of the second

round, along with the other features at the top of the remaining rank. In this way,

RFS will select its best feature triple.

4. Continue this procedure, until RFS has found the best m-component feature set.

5. From Step 1 to Step 4, RFS has found m feature sets whose sizes range from 1 to m. By

comparing their LOOCV errors, RFS can find the best overall feature set.

The difference between RFS and conventional Forward Selection (FS) is that at each step to

insert an additional feature into the subset, FS considers all the remaining features, while RFS

only tries a part of them which seem more promising. The cost of RFS for nearest neighbor is

O(M m N log N).

For all these varieties of forward selection, we want to know how cheap and how accurate they

are compared with the conventional forward selection method. To answer these questions, we

resort to experiments using real world datasets.

7.4 Experiments

In this section, we compare the greedy algorithms with the conventional methods empirically.

We run ten experiments; for each experiment, we try two datasets with different input dimen-

sionalities; and for each dataset, we use three different function approximators.

To evaluate the influence of the greediness on the accuracy and efficiency of the feature selec-

tion process, we use twelve real world datasets from StatLib/CMU and UCI’s machine learning

data repository. These datasets come from different domains, such as biology, sociology, robot-

ics, etc. The datasets each contain 62 to 1601 points, and each point consists of an input vector

M 2⁄

M 3⁄

M 3⁄

Chapter 7: Feature Selection 125

and a scalar output. The dimensionality of the input varies from 3 to 13. In all of these examples

we set m (the maximum feature set size) to be 10.

Our first experiment demonstrates that Exhaustive Search (ES) is prohibitively time-consum-

ing. We choose four domains with not-too-large datasets and limited input dimensionality for

this test. Referring to Table 7-1, even for these easy cases, ES is far more expensive than the

Forward Selection algorithm (FS), while it is not significantly more accurate than FS. However,

the features selected by FS may differ from the result of ES. That is because some of the input

features are not mutually independent.

Our second experiment investigates the influence of greediness. We compare the three greedier

algorithms, Super Greedy, Greedy and Restricted Forward Selection (RFS), with the conven-

tional FS in three aspects:(1) The probabilities for these algorithms to select any useless fea-

tures, (2) The prediction errors using the feature set selected by these algorithms, and (3) The

time cost for these algorithms to find their feature sets.

For example, if a raw data file consists of three input attributes, U, V, W and an output Y, we

generate a new dataset consisting of more input features, U, V, W, cU, cV, cW, R1, R2,..., R10,

and the output Y, in which cU, cV and cW are copies of U, V and W but corrupted with 20%

 Table 7-1: Preliminary comparison of ES vs. FS

Domain
(dim)

20Fold Mean Errors Time Cost Selected Features

ES FS ES / FS ES FS ES / FS ES FS

Crab (7) 0.415 0.469 0.885 35644 522 68.28 A,F,G A,E

Halibut (7) 57.972 52.267 1.109 61759 713 86.62 B,C,G A,D,E,G

Irish (5) 0.863 0.905 0.954 138088 1142 120.91 A,C,E A,D

Litter (3) 0.780 0.868 0.899 4982 117 42.58 A,B,C A,B,C

126 Chapter 7: Feature Selection

noise, while R1 to R10 are independent random numbers. The chance that any of these useless

features is selected can be treated as an estimation of the probability for the certain feature

selection algorithm to make a mistake.

 Table 7-2: Greediness comparison

Domain
(dim)

Funct.
Apprx.

Corrupt / Total Corrupts # Noise / Total Noise

Super Greedy RFS FS Super Greedy RFS FS

Bodyfat
(13)

Nearest 0.23 0.12 0.10 0.12 0.10 0.05 0.05 0.06

LocLin 0.31 0.08 0.17 0.18 0.00 0.00 0.05 0.20

GlbLin 0.31 0.23 0.15 0.00 0.00 0.00 0.00 0.40

Boston
(13)

Nearest 0.23 0.19 0.21 0.17 0.20 0.20 0.23 0.35

LocLin 0.15 0.15 0.12 0.15 0.30 0.30 0.30 0.33

GlbLin 0.15 0.12 0.15 0.23 0.40 0.30 0.30 0.40

Crab
(7)

Nearest 0.29 0.29 0.29 0.29 0.30 0.13 0.17 0.20

LocLin 0.29 0.14‘ 0.21 0.21 0.40 0.40 0.20 0.15

GlbLin 0.29 0.14 0.29 0.24 0.40 0.30 0.15 0.17

Halibut
(7)

Nearest 0.57 0.57 0.14 0.43 0.10 0.10 0.10 0.10

LocLin 0.43 0.21 0.04 0.24 0.20 0.10 0.10 0.20

GlbLin 0.36 0.29 0.00 0.14 0.25 0.10 0.20 0.10

Irish
(5)

Nearest 0.60 0.60 0.00 0.00 0.20 0.20 0.10 0.10

LocLin 0.40 0.40 0.38 0.38 0.30 0.30 0.15 0.25

GlbLin 0.60 0.60 0.30 0.40 0.30 0.30 0.40 0.25

Litter
(3)

Nearest 0.67 0.33 0.33 0.33 0.30 0.00 0.05 0.07

LocLin 0.67 0.33 0.33 0.33 0.30 0.00 0.05 0.07

GlbLin 0.33 0.33 0.00 0.43 0.50 0.20 0.35 0.50

Chapter 7: Feature Selection 127

Mpg
(9)

Nearest 0.44 0.44 0.41 0.44 0.00 0.00 0.07 0.05

LocLin 0.44 0.33 0.22 0.30 0.00 0.00 0.10 0.23

GlbLin 0.33 0.28 0.22 0.17 0.00 0.00 0.20 0.20

Nursing
(6)

Nearest 0.33 0.00 0.25 0.25 0.30 0.10 0.15 0.15

LocLin 0.33 0.08 0.33 0.22 0.40 0.25 0.20 0.20

GlbLin 0.33 0.25 0.33 0.25 0.40 0.35 0.20 0.30

Places
(8)

Nearest 0.31 0.00 0.00 0.00 0.15 0.00 0.00 0.00

LocLin 0.38 0.24 0.16 0.40 0.20 0.10 0.00 0.10

GlbLin 0.25 0.25 0.23 0.31 0.35 0.15 0.15 0.25

Sleep
(7)

Nearest 0.29 0.00 0.04 0.04 0.25 0.10 0.13 0.17

LocLin 0.43 0.11 0.03 0.00 0.20 0.03 0.08 0.10

GlbLin 0.26 0.21 0.26 0.29 0.40 0.15 0.18 0.40

Strike
(6)

Nearest 0.33 0.17 0.17 0.17 0.30 0.00 0.03 0.03

LocLin 0.58 0.00 0.00 0.00 0.15 0.00 0.00 0.05

GlbLin 0.50 0.33 0.22 0.33 0.15 0.00 0.08 0.18

White-
cell (13)

Nearest 0.15 0.15 0.08 0.23 0.40 0.20 0.15 0.25

LocLin 0.15 0.04 0.02 0.02 0.04 0.10 0.27 0.27

GlbLin 0.12 0.14 0.08 0.04 0.40 0.35 0.25 0.25

Mean
over all
twelve

datasets

Nearest 0.37 0.27 0.17 0.21 0.23 0.10 0.11 0.13

LocLin 0.38 0.18 0.17 0.20 0.24 0.13 0.13 0.18

GlbLin 0.30 0.26 0.19 0.23 0.29 0.18 0.21 0.28

TOTAL - 0.35 0.24 0.18 0.21 0.25 0.14 0.15 0.20

 Table 7-2: Greediness comparison

Domain
(dim)

Funct.
Apprx.

Corrupt / Total Corrupts # Noise / Total Noise

Super Greedy RFS FS Super Greedy RFS FS

128 Chapter 7: Feature Selection

As we observe in Table 7-2, FS does not eliminate more useless features than the greedier com-

petitors except the Super Greedy one. However, the greedier an algorithm is, the more easily it

is confused by the relevant but corrupted features.

Since the input features may be mutually dependent, the different algorithms may find different

feature sets. To measure the goodness of these selected feature sets, we calculate the mean 20-

fold score. As described in Section 7-2, our scoring is carefully designed to avoid overfitting,

so that the smaller the score, the better the corresponding feature set is. To confirm the consis-

tency, we test the four algorithms in all the twelve domains from StatLib and UCI. For each

domain, we apply the algorithms to two datasets. Both of the datasets are generated based on

the same raw data file, but with different numbers of corrupted features and independent noise.

And for each dataset, we try three function approximators, nearest neighbor (Nearest), locally

weighted linear regression (LocLin) and global linear regression (GlbLin). For the sake of con-

ciseness, we only list the ratios. If a ratio is close to 1.0, the corresponding algorithm’s perfor-

mance is not significantly different from that of FS. The experimental results are shown in

Table 7-3. In addition, we also list the ratios of the number of seconds consumed by the greedier

algorithms to that of FS.

First, we observe in Table 7-3 that the three greedier feature selection algorithms do not suffer

great loss in accuracy, since the average ratios of the 20-fold scores to those of FS are very close

to 1.0. In fact, RFS performs almost as well as FS. Second, as we expected, the greedier algo-

rithms improve the efficiency. Super greedy algorithm (Super) is ten times faster than forward

selection (FS), while greedy algorithm (Greedy) seven times, and the restricted forward selec-

tion (RFS) three times. Finally, restricted forward selection (RFS) performs better than the con-

ventional FS in all aspects.

To further confirm our conclusion, we do the third experiment. This time, we insert more inde-

pendent random noise and corrupted features to the datasets. For example, if the original data

Chapter 7: Feature Selection 129

 Table 7-3: Greediness comparison

Domain
(dim)

Funct.
Apprx.

20Fold() / 20Fold(FS) Cost() / Cost(FS)

Super Greedy RFS Super Greedy RFS

Bodyfat
(13)

Nearest 0.975 0.969 0.915 0.095 0.126 0.330

LocLin 1.080 1.015 0.973 0.062 0.092 0.287

GlbLin 0.984 0.981 0.966 0.084 0.109 0.247

Boston
(13)

Nearest 0.876 0.872 0.881 0.105 0.145 0.389

LocLin 1.091 1.091 0.969 0.058 0.080 0.270

GlbLin 1.059 1.052 1.068 0.084 0.127 0.287

Crab
(7)

Nearest 1.107 1.039 0.973 0.123 0.149 0.358

LocLin 1.121 1.093 1.024 0.095 0.128 0.349

GlbLin 1.123 1.101 0.957 0.079 0.116 0.319

Halibut
(7)

Nearest 1.089 1.108 1.051 0.133 0.163 0.376

LocLin 1.395 1.322 1.198 0.079 0.130 0.312

GlbLin 1.073 1.018 1.022 0.079 0.137 0.273

Irish
(5)

Nearest 1.132 1.072 0.954 0.127 0.171 0.343

LocLin 1.039 0.979 0.984 0.086 0.137 0.316

GlbLin 0.981 0.981 0.992 0.096 0.180 0.373

Litter
(3)

Nearest 1.370 1.014 1.000 0.145 0.222 0.419

LocLin 1.301 0.960 0.989 0.099 0.179 0.361

GlbLin 0.886 0.902 0.930 0.111 0.179 0.410

Mpg
(9)

Nearest 1.384 1.250 1.084 0.112 0.165 0.398

LocLin 1.550 1.524 1.081 0.074 0.093 0.271

GlbLin 1.295 1.317 1.014 0.086 0.142 0.298

Nursing
(6)

Nearest 1.315 1.128 0.998 0.102 0.172 0.327

LocLin 1.171 1.106 1.063 0.072 0.121 0.260

GlbLin 1.044 1.043 1.002 0.092 0.137 0.267

130 Chapter 7: Feature Selection

set consists of three input features, {U,V,W}, the new artificial data file contains {U, cU, V, cV,

cU * cV, W, cW, cV * cW, R1,..., R40}. The results are listed in Table 7-4 and Table 7-5.

