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Abstract. We provide the first solution for model-free reinforcement
learning of ω-regular objectives for Markov decision processes (MDPs).
We present a constructive reduction from the almost-sure satisfaction of
ω-regular objectives to an almost-sure reachability problem, and extend
this technique to learning how to control an unknown model so that the
chance of satisfying the objective is maximized. We compile ω-regular
properties into limit-deterministic Büchi automata instead of the tradi-
tional Rabin automata; this choice sidesteps difficulties that have marred
previous proposals. Our approach allows us to apply model-free, off-the-
shelf reinforcement learning algorithms to compute optimal strategies
from the observations of the MDP. We present an experimental evalua-
tion of our technique on benchmark learning problems.

1 Introduction

Reinforcement learning (RL) [3,37,40] is an approach to sequential decision mak-
ing in which agents rely on reward signals to choose actions aimed at achieving
prescribed objectives. Model-free RL refers to a class of techniques that are
asymptotically space-efficient [36] because they do not construct a full model of
the environment. These techniques include classic algorithms like Q-learning [37]
as well as their extensions to deep neural networks [14,31]. Some objectives, like
running a maze, are naturally expressed in terms of scalar rewards; in other cases
the translation is less obvious. We solve the problem of ω-regular rewards, that
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is, the problem of defining scalar rewards for the transitions of a Markov deci-
sion process (MDP) so that strategies that maximize the probability to satisfy an
ω-regular objective may be computed by off-the-shelf, model-free RL algorithms.

Omega-regular languages [28,38] provide a rich formalism to unambiguously
express qualitative safety and progress requirements of MDPs [2]. A common
way to describe an ω-regular language is via a formula in Linear Time Logic
(LTL); other specification mechanisms include extensions of LTL, various types
of automata, and monadic second-order logic. A typical requirement that is
naturally expressed as an ω-regular objective prescribes that the agent should
eventually control the MDP to stay within a given set of states, while at all
times avoiding another set of states. In LTL this would be written (FG goal) ∧
(G¬trap), where goal and trap are labels attached to the appropriate states,
F stands for “finally,” and G stands for “globally.”

For verification or synthesis, an ω-regular objective is usually translated into
an automaton that monitors the traces of the MDP [10]. Successful executions
cause the automaton to take certain (accepting) transitions infinitely often, and
ultimately avoid certain (rejecting) transitions. That is, ω-regular objectives are
about the long-term behavior of an MDP; the frequency of reward collected
is not what matters. A policy that guarantees no rejecting transitions and an
accepting transition every ten steps, is better than a policy that promises an
accepting transition at each step, but with probability 0.5 does not accept at all.

The problem of ω-regular rewards in the context of model-free RL was first
tackled in 2014 by translating the objective into a deterministic Rabin automa-
ton and deriving positive and negative rewards directly from the acceptance
condition of the automaton [32]. In Sect. 3 we show that their algorithm, and
the extension of [18] may fail to find optimal strategies, and may underesti-
mate the probability of satisfaction of the objective. In [16,17] the use of limit-
deterministic Büchi automata avoids the problems connected with the use of a
Rabin acceptance condition. However, as shown in Sect. 3, that approach may
still produce incorrect results.

We avoid the problems inherent in the use of deterministic Rabin automata
for model-free RL by resorting to limit-deterministic Büchi automata, which,
under mild restrictions, were shown by [8,15,33] to be suitable for both qualita-
tive and quantitative analysis of MDPs under all ω-regular objectives. The Büchi
acceptance condition, which, unlike the Rabin condition, does not use rejecting
transitions, allows us to constructively reduce the almost-sure satisfaction of
ω-regular objectives to an almost-sure reachability problem. It is also suitable
for quantitative analysis: the value of a state converges to the maximum proba-
bility of satisfaction of the objective from that state as a parameter approaches 1.

We concentrate on model-free approaches and infinitary behaviors for finite
MDPs. Related problems include model-based RL [13], RL for finite-horizon
objectives [22,23], and learning for efficient verification [4].

This paper is organized as follows. Section 2 recalls definitions and notations.
Section 3 shows the problems that arise when the reward of the RL algorithm is
derived from the acceptance condition of a deterministic Rabin automaton. In
Sect. 4 we prove the main results. Finally, Sect. 5 discusses our experiments.
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2 Preliminaries

2.1 Markov Decision Processes

Let D(S) be the set of distributions over S. A Markov decision process M is a
tuple (S,A, T,AP,L) where S is a finite set of states, A is a finite set of actions,
T : S ×A −⇁ D(S) is the probabilistic transition (partial) function, AP is the set
of atomic propositions, and L : S → 2AP is the proposition labeling function.

For any state s ∈ S, we let A(s) denote the set of actions that can be selected
in state s. For states s, s′ ∈ S and a ∈ A(s), T (s, a)(s′) equals p(s′|s, a). A run
of M is an ω-word 〈s0, a1, s1, . . .〉 ∈ S × (A × S)ω such that p(si+1|si, ai+1)>0
for all i ≥ 0. A finite run is a finite such sequence. For a run r = 〈s0, a1, s1, . . .〉
we define the corresponding labeled run as L(r) = 〈L(s0), L(s1), . . .〉 ∈ (2AP )ω.
We write RunsM(FRunsM) for the set of runs (finite runs) of the MDP M and
RunsM(s)(FRunsM(s)) for the set of runs (finite runs) of the MDP M starting
from state s. We write last(r) for the last state of a finite run r.

