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Abstract—Omega3P is a parallel eigenmode calculation
code for accelerator cavities in frequency domain analy-
sis using finite-element methods. In this report, we will
present detailed finite-element formulations and resulting
eigenvalue problems for lossless cavities, cavities with lossy
materials, cavities with imperfectly conducting surfaces,
and cavities with waveguide coupling. We will discuss the
parallel algorithms for solving those eigenvalue problems
and demonstrate modeling of accelerator cavities through
different examples.

Index Terms Accelerator cavities, finite element
methods, frequency domain analysis, parallel algo-
rithms.

I. INTRODUCTION

Frequency domain analysis is of a great impor-
tance in accelerator cavity design. Finite-element
discretization can have high fidelity modeling for
complex geometries of cavities. With parallel com-
puting one can solve large-scale numerical problems
that cannot be addressed in serial. We developed a
parallel eigenmode calculation code for accelerator
cavities in frequency domain analysis using finite-
element methods. The report is organized as fol-
lows. In Section II, we formulate various eigen-
value problems for cavities with different properties.
We discuss the algorithms used for solving those
eigenvalue problems in Section III. We present
parallelization strategy and software design in Sec-
tion IV. We demonstrate Omega3P with 3 different
examples in Section V. Finally, we summarized the
report.

∗Corresponding email: liequan@slac.stanford.edu

II. FREQUENCY DOMAIN ANALYSIS FOR
ACCELEATOR CAVITIES

A. Vector Wave Equations
Maxwell's equations in differential form has three

independent equations.
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For a simple medium, there are constitutive relations
between field quantities.
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where " and µ are the relative electric permittivity
and magnetic permeability while "0 and µ0 are the
values in the vacuum.

In analyzing eigenmodes of electromagnetic cav-
ities, field quntities in Maxwell's equations can be
written in the form of harmonically oscillating func-
tions with a single frequency !. Thus, the Maxwell's
equations have a simplified form.
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where k is the angular wavenumber !
c

and c the
speed of light. Either equation can be used in the
numerical simulation. Eq (8) refers to E-formulation
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and Eq (9) H-formulation. Without loss of gen-
erality, we will use E-formulation for the rest of
discussion.

In 1980, Nedelec discussed the construction
of edge elements on tetrahedra and rectangular
bricks [1]. Edge elements provide tangentially-
continuous basis functions for discretizing electric
field. The use of edge elements not only leads to
convenient way of imposing boundary conditions at
material interfaces as well as at conducting surfaces,
but also treats conducting and dielectric edges and
corners correctly. In Omega3P, a set of hierarchical
high-order Nedelec basis functions [2] are used to
discretize electric field.

−→
E =

∑
i

xi

−→
Ni (10)

B. Lossless Cavities
At a perfectly conducting surface, the boundary

condition for electric field can be expressed as:
−→n ×

−→
E = 0 (11)

where −→n is the surface normal. If there is a
symmetry in the cavity to be simulated, only a
part of geometry needs to be modeled while the
following boundary condition can be imposed on
the symmetric plane.

−→n × (
1

µ
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E ) = 0 (12)

where −→n is the surface normal on the symmetric
plane.

With finite element discretization in Eq (10), the
vector wave equation (8) along with the boundary
conditions (11) and (12) becomes a generalized
eigenvalue problem for a lossless cavity:

Kx = k2Mx: (13)

where the matrices K and M are
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Here we denote (
−→
X;
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Y) to be an inner product,

which is the integral over the domain
R
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and can be numerically evaluated with Gaussian
integral rules. Note that matrix M is symmetric
positive definite and matrix K is symmetric positive

semi-definite with a large null space. Once the
eigenvalue problem is solved, the electric field

−→
E is

recovered with Eq(10) while the magnetic field
−→
B

is computed with

−→
B = −jkc

∑
i

xi∇×
−→
Ni (16)

where j is the square root of −1 and c the speed of
light.