Comparing Table 7-2 with Table 7-4, we notice that with more input features, the probability

for any corrupted feature to be selected remains almost the same, while that of independent

noise reduces greatly. Comparing Table 7-3 with Table 7-5, with more input features, (1) the

prediction accuracies of the feature sets selected by the variety of the algorithms are roughly

Places
(8)

Nearest 1.367 1.000 1.000 0.118 0.154 0.364

LocLin 0.998 1.017 0.993 0.071 0.112 0.316

GlbLin 1.041 1.044 1.064 0.091 0.130 0.265

Sleep
(7)

Nearest 1.098 0.883 0.981 0.143 0.165 0.361

LocLin 1.170 0.852 0.922 0.090 0.113 0.273

GlbLin 0.918 0.925 1.026 0.096 0.122 0.276

Strike
(6)

Nearest 1.142 0.952 1.000 0.161 0.178 0.424

LocLin 1.172 0.987 1.003 0.068 0.108 0.293

GlbLin 1.004 0.992 0.993 0.093 0.166 0.310

White-
cell (13)

Nearest 0.854 0.718 0.906 0.100 0.138 0.288

LocLin 1.259 0.821 0.931 0.077 0.088 0.254

GlbLin 0.940 0.942 0.910 0.098 0.109 0.291

Mean
over all
twelve

datasets

Nearest 1.142 1.001 0.978 0.122 0.163 0.365

LocLin 1.196 1.064 1.011 0.077 0.115 0.296

GlbLin 1.029 1.025 0.995 0.091 0.138 0.301

TOTAL - 1.122 1.030 0.995 0.097 0.138 0.321

 Table 7-3: Greediness comparison

Domain
(dim)

Funct.
Apprx.

20Fold() / 20Fold(FS) Cost() / Cost(FS)

Super Greedy RFS Super Greedy RFS

Chapter 7: Feature Selection 131

consistent, because the 20fold scores in the two tables are almost the same; (2) the efficiency

ratio of the greedier alternatives to FS is a little higher.

In summary, in theory the greediness of feature selection algorithms may lead to great reduc-

tion in the accuracy of function approximating, but in practice it does not happen quite often.

The three greedier algorithms we propose in this paper improve the efficiency of the forward

selection algorithm, especially for larger datasets with high input dimensionalities, without sig-

nificant loss in accuracy. Even in the case the accuracy is more crucial than the efficiency,

restricted forward selection is more competitive than the conventional forward selection.

 Table 7-4: Greediness comparison with more inputs

Funct.
Apprx.

Corrupt / Total Corrupts # Noise / Total Noise

Super Greedy RFS FS Super
Greed

y
RFS FS

Mean
Values

Nearest 0.29 0.33 0.30 0.38 0.04 0.04 0.03 0.04

LocLin 0.38 0.38 0.25 0.41 0.05 0.03 0.02 0.03

GlbLin 0.38 0.25 0.29 0.16 0.05 0.05 0.08 0.07

TOTAL - 0.35 0.32 0.28 0.32 0.05 0.04 0.04 0.05

 Table 7-5: Greediness comparison with more inputs

Funct.
Apprx.

20Fold() / 20Fold(FS) Cost() / Cost(FS)

Super Greedy RFS Super Greedy RFS

Mean
Values

Nearest 1.197 1.056 1.001 0.080 0.080 0.282

LocLin 1.202 1.059 1.040 0.071 0.084 0.281

GlbLin 1.032 1.026 0.998 0.079 0.104 0.294

TOTAL - 1.144 1.047 1.013 0.077 0.088 0.286

132 Chapter 7: Feature Selection

7.5 Summary

In this chapter, we explore three greedier variants of the forward selection method. Our inves-

tigation shows that the greediness of the feature selection algorithms greatly improves the effi-

ciency, while does not corrupt the correctness of the selected feature set so that the prediction

accuracy using the selected features remains satisfactory. As an application, we apply feature

selection to a prototype system of Chinese and Japanese handwriting recognition.

133

Chapter 8

Driving Simulation

The goal of this experiment is to distinguish different people’s driving styles. The data was col-

lected from five people using a simulator. The simulator, shown in Figure 8-1, was designed by

M.C.Nechyba.

Figure 8-1: Driving simulator interface. (Courtesy M.C.Nechyba)

road trajectory

134 Chapter 8: Driving Simulation

8.1 Experimental data

The human operator has the full control over steering (horizontal mouse position), the brake

(left mouse button) and the accelerator (right mouse button). Although the dynamics of the sim-

ulator strictly follows the form of some real vehicles [Nechyba et al, 98, (a) and (b)], the human

drivers’ behavior is quite different from the real one on the real roads. One reason is that the

road trajectory of the simulator is generated as a sequence of straight-line segments and circular

arcs, which differs from the real roads in the real world, illustrated by Figure 8-2.

We generated three road trajectories, each of them is around 20km. Five people were invited to

operate on these three different roads after they had warmed up. The simulator took the record

of the state of the vehicle and the environmental variables (described in details later) five times

per second, while the simulator itself runs 50 Hz. Thus, we collected fifteen datasets, Oij, i =

length length

curvature curvature

(a) (b)

Figure 8-2: The simulator’s road trajectory is generated in a way illustrated by (a), in
which the curvature of the road changes abruptly. However, a high way in the real world
is actually designed in the style of (b), in which the curvature changes smoothly.

Chapter 8: Driving Simulation 135

1, 2, ..., 5, j = 1, 2, 3, i represents the operators, and j corresponds to the different road trajec-

tories.

The state and environmental variables are listed in the following table:

If a human driver is viewed as a system, the input consists of the following information: (1) the

current and recent vehicle states, {vξ(t-nξ), ..., vξ(t-1), vξ(t)}, {vη(t-nη), ..., vη(t-1), vη(t)}, {ω(t-

nω), ..., ω(t-1), ω(t)}, where nξ, nη, nω are the time delays. (2) previous control actions, {α(t-

nα), ..., α(t-1), α(t)}, {δ(t-nδ), ..., δ(t-1), δ(t)}. (3) The visible view of the road ahead, {x(t+1),

y(t+1), ..., x(t+nr), y(t+nr)}. The outputs should be δ(t+1) and α(t+1).

Notice that even for the same human driver, very similar inputs may lead to radically different

outputs δ(t+1) and α(t+1), referring to [Nechyba, 98 (b)].

The time delays of the inputs (including nr of the road median ahead) were decided based on

our empirical experiments. Because of the time delays, the input dimensionality of a dynamic

system tends to be very high, in this case, it is 50. The high dimensionality may have strong

negative impact on the efficiency of both the information retrieval from memory and the clas-

 Table 8-1: State of vehicle and the environmental variables

Description
Time Delay

(0.42 Seconds)

vξ The lateral velocity 6

vη The longitudinal velocity 6

ω The angular velocity 6

(x, y) The car-body-relative coordinates of the road median 10

δ The user-applied steering angle 6

α The user-applied longitudinal force on the front tires 6

136 Chapter 8: Driving Simulation

sification process afterwards. For kernel regression, the computational cost is O(Nd), where N

is the memory size and d is the input space dimensionality. Even though we used kd-trees to

re-organize the memory in order to speed up the information retrieval process, kd-tree perfor-

mance is not satisfactory when the input dimensionality is too high.

Principal Component Analysis (PCA) [Jolliffe, 86] can be used to compress the input space if

some of the inputs are linearly correlated. Notice that, theoretically there is no guarantee that

PCA can shrink the dimensionality of the dataset in all cases especially when the input

attributes are not linearly correlated; however in practice, PCA is a very popular method. In the

simulation driving experiment, we used PCA to compress the input space from 50 dimensions

to 3 dimensions, with only 7.2% loss of information.

8.2 Experimental results

As mentioned above, we collected fifteen datasets from five people driving on three road tra-

jectories. We assigned one dataset to be a testing dataset; say, O21, which is actually the dataset

generated by the second driver along the first road. We did not tell OMEGA who was the real

driver, and asked OMEGA to figure it out. To do so, OMEGA needed some labeled training

datasets. In our experiments, we let those datasets collected from the other roads be the training

datasets, i.e. Oik, i = 1, ..., 5, k = 2, 3. By “labeled” we mean for each training dataset, OMEGA

knew exactly who was the operator.

Using the OMEGA technique described in Chapter 2, we calculated the average of the negative

log likelihood of each testing dataset with respect to all five human operators. Hence, for each

testing dataset, we got five likelihood curves corresponding to the five possible drivers.

OMEGA detected the hidden driver according to the tails of the likelihood curves: the lowest

one indicates the most likely operator.

Chapter 8: Driving Simulation 137

There are in total fifteen testing datasets, OMEGA succeeded in detecting the hidden drivers

correctly thirteen times. A typical correct case is demonstrated in Figure 8-3(a), which shows

how OMEGA detected the underlying operator of a testing dataset, O11. The horizontal axis is

the number of data points in the testing dataset OMEGA has processed. The vertical axis is the

average of the negative log likelihood. Tony’s negative log likelihood curve is closest to the

horizon, and it is remote from all other drivers’ curves. Hence, Tony is the most likely operator

of the testing dataset, O11. At the early stage when only a few testing data points have been pro-

cessed, the curves are not stable, but afterwards they become smoother and more stable.

Although OMEGA did not make any mistakes in the fifteen experiments, it was confused in

two cases1. One of them is shown in Figure 8-3(b), in which the lowest curve does correspond

the real driver, Larry; however, Tony’s curve is too close to Larry’s, so that OMEGA can hardly

tell who is more likely to be the hidden driver between Larry and Tony.

1. To distinguish the confusing cases, we assign the significance level α to be 5%, referring to Chapter 2.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time, number of datapnt

L
o
g
L
ik

e
lih

o
o
d

Driving Performance Detection, the driver is in fact Tony

Groucho

Moe

Curly

Larry

Tony

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time, or Number of the Query Datapnt

L
o
g
L
ik

e
lih

o
o
d

Driving Performance Detection, the hidden driver is Larry

Tony
Larry

Curly

Moe

Groucho

(a) (b)

Figure 8-3: Simulation driving style OMEGA detection. (a) A correct case. (b) A
sample of the confused cases. There are two confused cases out of the fifteen
experiments, all others are correct.

138 Chapter 8: Driving Simulation

As an on-line detection tool, OMEGA is capable of starting its job with very few data points.

As expected, the precision is very bad. Thus, the likelihood curves look chaotic at first. But with

more and more data come, the curves converge to be stable.

Sometimes the likelihood curves are bumpy, because the driver did something unusual com-

pared with his behavior in the training datasets. After studying the datasets carefully, we notice

that the abnormal behavior usually occurs when the curvatures of the road change rapidly,

referring to Figure 8-2(a). If the human operator does not pay sufficient attention, he may drive

off the road when the abrupt change of the curvature happens. Therefore, a careful driver’s

curve is smoother and more stable than others, illustrated by Figure 8-4(a). However, sometime

the curvature changes so much and so suddenly that no one was able to keep his operation in a

consistent manner. In those cases, all the curves are bumpy and roughly parallel to each other,

referring to Figure 8-4(b).

Another interesting observation is that some people’s curves tend to be close to each other, for

example, Moe’s and Groucho’s. The short distances between their curves implies that their

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

Time, or Number of Datapnts

L
o
g
L
ik

e
lih

o
o
d

Driving Performance Detection, the hidden driver is Groucho

Groucho

Tony

Larry

Curly

Moe

Figure 8-4: When some data points in the testing dataset are not consistent with a
certain training dataset, the corresponding likelihood curve may look bumpy. If the
data points are so unusual that there is no similar scenario in all the training datasets,
then all the curves are bumpy, and roughly paralleling to each other, referring to (b).

(a) (b)
0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6

7

8

9

10

Time, or Number of Query Datapnts

L
o
g
L
ik

e
lih

o
o
d

Driving Performance Detection, the hidden driver is Moe

Groucho

Moe

Curly

Larry

Tony

Chapter 8: Driving Simulation 139

driving behaviors are close to each other in the experiments. But does it give any hint to the

similarity of their personalities? This is an open question, but it is interesting to observe that

Moe and Groucho do spend a lot of time together during weekends.

8.3 Comparison with other methods

Although OMEGA works well for detecting the hidden drivers in these simulation experi-

ments, some legitimate questions are still opened, such as: is there any simpler method which

can work as well or better?