A strategy in M is a function σ : FRuns → D(A) such that supp(σ(r)) ⊆
A(last(r)), where supp(d) denotes the support of the distribution d. LetRunsM

σ (s)
denote the subset of runs RunsM(s) that correspond to strategy σ with initial
state s. Let ΣM be the set of all strategies. A strategy σ is pure if σ(r) is a
point distribution for all runs r ∈ FRunsM and we say that σ is stationary if
last(r) = last(r′) implies σ(r) = σ(r′) for all runs r, r′ ∈ FRunsM. A strategy
that is not pure is mixed. A strategy is positional if it is both pure and stationary.

The behavior of an MDP M under a strategy σ is defined on a probability
space (RunsM

σ (s),FRunsM
σ (s),PrM

σ (s)) over the set of infinite runs of σ with
starting state s. Given a real-valued random variable over the set of infinite runs
f : RunsM → R, we denote by E

M
σ (s) {f} the expectation of f over the runs of

M originating at s that follow strategy σ.
Given an MDP M = (S,A, T,AP,L), we define its directed underlying graph

GM = (V,E) where V = S and E ⊆ S×S is such that (s, s′) ∈ E if T (s, a)(s′) >
0 for some a ∈ A(s). A sub-MDP of M is an MDP M′ = (S′, A′, T ′, AP,L′),
where S′ ⊂ S, A′ ⊆ A is such that A′(s) ⊆ A(s) for every s ∈ S′, and T ′ and
L′ are analogous to T and L when restricted to S′ and A′. In particular, M′ is
closed under probabilistic transitions, i.e. for all s ∈ S′ and a ∈ A′ we have that
T (s, a)(s′) > 0 implies that s′ ∈ S′. An end-component [10] of an MDP M is a
sub-MDP M′ of M such that GM′ is strongly connected.

Theorem 1 (End-Component Properties [10]). Once an end-component
C of an MDP is entered, there is a strategy that visits every state-action com-
bination in C with probability 1 and stays in C forever. Moreover, for every
strategy the union of the end-components is visited with probability 1.

A Markov chain is an MDP whose set of actions is singleton. A bottom strongly
connected component (BSCC) of a Markov chain is any of its end-components. A
BSCC is accepting if it contains an accepting transition (see below) and otherwise
it is rejecting. For any MDP M and positional strategy σ, let Mσ be the Markov
chain resulting from resolving the nondeterminism in M using σ.
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A rewardful MDP is a pair (M, ρ), where M is an MDP and ρ : S ×
A → R is a reward function assigning utility to state-action pairs. A
rewardful MDP (M, ρ) under a strategy σ determines a sequence of ran-
dom rewards ρ(Xi−1, Yi)i≥1, where Xi and Yi are the random variables
denoting the i-th state and action, respectively. Depending upon the prob-
lem of interest, different performance objectives may be of interest. The
reachability probability objective Reach(T )M

σ (s) (with T ⊆ S) is defined
as PrM

σ (s)
{〈s, a1, s1, . . .〉 ∈ RunsM

σ (s) : ∃i . si ∈ T
}
. For a given discount fac-

tor λ ∈ [0, 1[, the discounted reward objective Disct(λ)M
σ (s) is defined as

limN→∞ E
M
σ (s)

{∑
1≤i≤N λi−1ρ(Xi−1, Yi)

}
, while the average reward AvgM

σ (s)

is defined as lim supN→∞(1/N)EM
σ (s)

{∑
1≤i≤N ρ(Xi−1, Yi)

}
. For an objective

RewardM∈{Reach(T )M,Disct(λ)M,AvgM} and an initial state s, we define the
optimal reward RewardM

∗ (s) as supσ∈ΣM RewardM
σ (s). A strategy σ∈ΣM is

optimal for RewardM if RewardM
σ (s)=RewardM

∗ (s) for all s∈S.

2.2 ω-Regular Performance Objectives

A nondeterministic ω-automaton is a tuple A = (Σ,Q, q0, δ,Acc), where Σ is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q×Σ → 2Q

is the transition function, and Acc is the acceptance condition. A run r of A on
w ∈ Σω is an ω-word r0, w0, r1, w1, . . . in (Q ∪ Σ)ω such that r0 = q0 and, for
i > 0, ri ∈ δ(ri−1, wi−1). Each triple (ri−1, wi−1, ri) is a transition of A.

We consider Büchi and Rabin acceptance conditions, which depend on the
transitions that occur infinitely often in a run of an automaton. We write inf(r)
for the set of transitions that appear infinitely often in the run r. The Büchi
acceptance condition defined by F ⊆ Q × Σ × Q is the set of runs {r ∈ (Q ∪
Σ)ω : inf(r) ∩ F = ∅}. A Rabin acceptance condition is defined in terms of
k pairs of subsets of Q × Σ × Q, (B0, G0), . . . , (Bk−1, Gk−1), as the set {r ∈
(Q ∪ Σ)ω : ∃i < k . inf(r) ∩ Bi = ∅ ∧ inf(r) ∩ Gi = ∅}. The index of a Rabin
condition is its number of pairs.

A run r of A is accepting if r ∈ Acc. The language, LA, of A (or, accepted
by A) is the subset of words in Σω that have accepting runs in A. A language
is ω-regular if it is accepted by an ω-automaton.

