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Abstract

Objective—Rapid advances of high-throughput technologies and wide adoption of electronic 

health records (EHRs) have led to fast accumulation of -omic and EHR data. These voluminous 

complex data contain abundant information for precision medicine, and big data analytics can 

extract such knowledge to improve the quality of health care.

Methods—In this article, we present -omic and EHR data characteristics, associated challenges, 

and data analytics including data pre-processing, mining, and modeling.

Results—To demonstrate how big data analytics enables precision medicine, we provide two 

case studies, including identifying disease biomarkers from multi-omic data and incorporating -

omic information into EHR.
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Conclusion—Big data analytics is able to address –omic and EHR data challenges for paradigm 

shift towards precision medicine.

Significance—Big data analytics makes sense of –omic and EHR data to improve healthcare 

outcome. It has long lasting societal impact.

Index Terms

Precision medicine; big data analytics; -omic data; electronic health records; bioinformatics; 

health informatics

I. Introduction

TO achieve the best care for patients, many models have been proposed over the years to 

improve the healthcare system. The goal of the early “personalized medicine” model is to 

customize healthcare delivery for each individual and to maximize the effectiveness of each 

patient’s treatment [1]. In 2009, Hood et al. propose the “personalized, predictive, 

preventive, and participatory medicine” (a.k.a. P4 medicine) model that aims to transform 

current reactive care to future proactive medicine, and ultimately to reduce healthcare 

expenditure and improve patients’ health outcome [2]. Recently, the new “precision 

medicine” model is proposed to precisely classify patients into subgroups sharing a common 

biological basis of diseases for more effective treatment and improved care outcome [3, 4]. 

Precision medicine requires data utility ranging from collection and management (i.e. data 

storage, sharing, and privacy) to analytics (i.e. data mining, integration, and visualization) 

[5]. Because of rapid advances in biotechnologies, highly complex biomedical data are 

becoming available in huge volumes [6]. To make sense of these heterogeneous data, big 

data analytics, including data quality control, analysis, modeling, interpretation, and 

validation, is needed to cover application areas such as bioinformatics [7–9], health 

informatics [10–12], imaging informatics [13, 14], and sensor informatics [15, 16].

As presented in 2015 US Precision Medicine Initiative [17], incorporating -omic data and 

knowledge into electronic health record (EHR) (Fig. 1) is viewed as a necessary step for 

delivering precision medicine [3, 5, 17, 18]. Thus, this article reviews big -omic and EHR 

data analytics for precision medicine with key terms summarized in Tables I and II. Section 

II presents -omic and EHR data characteristics, challenges, and big data analytics; Section 

III uses two case studies to illustrate the impact of big data analytics in precision medicine; 

Section IV enumerates several well-known biomedical big data initiatives; Section V 

discusses current opportunities in big data analytics for precision medicine; and finally, 

Section VI concludes this article.

II. Big Data For Precision Medicine

The invention of high-throughput -omic assays such as next-generation sequencing (NGS) 

and mass spectrometry (MS) has led to fast accumulation of -omic data. Likewise, the wide 

adoption of EHR for the entire population provides a foundation for studying healthcare 

efficiency and safety [19]. -Omic data analytics often aims at finding biomarkers by cleaning 

up raw data generated by NGS or MS, extracting molecular profiles, identifying statistically 
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significant molecules, constructing models describing molecular interactions or temporal 

system behavior, and validating putative biomarkers. EHR data analytics typically aims at 

predicting future outcome based on population and individual longitudinal data. The 

analytics has a similar process such as data cleaning, clinical features identification, 

predictive model construction, and clinical validation.