8.3.1 Bayes classifier

Bayes classifier is a simple method which compares the features. Referring to Table 8-1, the

state of the vehicle and the driver’s action are the instantaneous velocity (including vξ and vη),

angular velocity ω, user applied steering angle δ and acceleration or brake force α. We treated

the vehicle’s state variables, the environmental variables, in conjunction with the control

actions as the feature and applied Bayes classifier, with tuned-up parameters, to distinguish the

five human operators. The result is shown in the first row of Table 8-2 :

Obviously, feature-based Bayes classifier did not perform well. The reason are that: (1) fea-

tures-based approach does not consider the mapping between the inputs and the outputs. (2)

 Table 8-2: Comparison of OMEGA with other alternatives

Correct Wrong Confused

Bayes classifier 6 6 10

HMM 13 0 2

Global linear 12 1 2

OMEGA 13 0 2

140 Chapter 8: Driving Simulation

some features are also influenced by the road conditions, besides the different human driving

styles. (3) different human operators’ feature values have a large overlapping region, exhibited

in Table 8-3.

The numbers in parentheses are the standard deviations. Since the mean values of angular

velocities and steering angles depend on the specific road trajectories, only their standard devi-

ations are listed in the table.

8.3.2 Hidden Markov Model

With rich mathematical fundamentals, the Hidden Markov Model [Rabiner, 89] is very useful

in speech recognition. When we hear the sentence “I love you”, in fact, our perception system

recognizes the states [ai] [la] [v] [ju:] in sequence. The order is also important. However, due

to the difference in emphasis, skipping, and pausing, the transitions among the states are not

deterministic. Some states may last longer, others may be skipped. For the same example, it can

be expressed in a different way: [ai] [pause] [la] [la] [v] [ju:], or “I, lo-ve you”, which sounds

more romantic than the plain tone. Therefore, HMM assumes the transitions among the differ-

ent states are probabilistic instead of deterministic. To recognize a piece of speech, HMM relies

on the approximation of those state transition probabilities.

 Table 8-3: Aggregate features of human simulation data (based on
Nechyba’s data)

Velocity
(v)

Angular velocity
(ω)

Steering angle
(δ)

Longitudinal
force (α)

Tony 67.2 (12.6) (0.205) (0.097) 2.03 (3.86)

Larry 72.2 (7.8) (0.193) (0.072) 1.85 (2.37)

Moe 70.5 (7.9) (0.198) (0.074) 1.91 (3.25)

Curly 63.3 (10.1) (0.175) (0.056) 1.33 (1.88)

Groucho 73.2 (9.3) (0.259) (0.100) 2.33 (2.68)

Chapter 8: Driving Simulation 141

Due to accents and/or personal styles, few people can precisely pronounce every word. Thus,

the states (i.e. [ai], [la], [v], and [ju:]) are hidden underneath the stream of the sound signals.

The mapping between the sound signals and the hidden states is not so simple as one-to-one;

instead their relationship is also probabilistic. HMM is capable of approximating the probabi-

listic mapping between the sound signal and the states, as well as the transition probabilities.

Although HMM is very successful for speech recognition, one should be careful before using

HMM as a general purpose time series recognizer. The reason is that HMM assumes the state

transition probabilities are the most fundamental characteristic of a time series. And usually,

the transition probabilities are assumed to be time-invariant.

[Nechyba, 98 (a)] applied HMM to distinguish different simulation driving styles. He did not

separate the inputs and outputs, instead, he treated the states of the vehicle and the environmen-

tal variables equally as parts of observations. He assumed that the observations were stochas-

tically decided by some hidden states. Although the physical meanings of those states were not

clear, he conjectured that their transitions probabilities differed with different drivers. There-

fore, given a unlabeled driving time series, Nechyba approximated a HMM which fit the time

series well. Then he compared the new HMM with those in memory whose underlying drivers

were known. Usually one HMM in memory is closer to the new one than the others are. The

closest HMM in memory indicated the driver who is most likely to be generator of the unla-

beled driving time series.

As Table 8-2 shows, the experimental performance of HMM is as good as that of OMEGA.

Why does HMM approach work in this domain? In our point of view, a hidden state is an

abstract scenario of the state of the vehicle in conjunction with the environmental situation, and

the human driver’s control action. Facing a certain scenario, different drivers may give dissim-

ilar control responses which lead to different new scenarios at the next time step. Thus, different

142 Chapter 8: Driving Simulation

drivers’ diverse responses make the transition probabilities of his HMM distinguishable from

those of others.

Therefore, we think the fundamental methodology of [Nechyba, 98(a)] is similar to that of

OMEGA. There is no surprise that the accuracies of HMM and OMEGA are close to each

other. While Table 8-2 gives a top-level comparison, Table 8-4 and Table 8-5 view the precision

in depth. Each number in the tables is a probability of a testing dataset being generated by a

certain operator. Each row corresponds to a specific testing data set, and the real operator is in

the leftmost column. The other columns represent the five candidate drivers. The number in the

(2,3)’th cell is the probability that a testing dataset, which was secretly generated by Larry,

would be detected as the performance of Moe. Thus, the sum of the five probability values in

each row is always 1.0. The number on the shaded diagonal is expected to be bigger than the

others. And the bigger the diagonal number is, the better the detection system performs. Oth-

erwise, the detection fails.

Comparing Table 8-4 and Table 8-5, we claim that HMM and OMEGA have similar accuracy

in this simulation domain. No one is significant better than the other.

However, OMEGA outperforms HMM in other aspects, such as efficiency, data consumption,

flexibility, robustness, etc., referring to Chapter 2.

 Table 8-4: Cross validation of OMEGA

Tony Larry Moe Curly Groucho

Tony 0.677 0.139 0.020 0.031 0.133

Larry 0.243 0.441 0.014 0.129 0.173

Moe 0.037 0.001 0.836 0.114 0.012

Curly 0.060 0.030 0.272 0.570 0.068

Groucho 0.130 0.070 0.199 0.156 0.445

Chapter 8: Driving Simulation 143

8.3.3 Global linear model

OMEGA is a non-parametric method, which means it does not need any assumption about the

function relationship between the input and output. However, if we do know the function form,

we have more options to detect the system. For example, linear system is simple and very pop-

ular in practice, which assumes the output is a linear function of the inputs. To detect a linear

system, we can either follow the residual approach or compare the parameters of the linear

functions.

• Residual approach: For each training dataset, we approximate the parameters of the lin-

ear function between the inputs and the outputs. Then, given a unlabeled testing dataset,

we temporarily suppose it was generated by the first system. Through the first system’s

linear function, we predict the outputs corresponding to the inputs of the testing data

points. There usually exist some residuals between the predicted outputs and the real out-

puts in the testing dataset. The smaller the residuals, the more likely the first system is the

underlying system of the testing datasets. We enumerate all the candidate systems, the one

with the smallest residuals is most likely to be the underlying system.

• Parameter approach: We can approximate the linear function’s parameters of the testing

dataset, as well as those of each training dataset. By comparing the parameters of the test-

 Table 8-5: Cross validation of HMM (based on Nechyba’s data)

Tony Larry Moe Curly Groucho

Tony 0.425 0.157 0.217 0.154 0.047

Larry 0.202 0.538 0.116 0.101 0.043

Moe 0.212 0.077 0.429 0.172 0.110

Curly 0.154 0.073 0.180 0.413 0.180

Groucho 0.066 0.040 0.163 0.237 0.494

144 Chapter 8: Driving Simulation

ing dataset with those of each training dataset, one by one, we can tell which training

dataset is most similar to the testing dataset, hence, we detect the underlying operator of

the unlabeled testing dataset.

It is interesting to find that the simulation driving domain happens to be linear. Referring to

Table 8-2, the global linear approach performed satisfactorily compared with OMEGA and

HMM. It did the correct detection job in most cases.

In our previous work [Deng et al, 97], we compared the driving behaviors of an identical human

operator, but under two conditions: sober and intoxicated. We found that ARMA(4,4)1 was a

good model for the behaviors under both conditions. We approximated the ARMA parameters

of the datasets under different sobriety conditions, and found the parameters of the intoxicated

driving behavior deviated from the sober ones, shown in Figure 8-5. The drunken parameters

were more widely scattered due to the fact that the human operator experienced the varying lev-

els of intoxication.

8.4 Summary

In this chapter, we applied OMEGA to detect the driving style using simulation datasets. This

domain is more complicated than the tennis one because driving is dynamic with feedback, and

there are a large number of variables effecting the driver’s control action. Hence, the pre-pro-

cessing of the datasets is important. We used PCA technique to compress the input space.

OMEGA does very job in this domain, but is not significantly better than the other methods.

However, OMEGA has other good properties: it is simple, it is easy to update the memory, it is

1. Auto Regression Moving Average (ARMA(p,q)) model [Brockwell et al, 91] is a popular linear time series
model. (p,q) refers to the window sizes of its AR part and MA part.

Chapter 8: Driving Simulation 145

computational efficient, it consumes fewer data, and finally it is an on-line system, with more

data involved in, it becomes more precise.

In next chapter, we will ask OMEGA to handle an even harder problem. We will see OMEGA

performs more accurately than the other competing methods.

−4 −3 −2 −1 0 1 2 3 4 5 6
−10

−8

−6

−4

−2

0

2

4

a1

a
2

Comparison bet/ sober and drunken coeff, a1 : a2

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

6

b1

b
2

Comparison bet/ sober and drunken coeff, b1: b2

−10 −8 −6 −4 −2 0 2 4
−6

−4

−2

0

2

4

6

8

a2

a
3

Comparison bet/ sober and drunken coeff, a2 : a3

−6 −4 −2 0 2 4 6 8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

a3

a
4

Comparison bet/ sober and drunken coeff, a3: a4

−3 −2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

b2

b
3

Comparison bet/ sober and drunken coeff, b2: b3

−2 −1 0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

b3

b
4

Comparison bet/ sober and drunken coeff, b3: b4

Figure 8-5: ARMA(4,4) parameters of the sober driving behavior are deviated from
those of the intoxicated ones.

146 Chapter 8: Driving Simulation

147

Chapter 9

Real World Driving

9.1 Data collection

The real world driving data were collected using the CMU Navlab 8 test vehicle, shown in Fig-

ure 9-1 [Pomerleau et al, 96]. A CCD camera is mounted on the windshield, underneath the

rear-view mirror. This camera is used for lane tracking and vision based obstacle detection. A

radar obstacle sensor is mounted behind the front license plate, and is used for detecting vehi-

cles directly ahead and to the front-left/right. Two side sensors are mounted on the sides of the

vehicles, near the rear. A single line laser range finder is mounted behind the rear bumper. It

also has a Differential Global Positioning System receiver, which has a resolution of +/- 3-5m.

Finally, a yaw-rate gyro is mounted in the rear, along with a tilt sensor. Hence, this vehicle

allows us to take the time series records of the vehicle’s states, the environmental situation, as

well as the control actions. Notice that currently there is no sensor to measure the throttle of the

engine in NavLab 8.

After eliminating not-important ones using our prior domain knowledge, the variables listed in

Table 9-1 were used for the detection experiments. The shaded variable in the table, steering

angle (ϖ), is the only output variable; the other output variable, the throttle of the gas in con-

148 Chapter 9: Real World Driving

junction with the brake force, is absent. All others, including the previous records of ϖ, were

used as inputs. All the variables were taken record at a frequency between 14 Hz and 18 Hz.

Seven people were invited to drive the vehicle. They were selected from both genders and over

a range of ages from twenty to fifty. All of them have valid U.S. driver’s licenses, and have at

least four years driving experience in the U.S., with no major traffic violations, accidents, or

DUIs. The subjects were told only that we were interested in learning driving behaviors. Details

were kept sketchy, to help avoid biasing the drivers’ behaviors. They were not told how to drive,

but the only instruction was to drive safely.

The operators were asked to drive from CMU to Grove City, a small town about 50 miles north

of Pittsburgh, then back. “The route is primarily two lane (in each direction) highway driving,

Figure 9-1: NavLab’s smart van. (Courtesy of Navlab, CMU).

Chapter 9: Real World Driving 149

with short stretches of three lanes.” Each operator drove for over two hours round trip. “One

concern is that the subjects most likely have never driven a Silhouette, or even a mini-van. A

mini-van is large enough that it is hard to get a good feel for the boundaries and available space,

particularly on the right hand side. Due to this, most drivers initially tended to hug the left side

of the road. However, this effect seems to subside within a half hour or so of driving.”