Given an MDP M and an ω-regular objective ϕ given as an ω-automaton
Aϕ = (Σ,Q, q0, δ,Acc), we are interested in computing an optimal strategy satis-
fying the objective. We define the satisfaction probability of a strategy σ from ini-
tial state s as: PrM

σ (s |= ϕ) = Pr M
σ (s)

{
r ∈ RunsM

σ (s) : L(r) ∈ LA
}
. The opti-

mal satisfaction probability PrM
∗ (s |= ϕ) is defined as supσ∈ΣM PrM

σ (s |= ϕ) and
we say that σ ∈ ΣM is an optimal strategy for ϕ if PrM

∗ (s |= ϕ) = PrM
σ (s |= ϕ).

An automaton A = (Σ,Q, q0, δ,Acc) is deterministic if |δ(q, σ)| ≤ 1 for all
q ∈ Q and all σ ∈ Σ. A is complete if |δ(q, σ)| ≥ 1. A word in Σω has exactly
one run in a deterministic, complete automaton. We use common three-letter
abbreviations to distinguish types of automata. The first (D or N) tells whether
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the automaton is deterministic; the second denotes the acceptance condition (B
for Büchi and R for Rabin). The third letter (W) says that the automaton reads
ω-words. For example, an NBW is a nondeterministic Büchi automaton, and a
DRW is a deterministic Rabin automaton.

Every ω-regular language is accepted by some DRW and by some NBW. In
contrast, there are ω-regular languages that are not accepted by any DBW. The
Rabin index of a Rabin automaton [6,20] is the index of its acceptance condition.
The Rabin index of an ω-regular language L is the minimum index among those
of the DRWs that accept L. For each n ∈ N there exist ω-regular languages
of Rabin index n. The languages accepted by DBWs, however, form a proper
subset of the languages of index 1.

2.3 The Product MDP

Given an MDP M = (S,A, T,AP,L) with a designated initial state s0 ∈ S,
and a deterministic ω-automaton A = (2AP , Q, q0, δ,Acc), the product M × A
is the tuple (S × Q, (s0, q0), A, T×,Acc×). The probabilistic transition function
T× : (S × Q) × A −⇁ D(S × Q) is such that T×((s, q), a)((ŝ, q̂)) = T (s, a)(ŝ) if
{q̂} = δ(q, L(s)) and is 0 otherwise. If A is a DBW, Acc is defined by F ⊆
Q × 2AP × Q; then F× ⊆ (S × Q) × A × (S × Q) defines Acc× as follows:
((s, q), a, (s′, q′)) ∈ F× if and only if (q, L(s), q′) ∈ F and T (s, a)(s′) = 0. If A
is a DRW of index k, Acc× = {(B×

0 , G×
0 ), . . . , (B×

k−1, G
×
k−1)}. To set Bi of Acc,

there corresponds B×
i of Acc× such that ((s, q), a, (s′, q′)) ∈ B×

i if and only if
(q, L(s), q′) ∈ Bi and T (s, a)(s′) = 0. Likewise for G×

i .
If A is a nondeterministic automaton, the actions in the product are enriched

to identify both the actions of the original MDP and the choice of the successor
state of the nondeterministic automaton.

End-components and runs are defined for products just like for MDPs. A run of
M×A is accepting if it satisfies the product’s acceptance condition. An accepting
end-component of M×A is an end-component such that every run of the product
MDP that eventually dwells in it is accepting.

In view of Theorem 1, satisfaction of an ω-regular objective ϕ by an MDP
M can be formulated in terms of the accepting end-components of the product
M × Aϕ, where Aϕ is an automaton accepting ϕ. The maximum probability of
satisfaction of ϕ by M is the maximum probability, over all strategies, that a run
of the product M×Aϕ eventually dwells in one of its accepting end-components.

It is customary to use DRWs instead of DBWs in the construction of the
product, because the latter cannot express all ω-regular objectives. On the other
hand, general NBWs are not used since causal strategies cannot optimally resolve
nondeterministic choices because that requires access to future events [39].

2.4 Limit-Deterministic Büchi Automata

In spite of the large gap between DRWs and DBWs in terms of indices, even a
very restricted form of nondeterminism is sufficient to make DBWs as expressive
as DRWs. Broadly speaking, an LDBW behaves deterministically once it has
seen an accepting transition. Formally, a limit-deterministic Büchi automaton
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q0q1 q2

a ∧ b

a b
a b q0q1 q2

a b
a b

Fig. 1. Suitable (left) and unsuitable (right) LDBWs for the LTL formula (G a)∨(G b).

(LDBW) is an NBW A = (Σ,Qi ∪ Qf , q0, δ, F ) such that

– Qi ∩ Qf = ∅, F ⊆ Qf × Σ × Qf ;
– |δ(q, σ) ∩ Qi| ≤ 1 for all q ∈ Qi and σ ∈ Σ;
– |δ(q, σ)| ≤ 1 for all q ∈ Qf and σ ∈ Σ;
– δ(q, σ) ⊆ Qf for all q ∈ Qf and σ ∈ Σ.

LDBWs are as expressive as general NBWs. Moreover, NBWs can be trans-
lated into LDBWs that can be used for the qualitative and quantitative analysis
of MDPs [8,15,33,39]. We use the translation from [15], which uses LDBWs
that consist of two parts: an initial deterministic automaton (without accepting
transitions) obtained by a subset construction; and a final part produced by
a breakpoint construction. They are connected by a single “guess”, where the
automaton guesses a singleton subset of the reachable states to start the break-
point construction. Like in other constructions (e.g. [33]), one can compose the
resulting automata with an MDP, such that the optimal control of the product
defines a control on the MDP that maximizes the probability of obtaining a word
from the language of the automaton. We refer to LDBWs with this property as
suitable limit-deterministic automata (SLDBWs).