A. Biomedical Big Data

A.1. Big -Omic Data—-Omic data contain a comprehensive catalog of molecular profiles 

(e.g. genomic, transcriptomic, epigenomic, proteomic, and metabolomic as explained in 

Table II) in biological samples that provide a basis for precision medicine [17]. The genome, 

transcriptome, and epigenome are upstream of the proteome and metabolome. A genome is 

unique and mostly invariant over time with its knowledge embedded in single nucleotide 

polymorphisms (SNPs), frameshift mutations (insertions or deletions; or indels), copy 

number variations (CNVs), and other structural variations (SVs) [30, 31]; transcriptomic 

knowledge is contained in gene expression, transcript expression, gene fusion, and 

alternative splicing [32, 33]; epigenomic knowledge is carried in protein-DNA binding sites, 

histone modification patterns, and DNA methylation patterns [34]; proteomic knowledge is 

reflected by protein expression, post-translational modification, and protein-protein 

interactions [35]; and metabolomic knowledge is shown in the abundance of metabolites 

[36]. Because epigenomic information impacts transcriptomic, proteomic, and metabolomic 

profiles [37], and the proteome and metabolome are directly responsible for the 

establishment of phenotypes, uncovering interactions among the proteome, metabolome, and 

upstream processes is a key towards precision medicine.

A.2. Big Electronic Health Record Data—EHR data can be unstructured (e.g., clinical 

notes) or structured (e.g., ICD-9 diagnosis codes, administrative data, chart, and medication) 

[38]. Written or dictated clinical notes describe the patient’s condition and are the most 

efficient and human-intuitive way for clinical documentation. However, they are the most 

challenging for computer analysis because of (1) unstructured and heterogeneous data 

formats, (2) abundant typing and spelling errors, (3) violation of natural language grammar, 

and (4) rich domain-specific abbreviations, acronyms, and idiosyncrasies [39]. Structured 

EHR data can be categorized into two classes [40]. Administrative data include those remain 

unchanged during the entire course of a clinical encounter (e.g., demographic data), and 

those keep updating over time (e.g., diagnoses and procedures) [41]. Ancillary clinical data 

are frequently recorded during a clinical encounter that can be discrete (e.g., physiological 

measures, medication, and lab tests), or continuous (e.g., respiration, blood pressure, pulse 

oximetry, and electrocardiography waveforms captured by sensors, either through bedside 

monitoring devices or ambulatory, implanted, or wearable devices) [40].

B. Challenges Associated with -Omic and EHR Data

-Omic and EHR big data analytics is challenging due to data frequency; quality; 

dimensionality; and heterogeneity.

B.1. Diverse Data Collection Frequency—First, different data modalities have 

different data collection frequency. For example, in -omic data, a genome is invariant over a 

Wu et al. Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



long period of time, and often only needs a one-time data acquisition, while other types of -

omic data vary with environment, tissue types, and time that require multi-time-point 

acquisition. In EHR, bedside monitoring data are captured at very high frequency, while lab 

tests may be taken a few times a day. In addition, data generation frequency may be 

influenced by cost (e.g. proteomic/metabolomic data generated by MS versus genomic/

transcriptomic/epigenomic data generated by NGS). Second, data collection frequency can 

be irregular. For example, in EHR, most clinical variables have irregular sampling 

frequencies, depending on the criticality of a patient and the easiness of a measurement.

B.2. Inherent Data Quality Issues—In -omic data, quality issues are caused by a 

combination of biological, instrumental, and environmental factors such as sample 

contamination [42, 43], batch effects [44, 45], and low signal-to-noise ratios [46, 47]. In 

EHR data, quality issues include missing data because recorded clinical variables vary with 

each clinical encounter and depend on clinical team’s assessment of the patient’s condition 

[48], and erroneous data entries happening due to data entry mistakes or misinterpretation of 

original documents when entering [49]. For high-resolution waveform data, common quality 

issues include random noise, gaps in the waveform, and artifacts (e.g., patient’s motion) 

[50]. These data quality issues may lead to wrong conclusion, but correcting these remains 

challenging.

B.3. High Dimensionality—A big challenge in either -omic or EHR data mining is the 

“curse of dimensionality” associated with high-dimensional data [51]. -Omic data often have 

many dimensions or features (may be more than 104) much larger than the number of 

samples available, while EHR data may contain a large sample size of high-dimensional data 

but with each individual sample only sparsely populated. Making sense of these data with 

statistical significance presents to be challenging.