Unlike the simulation cases discussed in last chapter, it seems to us that linear models are not

appropriate for describing the real world driving behavior, because of the existence of traffic.

For example, most drivers tend to take cut to the inside on a curvy road if there is no traffic, as

illustrated by the dash curve in Figure 9-2. However, in case there is traffic, especially if there

are other vehicles in the shortcut route, the drivers are more likely to stay in the middle of the

lane. We can measure the distance from our vehicle to other vehicles in the curve, such as “d”

in Figure 9-2. If there is no traffic in the curve, d goes to infinity or 1/d is equal to zero. To

decide to take the shortcut, the crucial issue is that 1/d should be zero, however, it does not mat-

ter that 1/d is equal to 0.25 or 0.32. Therefore, it is not proper to model the relationship among

the vehicle’s lateral position, the road curvature and 1/d as a linear function.

 Table 9-1: Real world driving variables

Variables Description Variables Description

xξ The lateral position 1/sF Inv. distance to the front obstacle

vξ The lateral velocity 1/sFL Inv. dist. to the front-left obstacle

vη The longitudinal velocity 1/sFR Inv. dist. to the front-right obstacle

θ Road Curvature 1/sB Inv. distance to the back obstacle

φ Vehicle yaw 1/sBL Inv. dist. to the back-left obstacle

ϖ Steering angle 1/sBR Inv. dist. to the back-right obstacle

150 Chapter 9: Real World Driving

Based on empirical analysis, we found three seconds’ time delay was sufficient for OMEGA to

work properly. Hence, for each variable, we took its previous forty-eight records

into account, except that for the road curvature, we took its forty-eight records ahead. For each

variable, we used PCA to compress its dimensionality from forty-eight to three. Then we com-

bined the twelve variables together, and used PCA again to reduce the dimensionality from

thirty-six to eight. The compression of the dimensionality is to make the further clas-

sification process feasible; however, as the price, we lost 17.8% information.

9.2 OMEGA result

Since there were seven drivers, and each one had two datasets, from Pittsburgh to Grove City

and back, so that there were totally fourteen datasets: Oij, i = 1, ..., 7, j = 1, 2. We can randomly

select one dataset as a testing dataset, hide the real driver to OMEGA, and ask it to detect the

driver to see if OMEGA is capable of detecting correctly.

To do so, OMEGA needs some training datasets. Define the datasets such that Oij corresponds

to journey j by driver i. If the testing dataset corresponds to a trip from Pittsburgh to Grove City,

say O31, where 1 refers to the route, 3 indicates the real driver. We assign the datasets collected

Figure 9-2: Driving in traffic may be non-linear. If there is no traffic, a driver
tends to take a shortcut. Otherwise, he may stick to the same lane.

d

3 16 Hz()×()

12 3×()

Chapter 9: Real World Driving 151

on the way back from Grove City to Pittsburgh, as the training datasets. Thus, for each testing

dataset, we have seven training datasets. For example, if the testing dataset is O31, the training

datasets will be Ok2, k = 1, ..., 7.

Since we can assign any dataset to be the testing dataset, totally we can do fourteen detection

experiments. OMEGA succeeded in ten cases, failed three times and was confused once1.

Referring to Figure 9-3, at the early stage of the detections, due to the insufficient number of

data points involved in the analysis, the likelihood curves are unstable. With more and more

data, the curves converge eventually. However, overall the curves look bumpier than those of

the simulation experiments discussed in Chapter 8, referring to Figure 8-3. There are four pos-

sible reasons: (1) The real world datasets may be noisier than the simulation datasets because

of the resolutions of the sensors. (2) We lost 17.8% information when we did the PCA pre-pro-

cessing. (3) One of the two output variables, the throttle of the gas/brake is absent. (4) Although

1. Again, we assigned the significance level α to be 5%, referring to Chapter 2.

0 500 1000 1500 2000 2500 3000 3500 4000
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Time or Num of Data points

−
lo

g
 L

ik

The real driver is d1, Road 1

d1 < d2 < d5 < d4 < d3 < d7 < d6

d1

d6

0 500 1000 1500 2000 2500 3000 3500 4000
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Time or Num of Data points

−
lo

g
 L

ik

The real driver is d1, Road 2

d1 < d5 < d4 < d2 < d7 < d3 < d6

d6

d1

(a) (b)

Figure 9-3: OMEGA detects the real world driving style. Two correct cases. (a)
From Pittsburgh to Grove City, (b) From Grove City back to Pittsburgh.

Early stage Early stage

152 Chapter 9: Real World Driving

the real world driving datasets are large in size, the majority of their contents consist of nothing

but very routine operations which are not helpful for distinguishing different people’s driving

styles.

Both Figure 9-3 (a) and (b) were generated by the same driver, “d1”. Figure 9-3 (a) corresponds

to the trip from Pittsburgh to Grove City, and Figure 9-3(b) corresponds to the way back. Com-

paring the early stages of Figure 9-3 (a) and (b), we notice that the curves in (a) were more cha-

otic than (b)’s. As a matter of fact, we observed the same phenomena happened to almost all

the drivers, in other words, all drivers’ initial performance were not so well-controlled as after-

wards. In Table 9-2, we compare the standard deviations of the log likelihood of each driver’s

performance at the early stages of the trips from Pittsburgh to Grove City, with their counter-

parts on the ways back. Obviously, most operator’s initial performance was significantly more

disordered than the latter one, except that “d5” seems more ready to drive from the very begin-

ning. These phenomena are supported by the observation mentioned in Section 9-1: “One con-

cern is that the subjects most likely have never driven a Silhouette, or even a mini-van. ...

However, this effect seems to subside within a half hour or so of driving.”

As usual, the curve whose tail is the lowest indicates who is the real driver. In the correct cases,

as in the examples of Figure 9-3, the lowest curves are underneath the others by large margins.

Figure 9-4 (a) and (b) are examples of the confused cases and the incorrect ones. In fact, all the

wrong cases are similar to Figure 9-4 (b): Although the real driver’s curve is not the lowest one,

it is lower than most others. That is to say, although OMEGA may make mistakes, the correct

one is usually within the attention scope.

 Table 9-2: Standard deviations of the likelihood at the early stages.

D1 D2 D3 D4 D5 D6 D7

Pgh - Grove 0.162 0.232 0.215 0.161 0.175 0.182 0.192

Grove - Pgh 0.120 0.095 0.159 0.118 0.163 0.053 0.047

Chapter 9: Real World Driving 153

9.3 Comparison with other methods

Table 9-3 is the comparison of OMEGA with other methods.

As we expected, the linear approach does not work properly due to the reason we discussed at

the end of Section 9.1.

[Nechyba, 98, (a)]’s method did work in this domain. However, unlike OMEGA which sepa-

rated the real driver from the others with a salient margin in log likelihood, [Nechyba, 98, (a)]

could not make a decisive detection between two or more candidates.

 Table 9-3: Comparison of OMEGA with other methods

Correct Wrong Confused

Global linear 4 7 3

HMMa

a. Nechyba has done only half of the experiments.

4 0 3

OMEGA 10 3 1

0 500 1000 1500 2000 2500 3000 3500 4000
1.4

1.5

1.6

1.7

1.8

1.9

2

Time or Num of Data points

−
lo

g
 L

ik

The real driver is d2, on Road 2

d2 < d1 < d4 < d5 < d3 < d6 < d7

d2d1

d7

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

1.6

1.7

1.8

1.9

2

2.1

Time or Num of Data points

−
lo

g
 L

ik

The real driver is d3, Road 2

d1 < d3 < d5 < d2 < d4 < d7 < d6

(a) (b)

Figure 9-4: (a) A confused case. (b) A wrong case. Even as a wrong case, the real
driver’s curve is close to the lowest one.

154 Chapter 9: Real World Driving

While Table 9-3 gives a top-level comparison, Table 9-4 and 9-5 view the precision in depth.

Each number in the tables is a probability of a testing dataset being generated by a certain oper-

ator. Each row corresponds to a specific testing data set, and the real operator is in the leftmost

column. The other columns represent the seven candidate drivers. The testing datasets of Table

9-5 were collected on the way from Pittsburgh to Grove City, and the training datasets were

collected on the way back. To be fair, so did those for Table 9-4. The number in the (2,3)’th cell

is the probability that a testing dataset, which was secretly generated by the second driver,

would be detected as the performance of the third driver. Thus, the sum of the seven probability

values in each row is always 1.0. The number on the shaded diagonal is expected to be bigger

than the others. And the bigger the diagonal number is, the better the detection system per-

forms. Otherwise, the detection fails. We used 0.030 as a threshold to judge if the probabilities

on the diagonal are significantly bigger than all the other six probabilities in the row. We notice

in Table 9-4, OMEGA made wrong decisions twice. But when OMEGA made correct deci-

sions, it was quite decisive. Conversely, HMM did not make any wrong decision, but when it

came to the correct conclusion, for three times, the numbers on the diagonal could not be sep-

arated from the other six numbers in the rows by the 0.030 threshold.

 Table 9-4: Cross-validation of OMEGA.a

D1 D2 D3 D4 D5 D6 D7

D1 0.346 0.142 0.031 0.150 0.169 0.047 0.115

D2 0.213 0.247 0.096 0.155 0.129 0.074 0.086

D3 0.182 0.167 0.176 0.144 0.182 0.048 0.102

D4 0.159 0.119 0.059 0.337 0.126 0.087 0.113

D5 0.156 0.105 0.077 0.098 0.435 0.034 0.094

D6 0.124 0.161 0.123 0.124 0.185 0.174 0.108

D7 0.154 0.120 0.065 0.100 0.199 0.050 0.312

a. Using the datasets collected on the way from Pgh to Grove city as the training dataset, and using the
datasets collected on the way back as the testing datasets.

Chapter 9: Real World Driving 155

9.4 Summary

This chapter demonstrated that OMEGA is capable of detecting different systems accurately

even in a complicated domain, where the conventional linear system identification approach, is

not functional any more.

 Table 9-5: Cross-validation of HMM, a

D1 D2 D3 D4 D5 D6 D7

D1 0.359 0.309 0.066 0.113 0.040 0.037 0.076

D2 0.108 0.226 0.123 0.193 0.098 0.090 0.162

D3 0.055 0.159 0.243 0.126 0.202 0.124 0.092

D4 0.106 0.196 0.102 0.216 0.097 0.123 0.160

D5 0.180 0.164 0.174 0.089 0.207 0.134 0.052

D6 0.053 0.127 0.087 0.208 0.105 0.232 0.188

D7 0.041 0.149 0.056 0.244 0.058 0.161 0.291

a. The same as the footnote of Table 9-4.

156 Chapter 9: Real World Driving

157

Chapter 10

Conclusion

10.1 Discussion

Question 1: Usually a dynamic system has delays and feedback. Can OMEGA handle systems

with infinite delays, and with elastic delays?

OMEGA handles those systems with finite orders of delays. A system with elastic delays

means that the order of delay varies from time to time. OMEGA is applicable to systems with

elastic delays, if we know the range of the delays. We can assign the maximum order of the

elastic delays to be the order for OMEGA. However, notice that with redundant order of delays,

OMEGA may perform inefficiently.

Question 2: Both OMEGA and Hidden Markov Models can handle time series. When should

we use OMEGA instead of HMM?

Some systems have hidden states, and the observable input and/or output of the systems are the

manifestation of the hidden states. Hidden Markov Models are good at modeling the hidden

states and their transition relationships. Conversely, OMEGA analyzes the complicated distri-

bution of the input and output. To some extent, OMEGA may be capable of handling systems

with hidden states. However, in case there are no hidden states, OMEGA will perform better.

158 Chapter 10: Conclusion

For example, in the driving domain, because of different road conditions and traffic conditions,

the distribution of the input and output tends to be very complicated. However, it seems to us

that probably there are not too many hidden states standing between the input and output.

Therefore, OMEGA may be better for the driving domain.

Question 3: Neural Networks, especially Recurrent Networks, are often used for forecasting.

Can Neural Networks be used to do system classification? If so, what is the advantage of

OMEGA compared with Neural Networks?