C. Cavities with Lossy Materials

The finite element analysis in the previous section
can still be applied to cavities with lossy materials
with the extension of using generalized variational
principle [3]. In such cases, relative electric permit-
tivity and/or magnetic permeability become com-
plex in part or all of the domain. That makes mass
matrix in Eq (14) and/or stiffness matrix in Eq (15)
complex.

Note that the eigenvalue k also become complex.
An physical quantity, quality factor, is defined as
the real part of the eigenvalue divided by two times
the imaginary part of the eigenvalue. Namely,

Q =
kreal

2kimag

(17)

The quality factor can be viewed as a measure of
the loss. The high the Q value, the less the loss.

D. Cavities with Imperfectly Conducting Surfaces

When a cavity wall is an imperfect conductor, it
can be shown that the electric and magnetic files at
the surface of the conductor can be expressed as the
following impedance boundary condition:

−→n × (
1

µ
∇×
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E )− ik

p
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E ) = 0 (18)

where σ is the electrical conductivity of the cavity
wall. With the impedance boundary condition (18),
the vector wave equation (8) can be descretized as
a quadratic eigenvalue problem:

Kx + ikWx = k2Mx (19)
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Fig. 1. A cavity connected with a waveguide. When the waveguide is
long enough, the electric field inside the waveguide is a combination
of the waveguide modes that can propagate.

E. Cavities with Waveguide Loading

An accelerating cavity is often connected with
waveguides to input power or to damp the high-
order modes. Fig 1 shows a cavity that is connected
with a waveguide. When the waveguide is long
enough, the electric field inside the waveguide can
be expanded to a set of waveguide modes that can
propagate inside the waveguide without attenuation.
Therefore, as pointed in Ref [4], the boundary
condition on the waveguide port can be expressed
as follows:
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where γm =
√

k2 − (kc
m)2 and kc

m is the cut- off
wavenumber of the mth waveguide mode. eTEM

0 ,
eTE

m , and eTM
m are the normalized waveguide TEM

mode, mth TE mode, and mth TM mode, respec-
tively.

The finite- element discretization of the vector
wave equation (8) along with electric boundary
condition (11), magnetic boundary condition (12)
and waveguide boundary condtion (20) leads to a
complex nonlinear eigenvalue problem (NEP):
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where matrices WTEM, WTE
m , and WTM
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Note that all the three types of matrices are sym-
metric but have dense blocks.

If the frequency of interest is above the first
waveguide cutoff but below the second waveguide
cutoff, i.e., only one waveguide mode can propagate
in the waveguide, a simpler boundary condition can
be used:

−→n × (
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µ
∇×
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E )− iγ−→n × (−→n ×
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E ) = 0 (25)

where γ =
√

k2 − (kc)2. We often refer (25)
absorbing boundary condition (ABC). Note that
ABC is accurate if there is only one waveguide
mode propagating in the waveguide. Otherwise, it
is just an approximation. With ABC, the discretized
eigensystem becomes:

Kx + i
√

k2 − (kc)2Wx = k2Mx (26)

where matrix W is a sparse matrix and is defined
as

W =

∫
S

(−→n ×
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Ni) · (−→n ×
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III. ALGORITHMS FOR EIGENVALUE PROBLEMS

To solve eigenvalue problem (13), we use ei-
ther the Implicit Restarted Arnoldi method through
ARPACK [5] or an explicit restarted Arnodi
method [6] implemented in Omega3P.

A shift- and- invert spectral transformation [7] is
applied to Eq (13) in the process of solving the
eigenvalue problems since the interior eigenvalues
are of interest in the accelerator cavity modeling.

1

k2 − σ
x = (K− σM)−1 Mx (28)

where σ is a prescribed shift close to the eigenvalues
of interest. The above spectral transformation re-
quires a solution of a highly indefinite linear system
in every eigenvalue iteration, which is notoriously
difficult to solve with iterative methods.

(K− σM)y = Mb (29)
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To solve the shifted linear system Eq(29), we often
used sparse direct solvers [8], [9], [10] or Krylov
subspace methods with multi-level precondition-
ers [11], [12], [13]. Sparse direct solvers require a
large amount of memory to store the factor of the
matrix K− σM thus their usage is limited.