Definition 1 (Suitable LDBW). An SLDBW A for property ϕ is an LDBW
that recognizes ϕ and such that, for every finite MDP M, there exists a positional
strategy σ ∈ ΣM×A such that the probability of satisfying the Büchi condition in
the Markov chain (M × A)σ is PrM

∗ (s |= ϕ).

Although the construction of a suitable LDBW reaches back to the 80s [39],
not all LDBWs are suitable. Broadly speaking, the nondeterministic decisions
taken in the initial part may not depend on the future—though it may depend on
the state of an MDP. The example LDBW from Fig. 1 (left) satisfies the property:
it can try to delay to progress to one of the accepting states to when an end-
component in an MDP is reached that always produces a’s or b’s, respectively. In
contrast, the LDBW from Fig. 1 (right)—which recognizes the same language—
will have to make the decision of seeing only a’s or only b’s immediately, without
the option to wait for reaching an end-component. This makes it unsuitable for
the use in MDPs.

Theorem 2 [8,15,33,39]. Suitable limit-deterministic Büchi automata exist for
all ω-regular languages.
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SLDBWs—and their properties described in Definition 1—are used in the
qualitative and quantitative model checking algorithms in [8,15,33,39]. The
accepting end-components of the product MDPs are all using only states from
the final part of the SLDBW. Büchi acceptance then allows for using memoryless
almost sure winning strategies in the accepting end-components, while outside
of accepting end-components a memoryless strategy that maximizes the chance
of reaching such an end-component can be used. The distinguishing property is
the guarantee that they provide the correct probability, while using a product
with a general NBW would only provide a value that cannot exceed it.

2.5 Linear Time Logic Objectives

LTL (Linear Time Logic) is a temporal logic whose formulae describe a subset
of the ω-regular languages, which is often used to specify objectives in human-
readable form. Translations exist from LTL to various forms of automata, includ-
ing NBW, DRW, and SLDBW. Given a set of atomic propositions AP , a is
an LTL formula for each a ∈ AP . Moreover, if ϕ and ψ are LTL formulae,
so are ¬ϕ,ϕ ∨ ψ,Xϕ,ψUϕ. Additional operators are defined as abbreviations:
� def= a ∨ ¬a; ⊥ def= ¬�; ϕ ∧ ψ

def= ¬(¬ϕ ∨ ¬ψ); ϕ → ψ
def= ¬ϕ ∨ ψ; Fϕ

def= �Uϕ;
and Gϕ

def= ¬F¬ϕ. We write w |= ϕ if ω-word w over 2AP satisfies LTL formula
ϕ. The satisfaction relation is defined inductively [2,24].

2.6 Reinforcement Learning

For an MDP M and an objectives RewardM ∈ {Reach(T )M,Disct(λ)M,
AvgM}, the optimal reward and an optimal strategy can be computed using
value iteration, policy iteration, or, in polynomial time, using linear program-
ming [12,30]. On the other hand, for ω-regular objectives (given as DRW,
SLDBW, or LTL formulae) optimal satisfaction probabilities and strategies
can be computed using graph-theoretic techniques (computing accepting end-
component and then maximizing the probability to reach states in such compo-
nents) over the product structure. However, when the MDP transition/reward
structure is unknown, such techniques are not applicable.

For MDPs with unknown transition/reward structure, reinforcement learn-
ing [37] provides a framework to compute optimal strategies from repeated inter-
actions with the environment. Of the two main approaches to reinforcement
learning in MDPs, model-free approaches and model-based approaches the for-
mer, which is asymptotically space-efficient [36], has been demonstrated to scale
well [14,25,35]. In a model-free approach such as Q-learning [31,37], the learner
computes optimal strategies without explicitly estimating the transition proba-
bilities and rewards. We focus on making it possible for model-free RL to learn a
strategy that maximizes the probability of satisfying a given ω-regular objective.

3 Problem Statement and Motivation

Given MDP M with unknown transition structure and ω-regular objective ϕ,
we seek a strategy that maximizes the probability that M satisfies ϕ.
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g0

g1

b

0

1

0 1

safe trap
t4

t5

t3t0

t1 t2

transition label Rabin sets
t0 ¬b ∧ ¬g0 ∧ ¬g1 B0, B1

t1 ¬b ∧ ¬g0 ∧ g1 B0, G1

t2 ¬b ∧ g0 ∧ ¬g1 G0, B1

t3 ¬b ∧ g0 ∧ g1 G0, G1

t4 b
t5 �

(0, 0)
safe

(1, 0)
safe

(0, 1)
safe

∗
trap

go
{B0, B1}

p 1−p
go

{G0, B1}

1−p

p

go
{B0, G1}

p

1−p

go, rest

rest{G0, B1}
rest{B0, G1}

rest{B0, B1}

Fig. 2. A grid-world example (left), a Rabin automaton for [(FG g0) ∨ (FG g1)] ∧ G¬b
(center), and product MDP (right).

To apply model-free RL algorithms to this task, one needs to define rewards
that depend on the observations of the MDP and reflect the satisfaction of
the objective. It is natural to use the product of the MDP and an automaton
monitoring the satisfaction of the objective to assign suitable rewards to various
actions chosen by the learning algorithm.