As we mention in Section 2.5., we decompose P((xi, yi) | Sp) into the product of P(xi | Sp) and

P(yi | Sp, xi). We can use any machine learning method to approximate P(yi | Sp, xi). Hence,

Neural Networks can also be used to do system classification.

However, for each candidate system Sp, we should prepare a Neural Network. If we have

10,000 candidate systems, and the time series to be classified is 40,000 units long (i = 1, ...,

40,000), then we will have to try all of the candidate system at every time step. The computa-

tional cost will be 4 million units, which is not desirable. However, as a memory-based learning

method, OMEGA can focus on the promising candidate systems from the very beginning. In

this sense, OMEGA is cheaper than any parametric machine learning methods, such as Neural

Networks.

Question 4: What about the computational efficiency of OMEGA compared with HMM, global

linear model ARMA, as well as Neural Networks?

Concerning computational complexity, the training cost of the global linear model, ARMA, is

, where T is the total length of training time series samples, while M is decided byO M
3

T+()

Chapter 10: Conclusion 159

the model size of ARMA1. The training cost of HMM is , where N is the number

of hidden states in the HMM. Typically, the training process of a Neural Network is divided

into several epochs. If there are W weights in a Neural Network, each epoch takes .

However, the worst-case number of epochs can be exponential in d, which is the number of

input attributes. OMEGA does not need any training process, but it re-organizes the memory

of training time series data points in the form of a kd-tree, which takes .

To evaluate a time series query, the ARMA approach is to estimate the parameters of the

ARMA model. Hence, the computational cost of evaluating a time series query is similar to the

training cost. If the length of a time series query is t, the computation cost of evaluating is

. The evaluating cost in HMM model is , while that of a Neural Network

is . The order of computation complexity in OMEGA is also proportional to t, but in

addition depends on what machine learning method is used to approximate P(Xqi | Sp) and P(yqi

| Sp, Xqi). For example, if OMEGA uses locally weighted logistic regression as the approxima-

tor, the computational cost is , where T is the number of training data

points. However, with the help of cached kd-tree, the cost can be greatly reduced if the dimen-

sionality, d, is not too large.

In summary, unlike HMMs and Neural Networks, OMEGA is not expensive to train. However,

evaluating a time series query in OMEGA is not trivial in computation. Based-on our empirical

knowledge, OMEGA2 is still fast enough to be an on-line system classifier. Also notice that

ARMA, HMMs and Neural Networks have to try all candidate systems at every time step of a

time series query, hence if there are S candidate systems, their computational cost of evaluating

a time series query are , and respectively. On the

1. An ARMA model consists of two parts: AutoRegression (AR) and Moving Average (MA). If the window
size of AutoRegression is p, and the window size of Moving Average is q, then M = max (p, q + 1).

2. In our experiments, we used locally weighted logistic regression as the approximator of P(Xqi | Sp) and
P(yqi | Sp, Xqi).

O N
2

T
2×()

O W T×()

O d
2

T T Tlog×+×()

O M
3

t+() O N t×()

O W t×()

O d
3

d T×+() t×()

O M
3

t+() S×() O N t S××() O W t S××()

160 Chapter 10: Conclusion

other hand, OMEGA can quickly focus on the promising candidate systems at the beginning of

the query, so that its cost is , sometimes s << S.

Question 5: Ideally OMEGA assumes the input and output are fully observable and the output

is fully determined by the input. However, in practice, this assumption is often violated. How

badly will OMEGA perform when the assumption is violated?

OMEGA studies the mapping between the input distribution and the output distribution. If

there are some patterns in the mapping which can be used to distinguish different systems,

OMEGA will work well, no matter whether or not the input and output are fully observable.

Question 6: The principle of OMEGA is to calculate the residuals between the predictions and

the observed results, then summarize the residuals in the form of likelihood. This is similar to

Kalman filter. What is the difference between OMEGA and Kalman filters?

Kalman filters assume that we know the closed-form formula for a system, and its goal is to

estimate the parameters of the formula by minimizing the residuals between the predictions and

the observations. The Kalman filter approach can be modified to do system classification, if we

know the closed-form formula of the system. However in many cases we do not explicitly know

the mechanism of the system, so we cannot go through the mathematical process of Kalman

filters. OMEGA is a non-parametric method, which regards the system as a black box. This is

the main difference between OMEGA and Kalman filters.

Question 7: What makes some people’s tennis styles similar? Is there any way to learn the sim-

ilarity of individual styles directly?

For the tennis experiment, the only instruction that we gave to the participants was: “hit the ball

to make it move across the net.” Based on our observation of the tennis experiment, the right-

O d
3

d T×+() t s××()

Chapter 10: Conclusion 161

handed people are more likely to hit the ball toward the top-left corner of the court, while some

left-handed people tend to make the ball move to the top-middle or top-right. Some people hit

the ball harder than others, some people hit the ball once it comes across the net, etc. All the

above are relevant to individual tennis styles.

Can we use some simple statistical features to do the system classification, such as the mean

values of the contact angle, speed, the position of the contact? It is possible that the simple fea-

tures work in some cases. However, in those cases, the input variables, i.e. the serving variables,

must be uniformly distributed, because the contact angle, speed and the position of the contact,

are also dependent on the input variables. OMEGA is more powerful than the feature approach

since OMEGA studies the mapping between the input distribution and output distribution.

Question 8: Suppose OMEGA is employed to detect several drivers’ sobriety conditions. Each

driver has both “sober” training data sets and “drunk” training data sets. Certainly we can

use each driver’s two kinds of training data sets to detect his sobriety. But is it helpful to put

every driver’s sober training data sets together as a mega sober training data set?

Since all alert drivers share some common behavior, it is helpful to collect all “sober” training

datasets into a big pool. However, for different drivers, the definition of being alert may be dif-

ferent. A cowboy’s alert action may look very wild to a conservative person. Thus, if possible,

a better idea is to put the training dataset generated by the same type of people together.

Question 9: Is OMEGA good for speech?

Because of accent and emphasis, the same sentence may be pronounced in different ways. In

other words, for the same sentence, the distribution of the signal may be different, but the hid-

den states are always the same. Referring to the answer to Question 2, OMEGA is not good at

162 Chapter 10: Conclusion

approximating the relationship among the hidden states, but focuses on the distribution pattern

of the signals. Therefore, in our point of view, OMEGA is not good for speech recognition.

10.2 Contributions

In this thesis, we explore a coherent framework to detect the underlying system that produced

a given sequence of data points. This set of data points can be a time series in which the order

of the sequence is important, or it can be a non-time series as well. Our approach is to transform

the time series or non-time series into a set of data points with low input dimensionality, then

use efficient memory information retrieval techniques and machine learning methods to do a

series of classifications, and employ likelihood analysis and hypothesis testing to summarize

the classification results as the final detection conclusion. The framework of our system is illus-

trated in Figure 10-1. The original contributions of this work are:

1. To our best knowledge, our work, for the first time in the literature, employs state-of-art data

mining techniques in conjunction with memory-based learning methods to approach time

series detection problem. Compared with other alternative methods, our method is simple to

understand and easy to implement, it is robust for different types of systems with noisy

training data points, it is adaptive when the density and the noise level of the training data

points vary in different regions, it is flexible because it does not request fixed thresholds to

distinguish various categories, it is efficient not only because it is capable of processing the

classification quickly but also can it focus on the promising categories from the very begin-

ning, and based on our empirical evaluation, it is more accurate than other methods.

2. We combined the locally weighted paradigm with logistic regression to be a new memory-

based classification methods. Unlike the other memory-based classifiers, it is capable of

extrapolating as well as interpolating. It is competent in accuracy, and with some extra use-

ful features, especially, confidence interval. With the help of cached kd-tree, it is a very effi-

cient classification method.

Chapter 10: Conclusion 163

3. As known for many years, kd-tree can be used to re-organize the memory so as to retrieve

the useful information efficiently. By caching well-selected information into the kd-tree’s

node, we found a way to dramatically improve the efficiency of memory-based learning

methods, including Kernel regression, locally weighted linear regression, and locally

weighted logistic regression. Recently, cached kd-trees have also been applied to improve

the efficiency of EM clustering [Moore, 98].

4. Due to the progress in improving the efficiency of the variety of learning methods, intensive

cross-validation becomes feasible. We used intensive cross-validation to do feature selec-

tion, especially we explored several greedy algorithms to perform the selecting even faster

while without severe loss in precision. We tried applying these algorithms to select the use-

ful features so as to recognize Chinese handwriting off-line. Our prototype showed the accu-

Figure 10-1: The structure of OMEGA system and the organization of the thesis.

OMEGA methodology

Memory-based
learning

A new classifier
(Chapter 4)

Kd-tree
information
retrieval

(Chapter 5 6)

(Chapter 2)

Preprocessing

Feature selection
(Chapter 7)

Experiments in Chapter 3 8 9

164 Chapter 10: Conclusion

racy could be over 95%.

10.3 Future research

1. Referring to Figure 10-1, the pre-processing module is to transform a time series into a set

of data points in which the time order is no longer important, and to reduce the dimensional-

ity of the dataset. Although in our system, we employ Principal Component Analysis and

Feature Selection to reduce the dimensionality, there is no guarantee that we achieve our

goal in any domain. In case the memory data points distribute in clusters, [Agrawal et al, 98]

may be worth trying. More research should be done to attack the curse of dimensionality.

One promising solution is that we can approximate the relationship among the input attri-

bues using Bayesian network [Pearl, 88] or dynamic Bayesian network [Dean et al, 88]. By

learning the configuration and the transition probabilities of the Bayes net [Heckerman et

al, 95], we can compress each data points from high-dimensional space into a lower one,

even a scalar [Frey, 98] [Davis, 98].

2. In this thesis research, we treated the system as a blackbox, we only study its inputs and out-

puts. This is desirable for many domains, because sometimes we do not have the precise

domain knowledge. However, sometimes we do know somethings about the internal struc-

ture of the system, then we should exploit this knowledge because it is helpful to enhance

the detection accuracy. [Heckerman, 96] and many other papers suggest that Bayesian net-

work is capable of being a good system approximator with many advantageous properties.

We propose that by using a same Bayes network, we can get double benefits: improving

the accuracy, as well as reducing the dimensionality so as to improve the computational

efficiency.

Chapter 10: Conclusion 165

10.4 Applications

There are many possible applications, listed in Chapter 1. In this section, we discuss three

applications in further depth.

Financial modeling

The importance of financial modeling is obvious: it helps to gain profit from the stock market,

and avoid bad investments, such as the recent failure of Long Term Capital Management

(LTCM) hedge fund. There are many researchers doing financial modeling, including some

Nobel Prize winners. Why should we compete with them?

Most financial models assume the behavior of the financial market is controlled by a unique

mechanism. Most Wall Street researchers want to make this unique model more complicated

in order to fit all possible scenarios in the financial world. In contrary, we believe that although

the stock index, like S&P index, is only an one-dimensional time series, the underlying mech-

anism of the financial market is not unique, instead, there are several different underlying con-

trol systems either working at the same time or switching from time to time. Suppose given the

recent behavior of the stock market, including the various influencing factors like Fed’s inter-

ests, we can use OMEGA to retrieve the similar historic data clips from the database, figure out

which underlying mechanism is working nowadays. And based on that, we can predict what

will happen to the stock market, with a certain confidence measurement.

Web server monitoring

The rapid growth of internet has greatly increased the pressure on administrators to quickly

detect and resolve service problems. Typically, the detection job is done either by some ad hoc

models to estimate weekly patterns [Maxion, 90], or by specifying threshold testing [Heller-

stein et al, 98].

166 Chapter 10: Conclusion

Using the techniques explored in this thesis, we are capable of detecting more complicated pat-

terns efficiently, and distinguishing the patterns by specifying thresholds which are adaptable

to datasets with different distribution densities and different noise levels. In other words, our

technique may be more robust and accurate than the previous approaches.

Embedded detection device

To monitor if an engine works normally, we can embed a chip into the engine so that whenever

it runs, the chip takes records of the engine’s signals. If one day, the operator finds “sometimes”

the engine did not work normally, he can pull out the chip from the engine, insert it into a device

hooked to his home PC. His home PC is linked to a super server somewhere else through the

internet. By comparing this engine’s signal time series with those in the super server’s database,

the server can tell the operator when and how his engine went wrong. Thus, it is more conve-

nient for the operator to decide if the engine needs repairing.