B.4. Heterogeneous Data Types—In -omics, using underlying molecular fingerprints to 

characterize disease subtypes may require heterogeneous multi-omic data. For example, the 

integrative personal omics profile (iPOP) project has integrated multiple molecular 

expression profiles to uncover dynamic molecular changes between healthy and diseased 

states [52]. However, integrating multi-omic data is challenging because of variations in 

represented biological processes, technical and biological noise levels, identification 

accuracy, spatiotemporal resolution, and many other confounding factors [53]. In EHR, the 

data are inherently heterogeneous. To accomplish precision medicine, it is necessary and 

critical to make sense of heterogeneous data.

C. Big Data Analytics for Precision Medicine

C.1. General Analytics for Biomedical Big Data—Most -Omic and EHR are high-

dimensional data that not only require longer computational time but also affect the accuracy 

of analysis. Thus, we try to reduce data dimensionality by identifying a subset of variables 

or latent factors that preserve as much of the characteristics of the original data as possible 

with two strategies (Table III): (i) feature selection that aims to select an optimal subset of 

existing features, and (ii) feature extraction that aims to transform existing features into a 

more compact set of dimensions [56].
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Feature selection techniques consist of filtering, wrapper, or embedded methods. Filtering 

methods limit the number of features by calculating a score designed to estimate the 

usefulness of each feature. Thus, they are generally faster and do not require explicit class 

labeling. The minimum redundancy maximum relevance (mRMR) method is a filtering 

method that iteratively selects features sharing the most mutual information (relevance) with 

the least redundancy [57]. In contrast, wrapper methods select a subset of features (i.e. 

“wrap” the feature selection) for targeted learning models by using evaluation metrics such 

as cross-validation accuracy [58]. Embedded methods integrate machine learning algorithms 

(e.g. support vector machines) with recursive feature elimination [59].

Among feature extraction techniques, principal component analysis (PCA) is a basic method 

that identifies a small number of orthogonal linear vectors [51]. Its performance heavily 

depends on correctly identifying an optimal number of components, and requires careful 

testing and validation [60]. Other techniques include artificial neural networks such as 

autoencoders [61], and nonlinear kernels in PCA [62].

C.2. -Omic Data Pre-processing—NGS and MS high-throughput assays require 

different pre-processing methods that are summarized in Table IV. NGS is a popular assay 

for genomic, transcriptomic, and epigenomic studies. Its common pre-processing step is 

sequence mapping that identifies not only the origin but also the alignment of each read [78]. 

This step is computationally intensive and requires auxiliary data structures (e.g., the hash 

table [63] and the Burrows-Wheeler transform [64]), multithreading, or in-memory 

computing [65] for improved computational efficiency. Genomic studies typically aim to 

identify variants in a sequenced genome [79]. Small-scale variant (i.e., SNPs and indels) 

detection uses “per base differences” between reads and the reference genome as the 

evidence [30, 66]. Large-scale variant (i.e., SVs) detection uses read-pair-based, read-depth-

based, split-read-based, and assembly-based methods [80, 81]. Transcriptomic studies 

mostly center on expression profiling, fusion gene detection, and alternative splicing 

detection [32, 33]. Expression profiling associates mapped reads with genes and isoforms. 

Different profiling methods handle multi-mapped reads differently, where some methods 

associate the reads with all loci [67, 68], while others probabilistically associate the reads 

with only a few model-inferred loci [69, 70]. Fusion gene detection relies on two factors, the 

spanning read pairs and the split read [24, 25]. Alternative splicing detection relies on either 

de novo transcriptome assembly [71, 72, 82–84], or inference from sequence mapping 

outputs [70, 73]. Epigenomic studies mainly focus on identifying patterns of protein-DNA 

binding sites, histone modification, and DNA methylation [34]. Epigenomic data pre-

processing builds a profile representing the density of reads along the genome, models 

background noises, and determines statistically significant peaks [78].