Sadigh et al. [32] were the first to apply model-free RL to a qualitative-
version of this problem, i.e., to learn a strategy that satisfies the property with
probability 1. For an MDP M and a DRW Aϕ of index k, they formed the
product MDP M×Aϕ with k different “Rabin” reward functions ρ1, . . . , ρk. The
function ρi corresponds to the Rabin pair (B×

i , G×
i ): it assigns a fixed negative

reward −R− < 0 to all edges in B×
i and a fixed positive reward R+ > 0 to all

edges in G×
i . [32] claimed that if there exists a strategy satisfying an ω-regular

objective ϕ with probability 1, then there exists a Rabin pair i, discount factor
λ∗ ∈ [0, 1[, and suitably high ratio R∗, such that for all λ ∈ [λ∗, 1[ and R−/R+ ≥
R∗, any strategy maximizing λ-discounted reward for the MDP (M×Aϕ, ρi) also
satisfies the ω-regular objective ϕ with probability 1. Using Blackwell-optimality
theorem [19], a paraphrase of this claim is that if there exists a strategy satisfying
an ω-regular objective ϕ with probability 1, then there exists a Rabin pair i and
suitably high ratio R∗, such that for all R−/R+ ≥ R∗, any strategy maximizing
expected average reward for the MDP (M×Aϕ, ρi) also satisfies the ω-regular
objective ϕ with probability 1. This approach has two faults, the second of which
also affects approaches that replace DRWs with LDBWs [16,17].

1. We provide in Example 1 an MDP and an ω-regular objective ϕ with Rabin
index 2, such that, although there is a strategy that satisfies the property
with probability 1, optimal average strategies from any Rabin reward do not
satisfy the objective with probability 1.

2. Even for an ω-regular objective with one Rabin pair (B,G) and B=∅—i.e.,
one that can be specified by a DBW—we demonstrate in Example 2 that the
problem of finding a strategy that satisfies the property with probability 1
may not be reduced to finding optimal average strategies.



Omega-Regular Objectives in Model-Free Reinforcement Learning 403

3

0

1

2a

b

1 − p p

c

d
e

f

safe trap

g ∧ ¬b

¬g ∧ ¬b

b

�

0, safe

3, safe

1, safe2, safe ∗, trap

ab

p 1 − p

d
e

f

c

Fig. 3. A grid-world example. The arrows represent actions (left). When action b is
performed, Cell 2 is reached with probability p and Cell 1 is reached with probability
1 − p, for 0 < p < 1. Deterministic Büchi automaton for ϕ = (G¬b) ∧ (GF g) (center).
The dotted transition is the only accepting transition. Product MDP (right).

Example 1 (Two Rabin Pairs). Consider the MDP given as a simple grid-world
example shown in Fig. 2. Each cell (state) of the MDP is labeled with the atomic
propositions that are true there. In each cell, there is a choice between two actions
rest and go. With action rest the state of the MDP does not change. However,
with action go the MDP moves to the other cell in the same row with probability
p, or to the other cell in the same column with probability 1−p. The initial cell
is (0, 0).

The specification is given by LTL formula ϕ = [(FG g0) ∨ (FG g1)] ∧ G¬b.
A DRW that accepts ϕ is shown in Fig. 2. The DRW has two accepting pairs:
(B0, G0) and (B1, G1). The table besides the automaton gives, for each transi-
tion, its label and the B and G sets to which it belongs.

The optimal strategy that satisfies the objective ϕ with probability 1 chooses
go in Cell (0, 0) and chooses rest subsequently. However, for both Rabin pairs,
the optimal strategy for expected average reward is to maximize the probability
of reaching one of the (0, 1), safe or (1, 0), safe states of the product and stay
there forever. For the first accepting pair the maximum probability of satisfaction
is 1

2−p , while for the second pair it is 1
1+p .

Example 2 (DBW to Expected Average Reward Reduction). This counterexam-
ple demonstrates that even for deterministic Büchi objectives, the problem of
finding an optimal strategy satisfying an objective may not be reduced to the
problem of finding an optimal average strategy. Consider the simple grid-world
example of Fig. 3 with the specification ϕ = (G¬b)∧(GF g), where atomic propo-
sition b (blue) labels Cell 1 and atomic proposition g (green) labels Cells 2 and 3.
Actions enabled in various cells and their probabilities are depicted in the figure.

The strategy from Cell 0 that chooses Action a guarantees satisfaction of ϕ
with probability 1. An automaton with accepting transitions for ϕ is shown in
Fig. 3; it is a DBW (or equivalently a DRW with one pair (B,G) and B = ∅).

The product MDP is shown at the bottom of Fig. 3. All states whose second
component is trap have been merged. Notice that there is no negative reward
since the set B is empty. If reward is positive and equal for all accepting tran-
sitions, and 0 for all other transitions, then when p > 1/2, the strategy that
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Fig. 4. Adding transitions to the target in the augmented product MDP.

maximizes expected average reward chooses Action b in the initial state and
Action e from State (2, safe). Note that, for large values of λ, the optimal expected
average reward strategies are also optimal strategies for the λ-discounted reward
objective. However, these strategies are not optimal for ω-regular objectives.