Compared with the conventional methods, which are based on the domain knowledge, our

approach has more advantages: (1) Since there are so many engine nowadays in the world, and

they are updated so quickly, it is not very convenient to update the conventional diagnosis sys-

tem, because usually they are installed in the engines. For our distributed system, we can sim-

ply update the knowledge in our central super server, we do not need to modify the product we

have sold to our customers one by one. (2) The conventional methods are of “we design, you

use” style, our approach can interactively collect new data from the customers, then learn from

them. Hence, with more and more experience, our system can automatically become more

intelligent.

167

Appendix A

Chinese Handwriting Recognition

As a side experiment, we used the feature selection techniques discussed in Chapter 7 to rec-

ognize Chinese handwriting. Our goals are: (1) to demonstrate feature selection is important

because it is the crucial part for the recognition job. (2) to compare the feature set found by the

feature selection algorithms with a human expert’s selection.

1.1 Feature selection for Chinese handwriting recognition

Although most of the research in handwriting recognition is for on-line systems [Singer et al,

94], there is no doubt that off-line systems are also very important especially in domains such

as automatic tax form processing.

To date, research for Chinese and Japanese character recognition is still preliminary1. Because

the number of Kanji, i.e. Chinese characters, is over fifty thousand, it is hard to rely on any gen-

eral-purpose global model to recognize all Chinese characters. Alternatively, a promising

approach is to separate the Chinese characters into several groups. For each group, a local

model is developed to distinguish the different characters.

1. There are some Chinese and Japanese recognition products on the market. The product introductions claim
that their accuracy is over 90%. However, we do not know what kind of principles they apply. And we
notice some of those products can only recognize rigidly written characters.

168 Appendix A: Chinese Handwriting Recognition

Although it may be possible to build the local models off-line, manually, it is better if we have

an on-line automatic configuration mechanism. Not only does this automatic system save soft-

ware developers from tedious and time-consuming work, but also it is adaptive and can learn

different personal handwriting styles.

In this section, we propose an idea to recognize Chinese and Japanese handwriting off-line,

with automatically configured adaptive local models. We also give a prototype of this system.

Chinese characters are constructed by ten fundamental strokes.

The different combinations with different relative positioning determine different characters.

For example, there are eight different Chinese characters plus “F” and the Japanese character

“ki” containing two horizontal lines and one vertical line, illustrated in Figure A-1.

In this prototype system, some features are useful for recognition, while others may not be so

significant, or, can be substituted, referring to Figure A-2. Notice: (1) The human expert’s

selection, as shown in Figure A-2(a), is not the only functional set, there exist multiple options.

(2) Among the multiple functional feature sets, some of them may lead to more accurate rec-

ognition than the others.

To find the features including those not-so-significant, we can follow these three steps:

• Figure out the horizontal lines, vertical lines, and other strokes, respectively.

• Sort the lines from top to bottom, or from left to right.

• Calculate all the possible features according to prior knowledge. In the case of Figure A-1,

each stroke has two ends. The features can be the distances from the ends of each stroke to

Appendix A: Chinese Handwriting Recognition 169

hr1

hr2

w1

w2

lf1

lf2

rg1

rg2

tr2tr1

hg1

hg2
hg3

tr3 tr4

cr1 cr2

(a) Features selected by human
expert

(b) Other candidate features,
including those not-important ones.

Figure A-2: The features used for the Chinese handwriting
recognition prototype system.

Figure A-1: A prototype of Chinese handwriting recognition system.

170 Appendix A: Chinese Handwriting Recognition

those of others, as well as the distances to all the intersections, illustrated in Figure A-2.

After we have found the candidate features, we can apply the various feature selection algo-

rithms to select the proper features for the recognition job. In the experiment, we try four fea-

ture selection algorithms: Super-greedy (Super), Greedy (Greedy), Restricted Forward

Selection (RFS) and conventional Forward Selection (FS). We request that any selected feature

sets contain no more than eight components. To evaluate the goodness of the selected feature

sets, we calculate their 20-fold scores. Since our procedure is carefully designed to avoid over-

fitting, the smaller a feature set’s score is, the more accurately this feature set is able to recog-

nize any one out of the ten characters. We also count the numbers of seconds consumed by the

four algorithms so as to compare their computational costs.

In Table A-1, we observe that different selection algorithms may find different sets of features.

When we carefully study these various sets with respect to Figure A-2, we find all of them are

functional. Second, we find that the feature sets selected by RFS and FS are very similar to the

human expert’s preference, but different from the sets found by Super and Greedy. Third,

although all of these feature sets have satisfactory accuracy, those found by the greedier algo-

rithms lead to less accurate recognition performance. However, if we allow more components

 Table A-1: Chinese character feature selection

Selection
Methods

m = 8 = Max Number of features m = 12

Selected feature set
20fold
score

Cost
20fold
score

Cost

Super w2, lf1, lf2, hg1, tr1, tr2, tr3, tr4 0.038 532 0.018 529

Greedy w2, lf1, lf2, hg1, tr2, tr3, tr4 0.041 767 0.022 916

RFS hr1, w1, lf1, lf2, hg1, hg3, cr2, tr1 0.018 1414 0.016 1570

FS hr1, hr2, w1, lf1, lf2, hg1, tr3 0.016 3586 0.018 4829

Human hr1, hr2, w1, w2, lf1, lf2 0.016 -- 0.016 --

Appendix A: Chinese Handwriting Recognition 171

to enter the feature sets, even the greedier algorithms’ selections become more powerful.

Finally, the greedier algorithms are cheaper than the others.

1.2 Future work

The prototype system is sufficient to demonstrate the importance and capability of the feature

selection algorithms. But to pursue a good Chinese handwriting recognition system, some fur-

ther work has to be done. Since this topic is a digression from the discussion of feature selec-

tion, we only give a brief introduction.

For more complicated Chinese character, for example which means “hide” and “Tibet”, the

number of possible features will explode. Fortunately, every Chinese character can be split into

some standard particles, and the number of these standard particles is no more than one hun-

dred. Indexed by these particles and their relative positioning, any Chinese character can be

represented by no more than five digits. One example is illustrated in Figure A-3. This tech-

nique is called Wang-coding or Five-stroke coding, which has become one of the national stan-

dard typing methods in China.

Now the remaining difficulty is how to find those standard particles from any Chinese charac-

ters. One promising approach is A* search.

23 () 24 () 1 (left to right)

23 () 24 () 2 (up and down)

Figure A-3: An illustration of Wang-coding of a Chinese character.

172 Appendix A: Chinese Handwriting Recognition

173

Bibliography

[Agrawal et al, 98] R.Agrawal, J.Gehrke, D.Gunopulos, and P.Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications, Proc. of the ACM
SIGMOD Int'l Conference on Management of Data, Seattle, Washington, 1998.

[Aha, 89] D.W.Aha, Incremental, instance-based learning of independent and graded concept
descriptions. In Proc. ICML-89, pp. 387-391, Morgan Kaufmann, 1989.

[Aha et al, 89] D.W.Aha and D.M.McNulty, Learning relative attribute weights for instance-
based concept descriptions. In 11’th Annual conference of the cognitive science soci-
ety, pp. 530-537. Lawrence Erlbaum Assoc. Hillsdale, 1989.

[Akaike, 73] Akaike, Information theory and an extension of maximum likelihood principle.
2’nd International Symposium on Information Theory, B.N.Petrov and F.Csaki (eds.),
Akademiai Kiado, Budapest, pp 267-281, 1973.

[Almuallim et al, 91] H.Almuallim, and T.G.Dietterich. Learning with many irrelevant fea-
tures. In Porc. AAAI-91, pp 547-552. MIT Press, 1991.

[Atkeson et al., 97] C.G.Atkeson, A.W.Moore and S.Schaal, Locally weighted learning, Arti-
ficial Intelligence Review, Vol. 11, No. 1-5, pp. 11-73, 1997.

[Batavia, 98] P.H.Batavia, Driver adaptive warning system. Thesis proposal, CMU-RI-TR-98-
07, 1998.

[Bishop, 95] C.M.Bishop, Neural networks for pattern recognition. Oxford University Press
Inc., 1995.

[Breiman et al, 84] L.Breiman, J.H.Friedman, R.A.Olshen, and C.J.Stone, Classification and
regression trees. Belmont. CA:Wadsworth, 1984.

174 : Bibliography

[Brockwell et al, 91] P.J.Brockwell, R.A.Davis. Time series: theory and methods, second edi-
tion, Springer series in statistics. Published by Springer-Verlag New York Inc. ISBN 3-
540-96406-1, 1991.

[Caruana et al, 94] R. Caruana, and D. Freitag. Greedy attribute selection. In Proc. ML-94,
Morgan Kaufmann, 1994.

[Davis, 98] S.Davis. Compression, machine learning, and condensed representation, CMU
Ph.D thesis proposal, http://www.cs.cmu.edu/~scottd.

[Dean et al, 88] T.Dean and K.Kanazawa. Probabilistic temporal reasoning. In Proc. AAAI-
88, pp 524-528, 1988.

[Deng et al, 97] K.Deng, A.W.Moore, and M.C.Nechyba, Learning to Recognize Time Series:
Combining ARMA models with Memory-based Learning, Proc. IEEE Int. Symp. on
Computational Intelligence in Robotics and Automation, vol. 1, pp. 246-50, 1997.

[Devore, 91] J.L.Devore, Probability and statistics for engineering and the sciences, 3’rd edi-
tion. Published by Brooks/Cole Publishing Co. ISBN 0-534-14352-0.

[Duda et al, 73] R.O.Duda, and P.E.Hart, Pattern classification and scene analysis, Published
by John Wiley & Sons, New York, 1973.

[Franke, 82] R.Franke, Scattered data interpolation: Tests of some methods. Mathematics of
computation. Vol. 38, No. 157. 1982.

[Frey, 98] B.J.Frey, Graphical models for machine learning and digital communication. MIT
Press, 1998.

[Friedman et al, 98] N.Friedman,M.Goldszmidt, and T.Lee, Bayesian network classification
with continous attributes: getting the best of both discretization and parametric fitting,
In Proc. ICML’98, 1998.

[Grosse, 89] E.Grosse, LOESS: Multivariate smoothing by moving least squares. In C.K.Chul,
L.L.S. and J.D.Ward editors, Approximation Theory VI. Academic Press, 1989.

[Heckerman et al, 95] D.Heckerman, D.Geiger, and D.M.chickering. Learning Bayesian net-
works: the combination of knowledge and statistical data. Machine Learning, 20: pp.
197-243, 1995.

: Bibliography 175

[Heckerman, 96] D. Heckerman. A tutorial on learning with Bayesian networks. http://
www.research.microsoft.com/~heckerman. Technical Report MSR-TR-95-06,
Microsoft Research, March, 1995 (revised November, 1996).

[Hellerstein et al, 98] J.L.Hellerstein, F.Zhang, and P.Shahabuddin, An approach to predictive
detection, IBM Research Report, limited distributed. 1998.

[James, 85] M.James, Classification algorithms. John Wiley & Sons, Inc. 1985.

[Jones et al, 94] M.C.Jones, S.J.Davies, and B.U.Park, Versions of kernel-type regression esti-
mators, Jornal of the American Statistical Association, 89(427): pp 825-832, 1994.

[Jolliffe, 86] I.T.Jolliffe, Principal components analysis. Springer series in statistics. Published
by Springer -Verlag New York Inc. ISBN 0-387-96269-7, 1986.

[Jordan et al, 93] M.I.Jordan, and R.A.Jacobs, Hierarchical mixtures of experts and the EM
algorithm. MIT technical report. AI. Memo No. 1440, C.B.C.L. Memo No. 83, 1993.

[Kibler and Aha, 88] D.Kibler, and D.W.Aha, Comparing instance averaging and instance fil-
tering learning algorithms. Proc. 3’rd European working session on leanring, Pitman,
1988.

[King et al., 96] R.A.R.King, H.L.MacGillivray, Approximating disbutions using the genera-
lised lambda distribution, http://www.ens.gu.edu.au/robertk/publ/sisc.html, 1996.

[Kira et al, 92] K.Kira, and L.A.Rendell, The feature selection problem: traditional methods
and a new algorithms. In Proc. AAAI-92, pp 129-134. MIT Press. 1992.