MS is for proteomic and metabolomic studies, and its pre-processing steps include 

alignment, baseline correction, and peak detection [85]. In chromatography-coupled MS, 

chromatographic peak alignment can correct drift to ensure coherent retention time and 

accurate mass across samples, and mass-to-charge ratio (m/z) alignment can ensure mass 

spectra and component features are comparable among samples [86]. In MALDI (matrix-

assisted laser desorption ionization) MS, baseline correction is particularly important. Low-

mass measurement noise from the chemical matrix used in MALDI experiments affects the 
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spectral baseline and needs to be removed prior to analysis [87]. Peak detection is then 

performed based on criteria such as signal-to-noise ratio, peak shape, and detection 

thresholds [88]. A common subsequent step is the identification, and potentially the filtering, 

of isotopic peaks from the spectrum [77].

C.3. Biomarker Identification Using -Omic Data—In practice, different groups of 

samples are collected for different biological conditions (e.g., disease vs. non-disease) or 

different time points (e.g., before vs. after a treatment). Thus, Table V summarizes selected 

tools that identify discriminatory biomarkers among different groups. Most -omic 

biomarkers are identified by investigating statistically significant differences among groups, 

such as differentially expressed genes or transcripts [94–96], differential alternative splicing 

[97, 98], differential protein-DNA binding [99], differential histone modification [100], and 

differential DNA methylation [101]. The basic idea is to quantify and then fit the abundance 

of each group to Poisson-based distributions (e.g., the Poisson distribution and the negative 

binomial distribution), followed by statistical tests (e.g., the Fisher’s exact test and the 

likelihood ratio test) that determine the statistical significance of each molecular feature. For 

genomic data, genome-wide association studies (GWAS) uses different approaches (e.g., the 

chi-squared test or logistic regression) to assess the degree of association between each 

variant and a targeted trait, and then select most significant variants as biomarkers [105]. 

Most GWAS focuses on SNP association [89–91], while only a few infer CNV or SV 

association [92, 93].

C.4. Systems Biology Modeling Using -Omic Data—To gain insights about a 

complex molecular system, we can conduct systems biology modeling using either “static 

network analysis” or “dynamic temporal analysis” based on -omic features (Table VI).

Static network analysis studies the interactome (i.e., a complete set of molecular 

interactions) with three steps [113]: identifying a network scaffold that describes interactions 

among -omic features [106, 108]; decomposing the network scaffold into smaller network 

modules [106–108]; and mathematically representing each network module for downstream 

simulation and analysis [114]. Most interactome networks use a single -omic data such as 

metabolic networks and gene regulatory networks. Few incorporate multi-omic data but are 

limited to simpler organisms (e.g., S. cerevisiae and C. elegans) [115].

Dynamic temporal analysis (e.g., ordinary or partial differential equations, Boolean 

networks, agent-based models, and Petri nets [116]) makes use of temporal measurement of 

- omic data to develop and validate dynamic predictive models of complex systems. For 

example, a recent study on A. thaliana used a Granger causality model to integrate two types 

of metabolomic data acquired at multiple time points for studying the interaction of primary 

and secondary metabolism [117].

C.5. EHR Data Pre-processing—Information embedded in EHR is abundant but 

disorganized in nature. Thus, EHR data requires systematic pre-processing that are 

summarized in Table VII. On EHR missing data, conventional approaches either impute 

missing values by the mean or median in a population, or list-wise or pair-wise delete 

records with missing values. These approaches are simple and easy to implement, but they 
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ignore the underlying data structure and tend to introduce additional biases [128]. Thus, 

more robust missing data imputation methods such as interpolation [129], multiple 

imputation [130], expectation maximization [131], and maximum likelihood [132] are 

needed.