Example 1 shows that one cannot select a pair from a Rabin acceptance condi-
tion ahead of time. This problem can be avoided by the use of Büchi acceptance
conditions. While DBWs are not sufficiently expressive, SLDBWs express all
ω-regular properties and are suitable for probabilistic model checking. In the
next section, we show that they are also “the ticket” for model-free reinforce-
ment learning, because they allow us to maximize the probability of satisfying an
ω-regular specification by solving a reachability probability problem that can be
solved efficiently by off-the-shelf RL algorithms.

4 Model-Free RL from Omega-Regular Rewards

We now reduce the model checking problem for a given MDP and SLDBW to a
reachability problem by slightly changing the structure of the product: We add
a target state t that can be reached with a given probability 1 − ζ whenever
visiting an accepting transition of the original product MDP.

Our reduction avoids the identification of winning end-components and thus
allows a natural integration to a wide range of model-free RL approaches. Thus,
while the proofs do lean on standard model checking properties that are based on
identifying winning end-components, they serve as a justification not to consider
them when running the learning algorithm. In the rest of this section, we fix an
MDP M and an SLDBW A for the ω-regular property ϕ.

Definition 2 (Augmented Product). For any ζ ∈]0, 1[, the augmented
MDP Mζ is an MDP obtained from M×A by adding a new state t with a
self-loop to the set of states of M×A, and by making t a destination of each
accepting transition τ of M×A with probability 1 − ζ. The original probabilities
of all other destinations of an accepting transition τ are multiplied by ζ.

An example of an augmented MDP is shown in Fig. 4. With a slight abuse
of notation, if σ is a strategy on the augmented MDP Mζ , we denote by σ also
the strategy on M×A obtained by removing t from the domain of σ.
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We let pσ
s (ζ) denote the probability of reaching t in Mζ

σ when starting at state
s. Notice that we can encode this value as the expected average reward in the
following rewardful MDP (Mζ , ρ), where we set the reward function ρ(t, a) = 1
for all a ∈ A and ρ(s, a) = 0 otherwise. For any strategy σ, the probability
pσ

s (ζ) and the reward of σ from s in (Mζ , ρ) are the same. We also let aσ
s be the

probability that a run that starts from s in (M × A)σ is accepting.

Lemma 1. If σ is a positional strategy on Mζ , then, for every state s of the
Markov chain (M×A)σ, the following holds:

1. if the state s is in a rejecting BSCC of (M×A)σ, then pσ
s (ζ) = 0;

2. if the state s is in an accepting BSCC of (M×A)σ, then pσ
s (ζ) = 1;

3. the probability pσ
s (ζ) of reaching t is greater than aσ

s ; and
4. if pσ

s (ζ)=1 then no rejecting BSCC is reachable from s in (M×A)σ and
aσ

s = 1.

Proof. (1) holds as there are no accepting transition in a rejecting BSCC of
(M×A)σ, and so t cannot be reached when starting at s in Mζ

σ. (2) holds
because t (with its self-loop) is the only BSCC reachable from s in Mζ . In other
words, t (with its self-loop) and the rejecting BSCCs of (M×A)σ are the only
BSCCs in Mζ

σ. (3) then follows, because the same paths lead to a rejecting
BSCCs in (M×A)σ and Mζ

σ, while the probability of each such a path is no
larger—and strictly smaller iff it contains an accepting transition—than in Mζ

σ.
(4) holds because, if pσ

s (ζ) = 1, then t (with its self-loop) is the only BSCC
reachable from s in Mζ

σ. Thus, there is no path to a rejecting BSCC in Mζ
σ, and

therefore no path to a rejecting BSCC in (M×A)σ. ��
Lemma 2. Let σ be a positional strategy on Mζ . For every state s of Mζ , we
have that limζ↑1 pσ

s (ζ) = aσ
s .

Proof. As shown in Lemma 1(3) for all ζ, we have pσ
s (ζ) ≥ aσ

s . For a coarse
approximation of their difference, we recall that (M×A)σ is a finite Markov
chain. The expected number of transitions taken before reaching a BSCC from
s in (M×A)σ is therefore a finite number. Let us refer to the—no larger—
expected number of accepting transitions taken before reaching a BSCC when
starting at s in (M×A)σ as fσ

s . We claim that aσ
s ≥ pσ

s (ζ) − (1 − ζ) · fσ
s . This

is because the probability of reaching a rejecting BSCC in (M×A)σ is at most
the probability of reaching a rejecting BSCC in Mζ

σ, which is at most 1− pσ
s (ζ),

plus the probability of moving on to t from a state that is not in any BSCC in
(M×A)σ, which we are going to show next is at most fσ

s · (1 − ζ).
First, a proof by induction shows that (1 − ζk) ≤ k(1 − ζ) for all k ≥ 0.

Let P σ
s (ζ, k) be the probability of generating a path from s with k accepting

transitions before t or a node in some BSCC of (M×A)σ is reached in Mζ
σ. The

probability of seeing k accepting transitions and not reaching t is at least ζk.
Therefore, probability of moving to t from a state not in any BSCC is at most

∑

k

P σ
s (ζ, k)(1−ζk) ≤

∑

k

P σ
s (ζ, k)k · (1−ζ) ≤ fσ

s · (1−ζ).
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The proof is now complete. ��
This provides us with our main theorem.

Theorem 3. There exists a threshold ζ ′ ∈]0, 1[ such that, for all ζ > ζ ′ and
every state s, any strategy σ that maximizes the probability pσ

s (ζ) of reaching
the sink in Mζ is (1) an optimal strategy in M × A from s and (2) induces an
optimal strategy for the original MDP M from s with objective ϕ.