[Kleinberg, 97] J.M.Kleinberg. Two Algorithms for nearest-neighbor search in high dimen-
sions. http://simon.cs.cornell.edu/home/kleinber.html, 1997.

[Koller et al, 96] D. Koller, and M. Shami, Toward optimal feature selection, In Proc. ML-96,
Morgan Kaufmann, 1996.

[Langley et al, 94] P.Langley, and S.Sage, Induction of selective Bayesian classifiers. In Proc.
UAI-94, pp 399-406. Seattle, WA. Morgan Kaufmann, 1994.

[Maron et al, 94] O.Maron, and A.W.Moore, Hoeffding races: accelerating model selection
search , Proc. NIPS-94. Morgan Kaufmann, 1994.

[Maxion, 90] R.A.Maxion, Anomaly detection for diagnosis, Proc. of the 20’th Annual Iinter-
national Symposium on Fault Tolerant Computing (FTCS) 20, June 1990. pp 20-27.

176 : Bibliography

[McCullagh et al, 89] P.McCullagh and J.A.Nelder, Generalized linear models, second edition,
Monographs on statistics and applied probability 37, Chapman & Hall, 1989.

[Miller, 90] A.J.Miller, Subset selection in regression. Chapman & Hall, 1990.

[Moore, 90] A.W.Moore, Efficient memory-based learning for robot control. Ph.D. thesis,
Technical Report, No. 209, Computer Laboratory, University of Cambridge, 1990.

[Moore, 90] A.W.Moore, Acquisition of dynamic control knowledge for a robotic manipulator,
Proc. ICML-90. Morgan Kaufmann, 1990.

[Moore et al, 94] A.W.Moore, and M.S.Lee, Efficient algorithms for minimizing cross-valida-
tion error. In Proc. ML-94, Morgan Kaufmann, 1994.

[Moore, 98] A.W.Moore, Very fast EM-based mixture model clustering using multiresolution
kd-trees. To appear in Neural Information Systems Processing, December 1998

[Nechyba, 98, (a)] M.C.Nechyba, and Y.Xu, Stochastic similarity for validating human control
strategy models. Proc. IEEE trans. on Robotics and Automation, Vol. 14, No. 3, pp 437-
51, 1998.

[Nechyba, 98, (b)] M.C.Nechyba, and Y.Xu, On discontinuous human control strategies, Proc.
IEEE International conference on Robotics and Automation, Vol. 3, pp 2237-2243,
1998.

[Omohundro, 91] S.M.Omohundro. Bumptrees for efficient function, constraint, and classifica-
tion learning. In R.P.Lippmann, J.E.Moody, D.S.Touretzky editors, Proc. NIPS-91,
Morgan Kaufmann. 1991.

[Pearl, 88] J.Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan-Kaufmann, 1988.

[Petridis et al., 96] V.Petridis, A.Kehagias. Modular neural networks for MAP classification of
time series and the partition algorithm. IEEE Transactions on Neural Networks. Vol. 7,
No. 1, January 1996.

[Pomerleau et al, 96] D.Pomerleau. RALPH: Rapidly adapting lateral position handler. In
IEEE Symposium on Intelligent Vehicle, Detroit, Michigan, 1995.

[Preparata et al., 85] P.F.Preparata, M.Shamos. Computational geometry. Springer-Verlag.
1985.

: Bibliography 177

[Puskorius et al, 94] G.V.Puskorius, and L.A.Feldkamp, Neurocontrol of nonlinear dynamical
systems with Kalman filter trained recurrent networks. In IEEE Trans. on Neural Net-
works, Vol. 5, No. 2, March 1994.

[Quinlan, 93] J.R.Quinlan, C4.5: Programs for machine learning, Published by Morgan Kauf-
mann Publishers, London, England. 1993.

[Rabiner, 89] L.R.Rabiner, A tutorial on Hidden Markov Models and selected applications in
speech recognition, in Proc. of the IEEE, Vol. 77, No. 2, Feb. 1989.

[Singer et al, 94] Y. Singer, and N. Tishby, Dynamic encoding of cursive handwriting. Biolog-
ical Cybernetics, 71 (3), 1994. Springer-Verlag.

[Skalak, 94] D.B.Skalak, Prototype and feature selection by sampling and random mutation
hill climbing algorithms. In Proc. ML-94, Morgan Kaufmann, 1994.

[Utgoff et al, 91] P.E.Tgoff, and C.E.Brodley, Linear machine decision trees, COINS Technical
Report 91-10, University of Massachusetts, Amherst, MA.

178 : Bibliography

	Chapter 1
	Introduction
	1.1 What is system classification?
	1.2 The applications of system classification
	1.3 The assumptions of OMEGA
	1. OMEGA does not approximate the closed-form mechanism of the underlying system. We also assume ...
	2. For the same example, to calculate the probability Prob(Snormal | Oq), we compare the query dr...
	3. Originally motivated to classify time series, our research ends up with a general purpose tech...
	4. OMEGA works best for those systems whose input and output are fully observable, and the output...
	5. The inputs and outputs of any candidate systems can be of any type. They can be continuous or ...
	6. We study stochastic systems; in other words, given a certain input, the corresponding output i...

	1.4 Related fields
	1.5 The system classification approaches
	Comparing the system parameters
	Comparing the predictions

	1.6 Thesis outline:
	Figure 1-1: The structure of OMEGA system and the organization of the thesis.

	1.7 *: Hidden Markov Model (HMM)
	Figure 1-2: Two identical HMMs

	Chapter 2
	Memory-based System Classification
	2.1 Likelihood Analysis
	Average residuals
	Likelihood
	(2-1)
	Figure 2-1: A driving system with one delay and feedback.

	(2-2)
	(2-3)
	Figure 2-2: The X-axis is the number of observation data points. The Y-axis is the average of the...

	2.2 Hypothesis Testing
	Figure 2-3: A confusing case. Since Larry and Tony’s curves, especially their tails to the right ...
	1. We calculate the Z-test value from statistics,
	, (2-4)
	. (2-5)

	2. The beauty of statistic Z is that its distribution is close to standard normal distribution if...
	Figure 2-4: The physical meaning of Za.

	3. With more data points, the absolute value of the Z statistic tends to be bigger, and it is eas...

	2.3 Efficiency Issues
	1. Eliminate non-promising candidate systems from consideration:
	2. Speed up the calculation of the likelihoods:
	3. Focus on the promising candidates:

	2.4 Pre-processing
	Figure 2-5: An one-input-one-output system with feedbacks and delays. The time order is important.
	Feature selection
	Principal component analysis
	Figure 2-6: PCA can be used to compress the dimensionality of a set of data points. In (a), after...

	2.5 Memory-based learning
	A naive method
	Figure 2-7: Memory-based learning methods to approximate P(xq | Sp) and P(yq | Sp, xq)

	.
	Kernel density estimation
	(2-6)
	. (2-7)
	. (2-8)

	.
	Figure 2-8: Kernel regression does not extrapolate.
	Locally weighted linear and logistic regressions
	Figure 2-9: Locally weighted linear regression can approximate non-linear functional relationship...

	Approximate P(yq | Sp, xq) using regression methods
	1. Suppose the conditional distribution of yq given a specific xq is Gaussian, i.e.,

	,
	.
	2. When output yq is discrete or categorical, we can approximate P(yq | Sp, xq) using locally wei...
	3. When output yq is continuous, but with multiple modes, there are two approaches. First, we can...
	2.6 Summary

	Chapter 3
	Tennis Style Detection
	3.1 Experimental Design
	Figure 3-1: Tennis simulator interface.
	Figure 3-2: The tennis simulation system is not dynamic because there is no feedback from the out...

	3.2 OMEGA Result Analysis
	Figure 3-3: Likelihood curves of six human players. Two sample of the correct cases.
	Figure 3-4: A confused case and a wrong case. (a) Confused: OMEGA can hardly distinguish Edward f...
	Figure 3-5: Willoughby and Margaret behaved similarly all the time. But they are different from o...

	3.3 Comparison with Other Methods
	Bayes classifier
	Figure 3-6: Bayes classifier assumes the distributions of the candidate system’s data points are ...

	Linear regression approach
	(3-1)
	Table 3-1: Comparison experiment for tennis domain

	3.4 Summary

	Chapter 4
	Logistic Regression as a Classifier
	Figure 4-1: An illustration of the classification task.

	4.1 Classification methods
	1. Nearest neighborhood or 1-nearest neighborhood doesn’t perform satisfactorily in most cases, b...
	2. Kernel regression is a good method for interpolation. However, it is not ideal for extrapolati...
	3. The simple Bayes classifier, referring to Section 3.3, puts too strong assumptions on the dist...
	4. The idea of a decision tree [Quinlan, 93] is to partition the input space into small segments,...

	4.2 Global logistic regression
	(4-1)

	.
	(4-2)
	Figure 4-2: (Global) logistic regression for classification.

	4.3 Locally Weighted Logistic Regression
	4.3.1 Maximum Likelihood Estimation
	(4-3)
	(4-4)
	. (4-5)
	Figure 4-3: Locally weighted logistic regression as a classification technique works robustly.

	4.3.2 Weighting Function and Kernel Width
	Figure 4-4: Kernel width adjusts the weighting function.

	4.3.3 Confidence Interval
	Figure 4-5: Confidence intervals for classification.

	4.3.4 Multi-categorical classification inference
	1. Suppose there are m output categories, we can represent the output by a m-dimensional vector. ...
	2. We assume is decided by a function similar to logistic function,
	3. The likelihood can be constructed following the descriptions in Section 4.2 and section 4.3. F...
	(4-6)

	4.4 Comparison Experiment
	Artificial Experiments
	Figure 4-6: Three artificially generated data sets as the testbeds of locally weighted logistic r...

	Real World Datasets
	Table 4-1: Comparison of logistic classifier with other methods
	1. It is not surprising that locally weighted logistic regression is more accurate in most cases ...
	2. Global logistic regression’s performance is similar to that of the conventional Bayes classifi...
	3. Concerning neural networks, locally weighted logistic regression does not outperform it in acc...
	4. Locally weighted logistic regression performs poorly on the Ionos dataset. The reason is that ...

	4.5 Summary

	Chapter 5
	Efficient Memory Information Retrieval
	5.1 Efficient information retrieval
	Figure 5-1: Grid for efficiency information retrieval.

	5.2 Kd-tree Construction and Information Retrieval
	Figure 5-2: To implement the grouping idea, we use hyper-rectangles with kd-tree. To find the nei...
	1. With different ranges of the “neighborhood”, the “neighboring” branches can be different. The ...
	2. Although we will use the kd-tree to find a set of neighboring data points, it is also possible...

	5.3 Cached Kd-tree for Memory-based Learning
	Kernel regression
	(5-1)
	Figure 5-3: For the noiseless data in the top example, a small K gives the best regression (in te...

	1. [Preparata et al, 85] proposed a range-search solution. Similar to our cached kd-tree method, ...
	2. Another solution to the cost of conventional Kernel regression is editing (or prototypes): mos...
	3. Decision trees and kd-trees have been previously used to cache local mappings in the tree leav...

	Computing the kernel regression sums

	and
	1. (Cutoff) Treat all the points in this node as one group (a cheap operation) or
	2. (Recurse) search the children.

	sum-weights = sum-weights(left) + sum-weights(right)
	sum-wy = sum-wy(left) + sum-wy(right)
	Search cutoffs

	(wmax - wmin) NB < t Swi
	| Sei | < 0.5 G t Swi
	5.4 Experiments and Results
	Figure 5-4: Comparison between the errors (*1) and the costs (*2) between regular kernel regressi...
	Figure 5-5: (Upper) the relative accuracy and (lower) the computational cost of kd-tree’s KR agai...
	Investigating the t threshold parameter
	Real datasets
	Table 5-1: Real dataset test of cached kd-tree’s kernel regression

	High dimensional, non-uniform data
	Table 5-2: Cached kd-tree’s kernel regression for sub-manifold cases

	5.5 Summary

	Chapter 6
	Using Kd-trees for Various Regressions
	6.1 Locally Weighted Linear Regression
	Figure 6-1: (a) A global linear regression (b) A locally weighted linear regression.
	(6-1)

	6.2 Efficient locally weighted linear regression
	and
	(6-2)
	Figure 6-2: Using divide-and-conquer algorithm to calculate XtWX of a node.