On high time-resolution waveform data quality issues [50], we can use (i) filtering strategies 

such as median filtering, Kalman filtering, and model-based filtering to handle noise [50, 

123]; (ii) signal quality indices that detect the presence of expected physiological features, 

quantify the agreement between signals with mutual information, or infer other ad hoc 

definitions of signal quality to identify artifacts and gaps in the waveform [123–125]; and 

(iii) sensor fusion techniques (e.g. using redundant measurements of electrocardiography, 

blood pressure sensors, and photoplethysmography to derive a more reliable measure of 

heart rate than any single signal alone [126, 127]) to correct artifacts and fill in gaps in the 

waveform.

C.6. EHR Data Mining—To derive actionable knowledge from complex EHR big data, 

two strategies such as static endpoint prediction and temporal data mining are summarized 

in Table VIII.

C.6.1. Static Endpoint Prediction: After dimensionality reduction, we can model the 

relationship between selected clinical features (i.e. the patient’s condition) and targeted 

clinical endpoints (i.e. the clinical outcome) with three groups of techniques: Regression 

analysis is a statistical process that estimates the relationship between independent variables 

(i.e., features) and dependent variables (i.e., endpoints). If dependent variables follow 

distributions such as normal, Poisson, and binomial, we can use a generalized linear model 

for regression model fitting; Classification involves building statistical models that assign a 

new observation to a known class. Many classification techniques such as decision trees, k-

nearest neighbors, and support vector machines (SVM) prove to be effective in clinical 

applications; Associate Rule Learning (ARL) discovers frequent and reliable associations 

among clinical variables, and these association rules describe that if all elements in the 

antecedent occurs, all elements in the consequent should occur with certain confidence [28]. 

In general, these machine learning techniques prefer a large sample size.

C.6.2. Temporal Data Mining: EHR captures diagnosis, treatment, and outcome 

chronologically throughout a medical encounter, and thus, it is important to model temporal 

relationship between events using temporal data mining techniques such as the hidden 

Markov model (HMM) and the conditional random field (CRF) [135, 136]. One constraint 

of HMM and CRF is that they require predefined clinical variables and outcome categories 

ofen difficult to generalize for a given treatment of a given patient. Thus, temporal 

association rule mining (TARM) is proposed to discover causality between the event and 

outcome. A temporal association rule, denoted by A →T C, describes an antecedent A 

followed by a consequent C separated by a time difference T. Because the selection of the 

event and outcome is flexible, TARM model can be tailored for any event-outcome 

combination in various clinical settings [137, 139].
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D. Enablers of Biomedical Big Data Analytics

The big data revolution has led to the development of enterprise tools and platforms for 

extracting, summarizing, and interpreting knowledge from rapidly generated data, for 

business intelligence, analytics, and predictive modeling as summarized in Table IX [11, 

140, 141].

Distributed computing systems such as Apache Hadoop (based on MapReduce) provide the 

storage and processing backbone for dealing with very large datasets [142]. Specific tools 

also exist to solve more specialized problems. For example, IBM InfoSphere Streams and 

Apache Spark Streaming can handle real-time streaming data [143, 144]. Cloud computing 

providers such as Amazon Elastic Compute Cloud (EC2) can provide on-demand computing 

power to accommodate scalable growth from development to truly big data production 

[145]. Many cloud-based services in bioinformatics such as Illumina’s BaseSpace [146] and 

the Galaxy project [147] are deployed on Amazon EC2.

To deploy biomedical big data for precision medicine in health care, there is a critical need 

to address domain-specific challenges such as the requirements of HIPAA (Health Insurance 

Portability and Accountability Act), HITECH (Health Information Technology for 

Economic and Clinical Health), and other privacy regulations. Thus, security is an important 

enabling technology (e.g., encryption for protected health information) in biomedical big 

data [140, 145, 148].

III. Case Studies

In this section, we present two real-world applications to illustrate the utility of biomedical 

big data analytics for precision medicine: (1) integrative -omic data for the improved 

understanding of cancer mechanisms (see Fig. 2), and (2) the incorporation of genomic 

knowledge into the EHR system for improved patient diagnosis and care (see Fig. 3).