Proof. We use the fact that it suffices to study positional strategies, and there
are only finitely many of them. Let σ1 be an optimal strategy of M×A, and
let σ2 be a strategy that has the highest likelihood of creating an accepting run
among all non-optimal memoryless ones. (If σ2 does not exist, then all strategies
are equally good, and it does not matter which one is chosen.) Let δ = aσ1

s −aσ2
s .

Let fmax = maxσ maxs fσ
s , where σ ranges over positional strategies only,

and fσ
s is defined as in Lemma 2. We claim that it suffices to pick ζ ′ ∈]0, 1[ such

that (1 − ζ ′) · fmax < δ. Suppose that σ is a positional strategy that is optimal
in Mζ for ζ > ζ ′, but is not optimal in M×A. We then have

aσ
s ≤ pσ

s (ζ) ≤ aσ
s + (1 − ζ)fσ

s < aσ
s + δ ≤ aσ1

s ≤ pσ1
s (ζ),

where these inequalities follow, respectively, from: Lemma 1(3), the proof of
Lemma 2, the definition of ζ ′, the assumption that σ is not optimal and the
definition of δ, and the last one from Lemma 1(3). This shows that pσ

s (ζ) <
pσ1

s (ζ), i.e., σ is not optimal in Mζ ; a contradiction. Therefore, any positional
strategy that is optimal in Mζ for ζ > ζ ′ is also optimal in M×A.

Now, suppose that σ is a positional strategy that is optimal in M×A. Then
the probability of satisfying ϕ in M when starting at s is at least1 aσ

s . At the
same time, if there was a strategy for which the probability of satisfying ϕ in M is
> aσ

s , then the property of A to be an SLDBW (Definition 1) would guarantee the
existence of strategy σ′ for which aσ′

s > aσ
s ; a contradiction with the assumption

that σ is optimal. Therefore any positional strategy that is optimal in M×A
induces an optimal strategy in M with objective ϕ. ��
Corollary 1. Due to Lemma 1(4), M satisfies ϕ almost surely if and only if
the sink is almost surely reachable in Mζ for all 0 < ζ < 1.

Theorem 3 leads to a very simple model-free RL algorithm. The augmented
product is not built by the RL algorithm, which does not know the transition
structure of the environment MDP. Instead, the observations of the MDP are
used by an interpreter process to compute a run of the objective automaton.
The interpreter also extracts the set of actions for the learner to choose from. If
the automaton is not deterministic and it has not taken the one nondeterministic
transition it needs to take yet, the set of actions the interpreter provides to the
learner includes the choice of special “jump” actions that instruct the automaton
to move to a chosen accepting component.
1 This holds for all nondeterministic automata that recognize the models of ϕ: an

accepting run establishes that the path was a model of ϕ.
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When the automaton reports an accepting transition, the interpreter gives
the learner a positive reward with probability 1 − ζ. When the learner actu-
ally receives a reward, the training episode terminates. Any RL algorithm that
maximizes this probabilistic reward is guaranteed to converge to a policy that
maximizes the probability of satisfaction of the ω-regular objective.

5 Experimental Results

We implemented the construction described in the previous sections in a tool
named Mungojerrie [11], which reads MDPs described in the PRISM language
[21], and ω-regular automata written in the HOA format [1,9]. Mungojer-
rie builds the augmented product Mζ , provides an interface for RL algorithms
akin to that of [5] and supports probabilistic model checking. Our algorithm
computes, for each pair (s, a) of state and action, the maximum probability of
satisfying the given objective after choosing action a from state s by using off-
the-shelf, temporal difference algorithms. Not all actions with maximum prob-
ability are part of positional optimal strategies—consider a product MDP with
one state and two actions, a and b, such that a enables an accepting self-loop,
and b enables a non-accepting one: both state/action pairs are assigned probabil-
ity 1. In b’s case, because choosing b once—or a finite number of times—does not
preclude acceptance. Since the probability values alone do not identify a pure
optimal strategy, Mungojerrie computes an optimal mixed strategy, uniformly
choosing all maximum probability actions from a state.

The MDPs on which we tested our algorithms [26] are listed in Table 1.
For each model, the numbers of decision states in the MDP, the automaton,
and the product MDP are given. Next comes the probability of satisfaction
of the objective for the strategy chosen by the RL algorithm as computed by
the model checker (which has full access to the MDP). This is followed by the
estimate of the probability of satisfaction of the objective computed by the RL
algorithm and the time taken by learning. The last six columns report values of
the hyperparameters when they deviate from the default values: ζ controls the
probability of reward, ε is the exploration rate, α is the learning rate, and tol
is the tolerance for probabilities to be considered different. Finally, ep-l controls
the episode length (it is the maximum allowed length of a path in the MDP
that does contain an accepting edge) and ep-n is the number of episodes. All
performance data are the averages of three trials with Q-learning. Rewards are
undiscounted, so that the value of a state-action pair computed by Q-learning
is a direct estimate of the probability of satisfaction of the objective from that
state when taking that action.