	.
	Figure 6-3: The danger of a wrong threshold of the cutoff condition.

	.
	. (6-3)
	6.3 Technical details
	6.4 Empirical Evaluation
	Table 6-1: Five linear regression algorithms
	Table 6-2: Costs and errors predicting the ABALONE dataset
	Table 6-3: Millisecs to do the predictions, errors of the predictions, and errors relative to Reg...
	Table 6-4: Performance on 5 UCI datasets and one robot dataset. All use locally weighted linear r...
	Table 6-5: Same experiments, but with a variety of models. The models were selected by cross-vali...
	Table 6-6: Prediction-time optimization of kernel width.

	6.5 Kd-tree for logistic regression
	(6-4)
	(6-5)
	(6-6)
	(6-7)
	(6-8)
	(6-9)
	Figure 6-4: (a) The derivative function of logistic, which has symmetric two tails close to zero ...

	(6-10)
	(6-11)
	(6-12)
	(6-13)
	Figure 6-5: Using the cached information of kd-tree to quickly approximate the XtWX and XtWe for ...

	6.6 Empirical evaluation
	Table 6-7: Performance on 4 UCI datasets

	6.7 Summary

	Chapter 7
	Feature Selection
	7.1 Introduction
	1. The irrelevant input features will induce greater computational cost. For example, using cache...
	2. The irrelevant input features may lead to overfitting. For example, in the domain of medical d...

	7.2 Cross Validation vs. Overfitting
	7.3 Feature selection algorithms
	7.3.1 Forward feature selection
	Figure 7-2: Full procedure for evaluating feature selection of up to m attributes.

	.
	7.3.2 Three Variants of Forward Selection
	1. How severely does the greediness of forward selection lead to a bad selection of the input fea...
	2. If the greediness of forward selection does not have a significantly negative effect on accura...
	Super Greedy Algorithm
	Greedy Algorithm
	Restricted Forward Selection (RFS)
	1. Calculate all the 1-feature set LOOCV errors, and sort the features according to the correspon...
	2. Do the LOOCVs of 2-feature subsets which consist of the winner of the first round, X(1), along...
	3. Calculate the LOOCV errors of subsets which consist of the winner of the second round, along w...
	4. Continue this procedure, until RFS has found the best m-component feature set.
	5. From Step 1 to Step 4, RFS has found m feature sets whose sizes range from 1 to m. By comparin...

	7.4 Experiments
	Table 7-1: Preliminary comparison of ES vs. FS
	Table 7-2: Greediness comparison
	Table 7-3: Greediness comparison
	Table 7-4: Greediness comparison with more inputs
	Table 7-5: Greediness comparison with more inputs

	7.5 Summary

	Chapter 8
	Driving Simulation
	Figure 8-1: Driving simulator interface. (Courtesy M.C.Nechyba)

	8.1 Experimental data
	Figure 8-2: The simulator’s road trajectory is generated in a way illustrated by (a), in which th...
	Table 8-1: State of vehicle and the environmental variables

	8.2 Experimental results
	Figure 8-3: Simulation driving style OMEGA detection. (a) A correct case. (b) A sample of the con...
	Figure 8-4: When some data points in the testing dataset are not consistent with a certain traini...

	8.3 Comparison with other methods
	8.3.1 Bayes classifier
	Table 8-2: Comparison of OMEGA with other alternatives
	Table 8-3: Aggregate features of human simulation data (based on Nechyba’s data)

	8.3.2 Hidden Markov Model
	Table 8-4: Cross validation of OMEGA
	Table 8-5: Cross validation of HMM (based on Nechyba’s data)

	8.3.3 Global linear model

	8.4 Summary
	Figure 8-5: ARMA(4,4) parameters of the sober driving behavior are deviated from those of the int...

	Chapter 9
	Real World Driving
	9.1 Data collection
	Figure 9-1: NavLab’s smart van. (Courtesy of Navlab, CMU).
	Table 9-1: Real world driving variables
	Figure 9-2: Driving in traffic may be non-linear. If there is no traffic, a driver tends to take ...

	9.2 OMEGA result
	Figure 9-3: OMEGA detects the real world driving style. Two correct cases. (a) From Pittsburgh to...
	Table 9-2: Standard deviations of the likelihood at the early stages.
	Figure 9-4: (a) A confused case. (b) A wrong case. Even as a wrong case, the real driver’s curve ...

	9.3 Comparison with other methods
	Table 9-3: Comparison of OMEGA with other methods
	Table 9-4: Cross-validation of OMEGA.
	Table 9-5: Cross-validation of HMM,

	9.4 Summary

	Chapter 10
	Conclusion
	10.1 Discussion
	10.2 Contributions
	1. To our best knowledge, our work, for the first time in the literature, employs state-of-art da...
	Figure 10-1: The structure of OMEGA system and the organization of the thesis.

	2. We combined the locally weighted paradigm with logistic regression to be a new memory- based c...
	3. As known for many years, kd-tree can be used to re-organize the memory so as to retrieve the u...
	4. Due to the progress in improving the efficiency of the variety of learning methods, intensive ...

	10.3 Future research
	1. Referring to Figure 10-1, the pre-processing module is to transform a time series into a set o...
	2. In this thesis research, we treated the system as a blackbox, we only study its inputs and out...

	10.4 Applications
	Financial modeling
	Web server monitoring
	Embedded detection device

	Appendix A
	Chinese Handwriting Recognition
	1.1 Feature selection for Chinese handwriting recognition
	Figure A-2: The features used for the Chinese handwriting recognition prototype system.
	Table A-1: Chinese character feature selection

	1.2 Future work
	Figure A-3: An illustration of Wang-coding of a Chinese character.
	Bibliography
	[Agrawal et al, 98] R.Agrawal, J.Gehrke, D.Gunopulos, and P.Raghavan. Automatic subspace clusteri...
	[Aha, 89] D.W.Aha, Incremental, instance-based learning of independent and graded concept descrip...
	[Aha et al, 89] D.W.Aha and D.M.McNulty, Learning relative attribute weights for instance- based ...
	[Akaike, 73] Akaike, Information theory and an extension of maximum likelihood principle. 2’nd In...
	[Almuallim et al, 91] H.Almuallim, and T.G.Dietterich. Learning with many irrelevant features. In...
	[Atkeson et al., 97] C.G.Atkeson, A.W.Moore and S.Schaal, Locally weighted learning, Artificial I...
	[Batavia, 98] P.H.Batavia, Driver adaptive warning system. Thesis proposal, CMU-RI-TR-98- 07, 1998.
	[Bishop, 95] C.M.Bishop, Neural networks for pattern recognition. Oxford University Press Inc., 1...
	[Breiman et al, 84] L.Breiman, J.H.Friedman, R.A.Olshen, and C.J.Stone, Classification and regres...
	[Brockwell et al, 91] P.J.Brockwell, R.A.Davis. Time series: theory and methods, second edition, ...
	[Caruana et al, 94] R. Caruana, and D. Freitag. Greedy attribute selection. In Proc. ML-94, Morga...
	[Davis, 98] S.Davis. Compression, machine learning, and condensed representation, CMU Ph.D thesis...
	[Dean et al, 88] T.Dean and K.Kanazawa. Probabilistic temporal reasoning. In Proc. AAAI- 88, pp 5...
	[Deng et al, 97] K.Deng, A.W.Moore, and M.C.Nechyba, Learning to Recognize Time Series: Combining...
	[Devore, 91] J.L.Devore, Probability and statistics for engineering and the sciences, 3’rd editio...
	[Duda et al, 73] R.O.Duda, and P.E.Hart, Pattern classification and scene analysis, Published by ...
	[Franke, 82] R.Franke, Scattered data interpolation: Tests of some methods. Mathematics of comput...
	[Frey, 98] B.J.Frey, Graphical models for machine learning and digital communication. MIT Press, ...
	[Friedman et al, 98] N.Friedman,M.Goldszmidt, and T.Lee, Bayesian network classification with con...
	[Grosse, 89] E.Grosse, LOESS: Multivariate smoothing by moving least squares. In C.K.Chul, L.L.S....
	[Heckerman et al, 95] D.Heckerman, D.Geiger, and D.M.chickering. Learning Bayesian networks: the ...
	[Heckerman, 96] D. Heckerman. A tutorial on learning with Bayesian networks. http:// www.research...
	[Hellerstein et al, 98] J.L.Hellerstein, F.Zhang, and P.Shahabuddin, An approach to predictive de...
	[James, 85] M.James, Classification algorithms. John Wiley & Sons, Inc. 1985.
	[Jones et al, 94] M.C.Jones, S.J.Davies, and B.U.Park, Versions of kernel-type regression estimat...
	[Jolliffe, 86] I.T.Jolliffe, Principal components analysis. Springer series in statistics. Publis...
	[Jordan et al, 93] M.I.Jordan, and R.A.Jacobs, Hierarchical mixtures of experts and the EM algori...
	[Kibler and Aha, 88] D.Kibler, and D.W.Aha, Comparing instance averaging and instance filtering l...
	[King et al., 96] R.A.R.King, H.L.MacGillivray, Approximating disbutions using the generalised la...
	[Kira et al, 92] K.Kira, and L.A.Rendell, The feature selection problem: traditional methods and ...
	[Kleinberg, 97] J.M.Kleinberg. Two Algorithms for nearest-neighbor search in high dimensions. htt...
	[Koller et al, 96] D. Koller, and M. Shami, Toward optimal feature selection, In Proc. ML-96, Mor...
	[Langley et al, 94] P.Langley, and S.Sage, Induction of selective Bayesian classifiers. In Proc. ...
	[Maron et al, 94] O.Maron, and A.W.Moore, Hoeffding races: accelerating model selection search , ...
	[Maxion, 90] R.A.Maxion, Anomaly detection for diagnosis, Proc. of the 20’th Annual Iinternationa...
	[McCullagh et al, 89] P.McCullagh and J.A.Nelder, Generalized linear models, second edition, Mono...
	[Miller, 90] A.J.Miller, Subset selection in regression. Chapman & Hall, 1990.
	[Moore, 90] A.W.Moore, Efficient memory-based learning for robot control. Ph.D. thesis, Technical...
	[Moore, 90] A.W.Moore, Acquisition of dynamic control knowledge for a robotic manipulator, Proc. ...
	[Moore et al, 94] A.W.Moore, and M.S.Lee, Efficient algorithms for minimizing cross-validation er...
	[Moore, 98] A.W.Moore, Very fast EM-based mixture model clustering using multiresolution kd-trees...
	[Nechyba, 98, (a)] M.C.Nechyba, and Y.Xu, Stochastic similarity for validating human control stra...
	[Nechyba, 98, (b)] M.C.Nechyba, and Y.Xu, On discontinuous human control strategies, Proc. IEEE I...
	[Omohundro, 91] S.M.Omohundro. Bumptrees for efficient function, constraint, and classification l...
	[Pearl, 88] J.Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infere...
	[Petridis et al., 96] V.Petridis, A.Kehagias. Modular neural networks for MAP classification of t...
	[Pomerleau et al, 96] D.Pomerleau. RALPH: Rapidly adapting lateral position handler. In IEEE Symp...
	[Preparata et al., 85] P.F.Preparata, M.Shamos. Computational geometry. Springer-Verlag. 1985.
	[Puskorius et al, 94] G.V.Puskorius, and L.A.Feldkamp, Neurocontrol of nonlinear dynamical system...
	[Quinlan, 93] J.R.Quinlan, C4.5: Programs for machine learning, Published by Morgan Kaufmann Publ...
	[Rabiner, 89] L.R.Rabiner, A tutorial on Hidden Markov Models and selected applications in speech...
	[Singer et al, 94] Y. Singer, and N. Tishby, Dynamic encoding of cursive handwriting. Biological ...
	[Skalak, 94] D.B.Skalak, Prototype and feature selection by sampling and random mutation hill cli...
	[Utgoff et al, 91] P.E.Tgoff, and C.E.Brodley, Linear machine decision trees, COINS Technical Rep...

	ABSTRACT
	DEDICATION
	To my family.
	To my advisor.

	ACKNOWLEDGMENTS