A. Integrative -Omics for Precise Cancer Understanding

One notable effort that integrates multi-omic data for the improved understanding of cancer 

mechanisms is The Cancer Genome Atlas (TCGA) [149]. TCGA hosts public datasets of 27 

cancer types with more than 11,000 patient cases. Each patient is annotated with clinical 

data (i.e. demographic, diagnostic, and survival data) and multimodal -omic data (i.e., 

genomic, transcriptomic, epigenomic, and proteomic).

We use head and neck squamous cell carcinoma (HNSCC) as an example to illustrate the 

integrative multi-omic study for precision medicine [150]. In 2014, a pan-cancer study with 

twelve cancer types using multi-omic TCGA data was performed [151]. Among 3,527 

samples in total, 305 were HNSCC. Six different data types (i.e. DNA copy number, 

methylation, mutation, and expression of mRNAs, miRNAs, and proteins) were analyzed 

both separately and integratively. By using clustering-based methods, pathway activities 

(inferred from gene expression and copy number data) have shown common copy number 

variations, mutation frequency patterns, and survival patterns between HNSCC and lung 

squamous cell carcinomas or some bladder cancers. Such integrative pan-cancer analysis 

provides more precise subtyping across multiple cancers sharing common molecular-level 
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processes underlying cancer development. This new subtyping system reflects precision 

medicine because it finds precise classification of patients into disease subgroups.

TCGA Research Network has published more than 30 articles describing multi-omic 

investigation on numerous cancer types, and identified more precise, clinically relevant 

subtyping for multiple cancers [152–154].

B. Adoption of Genomics in EHR for Precision Medicine

In a clinical setting, healthcare providers use electronic medical record (EMR) for clinical 

decision support. Thus, it is important to incorporate -omic data and knowledge into EMR. 

The Electronic Medical Records and Genomics (eMERGE) Network consortium aims to 

identify causal genomic variants (mostly SNPs) for EMR-based phenotypes and to integrate 

identified genotype-phenotype associations into the EMR system [155]. One crucial 

challenge is on how to store variants present in an individual or even in family members in 

the EMR [156]. The consortium has proposed several recommendations on augmenting the 

current EMR structure: (1) it should store various genomic variants, such as SNPs, indels, 

and CNVs, in a discrete computable format; (2) it needs to satisfy interoperability to reduce 

the burden in data transfer and update within and between healthcare facilities; (3) it has to 

support rule-based decision support engines; and (4) it must contain abundant visualization 

elements for easier interpretation [157]. Another big challenge is that each individual 

typically has millions of variants. The consortium has proposed one potential solution that 

stores only known pathological variants in the EMR system. However, because the set of 

known pathological variants may change over time, this approach may lead to the inclusion 

of false positive and the exclusion of false negative variants. Thus, an alternative solution is 

to archive raw data in separate repositories easily accessible when necessary [158].

EMR is only for local clinic and hospital, while EHR contains and shares medical records 

among all participant clinics and hospitals [159]. Thus, interoperability is critical in using 

big data for precision medicine. Recently, the Health Level Seven International (HL7) 

proposed the Fast Healthcare Interoperability Resources (FHIR) standard that addresses this 

important issue. On clinical genomics, several new FHIR resources and extension definitions 

are designed for variant data [160]. With such the standardized data exchange protocol, 

clinicians can utilize genomic information with other existing EHR data to determine the 

most effective treatment for each patient, which is a paradigm shift towards precision 

medicine.

IV. Biomedical Big Data Initiatives

To apply big data analytics for precision medicine, Table X summarizes multiple consortium 

initiatives that collect and organize data from various projects and trials, and make them 

available to the research community for secondary data use.