Models twoPairs and riskReward are from Examples 1 and 2, respectively.
Model deferred is discussed later. Models grid5x5 and trafficNtk are from
[32]. The three “windy” MDPs are taken from [37]. The “frozen” examples are
from [27]. Some ω-regular objectives are simple reachability requirements (e.g.,
frozenSmall and frozenLarge). The objective for the othergrid models is
to collect three types of coupons, while incurring at most one of two types
of penalties. In doublegrid two agents simultaneously move across the grid.
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Table 1. Q-learning results. The default values of the learner hyperparameters are:
ζ = 0.99, ε = 0.1, α = 0.1, tol= 0.01, ep-l= 30, and ep-n= 20000. Times are in seconds.

Name states aut. prod. prob. est. time ζ ε α tol ep-l ep-n

twoPairs 4 4 16 1 1 0.26

riskReward 4 2 8 1 1 1.47

deferred 41 1 41 1 1 1.01

grid5x5 25 3 75 1 1 10.82 0.01 0.2 400 30k

trafficNtk 122 13 462 1 1 2.89

windy 123 2 240 1 1 12.35 0.95 0.001 0.05 0 900 200k

windyKing 130 2 256 1 1 14.34 0.95 0.02 0.2 0 300 120k

windyStoch 130 2 260 1 1 47.70 0.95 0.02 0.2 0 300 200k

frozenSmall 16 3 48 0.823 0.83 0.51 0.05 0 200

frozenLarge 64 3 192 1 1 1.81 0.05 0 700

othergrid6 36 25 352 1 1 10.80 0 300 75k

othergrid20 400 25 3601 1 1 78.00 0.9999 0.07 0.2 0 5k

othergrid40 1600 25 14401 1 0.99 87.90 0.9999 0.05 0.2 0 14k 25k

doublegrid8 4096 3 12287 1 1 45.50 0 3k 100k

doublegrid12 20736 3 62207 1 1 717.6 0 20k 300k

slalom 36 5 84 1 1 0.98

rps1 121 2 130 0.768 0.76 5.21 0.12 0.006 0 500k

dpenny 52 2 65 0.5 0.5 1.99 0.001 0.2 0 50 120k

devious 11 1 11 1 1 0.81

arbiter2 32 3 72 1 1 5.16 0.5 0.02 200

knuthYao 13 3 39 1 1 0.31 100

threeWayDuel 10 3 13 0.397 0.42 0.08

mutual4-14 27600 128 384386 1 1 2.74

mutual4-15 27600 527 780504 1 1 3.61

The objective for slalom is given by the LTL formula G(p → XG¬q) ∧ G(q →
XG¬p). For model rps1 the strategy found by RL is (slightly) suboptimal. The
difference in probability of 0.01 is explained by the existence of many strategies
of nearly identical values. Model mutual [7,15,34] describes the mutual exclusion
protocol of Pnueli and Zuck [29]. Though large, this model is easy for learning.

Figure 5 illustrates how increasing the parameter ζ makes the RL algorithm
less sensitive to the presence of transient (not in an end-component) accepting
transitions. Model deferred consists of two chains of states: one, which the
agent choses with action a, has accepting transitions throughout, but leads to
an end-component that is not accepting. The other chain, selected with action
b, leads to an accepting end-component, but has no other accepting transitions.
There are no other decisions in the model; hence only two strategies are possible,
which we denote by a and b, depending on the action chosen.
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Fig. 5. Model deferred and effect of ζ on it.

The curve labeled pa in Fig. 5 gives the probability of satisfaction under
strategy a of the MDP’s objective as a function of ζ as computed by Q-learning.
The number of episodes is kept fixed at 20, 000 and each episode has length 80.
Each data point is the average of five experiments for the same value of ζ.

For values of ζ close to 0, the chance is high that the sink is reached directly
from a transient state. Consequently, Q-learning considers strategies a and b
equally good. For this reason, the probability of satisfaction of the objective, pϕ,
according to the strategy that mixes a and b, is computed by Mungojerrie’s
model checker as 0.5. As ζ approaches 1, the importance of transient accepting
transitions decreases, until the probability computed for strategy a is no longer
considered to be approximately the same as the probability of strategy b. When
that happens, pϕ abruptly goes from 0.5 to its true value of 1, because the pure
strategy b is selected. The value of pa continues to decline for larger values of ζ
until it reaches its true value of 0 for ζ = 0.9999. Probability pb, not shown in
the graph, is 1 throughout.

The change in value of pϕ does not contradict Theorem 3, which says that
pb = 1 > pa for all values of ζ. In practice a high value of ζ may be needed
to reliably distinguish between transient and recurrent accepting transitions in
numerical computation. Besides, Theorem 3 suggests that even in the almost-
sure case there is a meaningful path to the target strategy where the likelihood
of satisfying ϕ can be expected to grow. This is important, as it comes with the
promise of a generally increasing quality of intermediate strategies.

6 Conclusion

We have reduced the problem of maximizing the satisfaction of an ω-regular
objective in a MDP to reachability on a product graph augmented with a sink
state. This change is so simple and elegant that it may surprise that it has not
been used before. But the reason for this is equally simple: it does not help in
a model checking context, as it does not remove any analysis step there. In a
reinforcement learning context, however, it simplifies our task significantly. In
previous attempts to use suitable LDBW [4], the complex part of the model
checking problem—identifying the accepting end-components—is still present.
Only after this step, which is expensive and requires knowledge of the structure
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of the underlying MDP, can these methods reduce the search for optimal sat-
isfaction to the problem of maximizing the chance to reach those components.
Our reduction avoids the identification of accepting end-components entirely and
thus allows a natural integration with a wide range of model-free RL approaches.
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