The nonlinear eigenvalue problem (26) can be
transformed into a quadratic eigenvalue problem by
denoting k0 =

√
k2 − (kc)2. We implemented the

Second Order Arnoldi method [14] in Omega3P for
solving the quadratic eigenvalue problem (19) and
the nonlinear eigenvalue problem (26).

For solving the nonlinear eigenvalue prob-
lem (21), we implemented a self-consistent itera-
tion [15], a nonlinear Jacobi-Davidson method [16],
[17], and a nonlinear Rayleigh-Ritz iterative projec-
tion algorithm, NRRIT [18]. In the self-consistent
iteration method, we first calculate an initial guess
of an eigen-pair by ignoring all the waveguide
terms in (21). That initial guess shall be a good
approximation if the loss due to waveguide is not
strong (quality factor is larger than 10). We use that
to evaluate the waveguide terms and add them into
the stiffness matrix and recalculate the eigen-pair.
This loop terminates until the eigen-pair is self-
consistent. It can be shown that the method will
yield converged eigen-pairs as long as the loss is
not strong.

IV. PARALLELIZATION STRATEGY AND
SOFTWARE DESIGN

Omega3P is written in C++ and uses MPI for
inter process communication. It takes a tetrahedral
mesh in NetCDF format as input for the geometry
of the cavity. Domain decomposition is used for
parallelization in Omega3P and the mesh is parti-
tioned into P subdomains using ParMetis [19] or
Zoltan [20] where P is the number of the MPI
processors. A mesh region around process boundary
is replicated in each processor to reduce communi-
cation. The hierarchical basis function described in
[2] is employed for the discretization of the electric
fields in the domain. The edge, face and volume
degrees of freedom are located in parallel and
matrices are assembled. After that, an appropriate
eigensolver is invoked to find specific eigen-pairs,
which are saved into files for further post-processing
or for visualization purpose.

We use many 3rd party libraries in Omega3P
and take a modular design as shown in Fig 2. For

Fig. 3. The strong scalability of Omega3P on a Cray XT computer
(Jaguar) at Oak Ridge National Laboratory.

example, for linear algebra operations, we use the
generic library described in [21]. That makes us
very easy to add new solver components such as
precondtioners for iterative linear solvers.

Fig 3 shows the strong scalability of Omega3P
running on a Cray XT computer with catamount
kernel at Oak Ridge National Laboratory. The test-
ing problem was for solving the � mode of the RF
gun designed for the Linac Coherent Light Source.
The computer model has 1.5 million tetrahedral
elements. It resulted in a real eigenvalue problem
with 9.6 million degrees of freedom and 506 million
non-zero entries in the matrix of the eigen-system.
As a comparison, the perfect linear scalability is also
plotted as the black line. It is evident that Omega3P
scales very well for this problem up to 4096 pro-
cessors. In the case using 4096 processors, each
processor on average has less than 400 tetrahedral
elements.

V. EXAMPLES

A. A Spherical Cavity
In this example, we take a quarter of unit sphere

cavity shown in Fig 4 and set all the three symmetric
planes to be magnetic boundary. We generate a
serial of quadratic tetrahedral meshes for a conver-
gence study. We use Omega3P to compute the first
8 non-zero modes of this lossless cavity with 2nd
order iso-parametic elements. The eigen-frequency
results are listed in Table I.

B. A Damped Detuned Structure (DDS) Cell
In this example, we tested Omega3P with a cavity

with imperfectly conducting surfaces shown Fig 5.
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Fig. 2. The library dependency for Omega3P version 6. Grey boxes represent 3rd party libraries and white boxes are Omega3P internal
libraries.

TABLE I
THE CONVERGENCE STUDY OF A QUARTER OF UNIT SPHERE. ALL THE THREE SYMMETRIC PLANES ARE SET TO BE MAGNETIC

BOUNDARY. FOUR SET OF TETRAHEDRAL MESHES ARE GENERATED. MESH 1 HAS MESH SIZE OF 0.4 AND 76 ELEMENTS. MESH 2 HAS
MESH SIZE OF 0.2 AND 494 ELEMENTS. MESH 3 HAS MESH SIZE OF 0.1 AND 4173 ELEMENTS. MESH 4 HAS MESH SIZE OF 30883
ELEMENT. MS STANDS FOR MESH SIZE. NE STANDS FOR THE NUMBER OF ELEMENTS. THE UNIT OF FREQUENCIES LISTED IS HZ.