First, initiatives such as Project Data Sphere aim to improve research efficiency and to 

encourage collaboration by integrating information of clinical trials for different cancers. For 

example, the European Union-funded RD-Connect aggregates data of multiple rare diseases 

from around the world. The Cancer Genome Atlas (TCGA) of US, Therapeutically 

Wu et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Applicable Research to Generate Effective Treatments (TARGET), and the International 

Cancer Genome Consortium (ICGC) aim to study multiple aspects of individual diseases by 

collecting multi-omic data of hundreds of patients for each cancer type. In contrast, the US 

1,000 Genomes Project and the UK-based 100,000 Genomes Project aim to connect 

genotypes with phenotypes using single -omic data type.

Second, large data repositories have been created and maintained by organizations such as 

US National Institutes of Health (NIH) and the World Health Organization (WHO). The 

Trans-NIH BioMedical Informatics Coordinating Committee (BMIC) has established a data 

repository that archives the data from 61 large multi-center studies for promoting secondary 

use of biomedical data [161]. The Global Health Observatory Data Repository (GHO) is 

maintained by WHO for population-level health studies [162]. As another example, the 

Health Indicators Warehouse (HIW) within the US Department of Health and Human 

Services provides country-level and state-level aggregated clinical information [163].

V. Discussion

Among many data types included in the NIH Big Data to Knowledge (BD2K) Initiative, -

omic data, EHR, and medical imaging data are the three most important biomedical big data. 

We conducted the review of -omic and EHR data because of their close relationship with 

precision medicine [3, 5, 17, 18].

Big data have had major societal impact in energy, environment, financial, and others. They 

motivate rapid advances in data storage, data mining and analytics, data retrieval, and data 

visualization [164, 165]. When applying to biomedicine and healthcare, big data will 

improve quality and outcome by (i) discovering new knowledge (e.g., automated 

identification of postoperative complications in EHR data [166]); (ii) disseminating new 

knowledge (e.g., data-driven clinical decision support systems such as IBM Watson); (iii) 

incorporating -omic data into EHR (e.g. eMERGE network [167]); and (iv) implementing 

patient-centered care (e.g., e-health [168]).

To accelerate the delivery of precision medicine, more research is needed in the following 

biomedical big data areas:

1. -Omic Data Integration: As illustrated by the TCGA case study, integrative 

multi-omic data analysis is of growing importance because it provides holistic 

view of molecular fingerprints for each patient’s condition. Recent research has 

shown positive impact of knowledge and insight obtained from integrative 

analysis of genomic and transcriptomic [169], transcriptomic and proteomic 

[170], and multiple -omic data types [53, 151] on disease diagnosis, prognosis, 

and treatment. The next important direction is the development of guidelines (or 

best practices) for -omic data integration and interpretation that will in turn 

enable better prediction of bio-system behavior, and safer and more effective 

therapeutics.

2. Waveform and Irregularly Spaced Time Series Analysis: Real-time streaming 

data analytics needs to be further developed due to the pervasive use of wearable 

Wu et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensors in either the critical care setting or in the continuous home monitoring 

setting for fitness and preventative medicine [171], and the need to reduce alarm 

fatigue [172]. However, the challenge for irregularly sampled temporal data 

remains and requires advanced imputation techniques and robust parameter 

extraction techniques [50, 173].

3. Patient Similarity: Precision medicine promotes precise subgroup classification 

of patients based on biological basis such as molecular profiles. Thus, EHR 

mining can assist in patient classification based on clinical measurements (e.g. 

drug responses, physiological signals, and disease susceptibility). However, 

because of high patient variability for any disease, the precise subtypes of many 

diseases remain unknown as of today, and it requires systematic big data 

analytics to model physician knowledge to validate the reliability of patient 

subgrouping based on EHR mining.

VI. Conclusion

In this review, we present -omic and EHR big data challenges and current progressed. We 

provide case studies to show how big data analytics can facilitate precision medicine. 