Mode No. Mesh 1 (MS=0.4, NE=76) Mesh 2 (MS=0.2, NE=494) Mesh 3 (MS=0.1 NE=4173) Mesh 4 (MS=0.05, NE=30883)
0 184710699.0458458 184668561.5453410 184662807.1252133 184662469.1116296
1 184746123.6983275 184670011.8803936 184662831.0783886 184662470.1662160
2 289565891.0071810 289275483.5347070 289240006.0647894 289236779.6997921
3 289925940.4188058 289289885.9817063 289240233.4329534 289236802.7380072
4 290260435.5049497 289296420.3611495 289240375.0801812 289236806.8283637
5 333965112.5260288 333626751.6019411 333428670.6436561 333419095.1452913
6 355348302.7894213 355359797.5528432 355149284.9449404 355136370.7973798
7 355970365.9768929 355395570.6044523 355149826.1846064 355136415.2978936

The electrical conductivity of the copper surface
is 5.8×107. We use a mesh with 19788 quadratic
tetrahedral elements and second order basis func-
tions. We compute both wall loss quality factor
for a cavity with perfectly conducting surfaces and
the quality factor from Eq (17) for a cavity with
impedance boundary condition (18). The results
from the former has been validated by microwave
QC of the fabricated cells showing measured fre-
quencies within 0.01% of target value [22], [23].
Table II lists the results of the frequencies and
quality factors computed from both ways. They are

TABLE II
FREQUENCIES AND QUALITY FACTORS COMPUTED FOR A DDS

CELL.

Method Frequency Quality Factor
Lossless cavity 11.4459 GHz 6523

Cavity with impedance BC 11.4468 GHz 6564

in good agreement.
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Fig. 4. A computer model for a quarter of spherical cavity.

Fig. 5. A computer model for one eighth of the vacuum part of a
DDS cell.

C. A Cavity Coupled with Rectangular Waveguides

Fig 6 shows a computer model of a cavity coupled
with two identical rectangular waveguides. The first
waveguide cutoff is 5.2597GHz. The frequency of
the mode is around 9.4GHz, which is above the first
cutoff but below the second cutoff. Thus, we can
solve the eigenvalue problem ( 26) to compute the
frequency and the quality factor of the mode. With
a mesh of 8378 elements for a quarter geometry, the
computed frequency is 9.3992GHz and the quality
factor 177.98. Alternatively, we can use S-paramter
calculations to decide resonance frequency and the
quality factor by fitting the transmission coefficients
in order to verify the results of the eigenvalue

Fig. 6. A computer model for a cavity coupled with two identical
rectangular waveguides.
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Fig. 7. Transmission coefficients versus operating frequencies in
S parameter calculations for the cavity coupled with rectangular
waveguides. The fitting curve is also plotted. The fitting function
for S(0, 1)2 is 1

1+Q2( f
f0
− f0

f
)2

. The fitted quality factor Q is 177.81

and resonance frequency 9.40 GHz.

computations. We used a mesh with 19818 elements
for a half geometry in the S-parameter calculations.
Fig 7 shows transmission coefficients with respect
to operating frequencies in the cavity. We fitted the
data and got the resonance frequency 9.40GHz and
the quality factor 177.81, in remarkable agreement
with those from eigenvalue computations.

VI. SUMMARIES

We presented Omega3P, a parallel eigenmode cal-
culation code for accelerator cavities in frequency
domain analysis using finite-element methods. We
described the detailed finite-element formulations
and resulting eigenvalue problems for lossless cav-
ities, cavities with lossy materials, cavities with
imperfectly conducting surfaces, and cavities with
waveguide coupling. We discussed the parallel al-
gorithms for solving those eigenvalue problems
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and demonstrated modeling of accelerator cavities
through different examples.
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