Because biomedical big data analytics is in its infancy, more biomedical data scientists and 

engineers are needed to gain necessary biomedical knowledge, to use large data provided by 

biomedical big data initiatives, and to put concerted effort in areas such as multi-omic data 

integration, waveform and time series data analysis, and patient similarity and so on to speed 

up big data research for precision medicine. By delivering the most suitable and effective 

treatment to each patient based on their precise subtyping information, the healthcare system 

can achieve better care efficiency and quality.
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Fig. 1. 
The key types of biomedical big data for precision medicine.
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Fig. 2. 
Integrative analysis of multi-omic data leads to the improved understanding of cancer 

mechanisms, which in turn enables more precise classification of cancer subtypes.
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Fig. 3. 
Integrating derived -omic knowledge into the existing EHR system is an approach to 

utilizing molecular information for clinical decision support, and it also help deliver 

precision medicine.
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TABLE I

Biomedical Big Data Keywords

Topics Keywords

-Omic Data Genomics, transcriptomics, epigenomics, proteomics,
metabolomics, etc.

EHR Data Big data in EHR, next-generation EHR, clinical data
management, medical coding systems, etc.

Data Challenges Biomedical big data challenges, -omic data challenges, EHR
data challenges, etc.

-Omic Data Analytics NGS sequence mapping, NGS variant detection, RNA-seq
computation, ChIP-seq computation, MS pre-processing, NGS
biomarker identification, NGS differential analysis, -omic
network analysis, -omic dynamic modeling, etc.

EHR Data Analytics Temporal medical data mining, irregular time series analysis in
EHR, clinical decision support, unsupervised/ supervised
learning in EHR, waveform analysis in EHR, etc.

Big Data Analytics
Enablers

Big data harmonization, big data platform, big data framework
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TABLE II

-Omic and EHR Data Concept Glossary

Term Definition Ref.

Genome “An organism’s complete set of DNA” [20]

Transcriptome “A collection of all the gene readouts present in an
organism’s cell”

[20]

Epigenome “A multitude of chemical compounds that can tell the
genome what to do”

[20]

Proteome “An entire set of proteins encoded by the genome” [21]

Metabolome “A comprehensive catalogue of metabolites in an
organism’s cell”

[21]

-Omics “The study of the -ome” [21]

Single Nucleotide
Polymorphism

“A variation at a single position in a DNA sequence among
individuals”

[22]

Frameshift
Mutation (Indels)

“A genetic mutation caused by a deletion or insertion in a
DNA sequence that shifts the way the sequence is read”

[22]

Copy Number
Variation

“The number of copies of a particular genetic sequence
differs between individuals”

[22]

Structural
Variation

“Genomic alterations that involve segments of DNA that
are larger than 1 kb, and can be microscopic or
submicroscopic”

[23]

Fusion Gene “A new gene formed by the breakage and re-joining of two
different genes”

[24]

Spanning Read
Pair

“paired reads that harbor a fusion boundary in the insert
sequence”

[25]

Split Read “A read that harbors a fusion boundary in the read itself ” [25]

Alternative
Splicing

A process that includes or excludes certain exons when
forming mature mRNAs

[26]

Protein-DNA
Binding Site

A segment of DNA sequences where targeted proteins may
bind

[27]

Histone
Modification

“A covalent post-translational modification to histone
proteins that can impact gene expression”

[27]

DNA Methylation “The addition of methyl (CH3) group to DNA that modifies

the function of the genes”

[27]

Antecedent (Ant.)
in ARL

A set of conditions which the outcome variable depends on [28]

Consequent
(Cons.) in ARL

A set of conditions serving as the outcome variable [28]

Confidence in
ARL

[28]

Fast Healthcare
Interoperability
Resources (FHIR)

FHIR uses standardized “Resources” (i.e., predefined data
formats and elements) to exchange EHR data.

[29]
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TABLE III

Selected Methods for Dimensionality Reduction

Method Advantages Limitations

Feature extraction: PCA,
SVD, tensor-based

approaches* [54]

Reduces dimensionality;
relatively immune to noise

Performance usually
inferior to supervised
approaches; difficult to
interpret results

Feature selection: filter-
based (mRMR), wrapper-
based (sequential feature

selection)* [55]

Reduces dimensionality;
easy to interpret

Sometimes affected by
noisy data

*
Highly impactful method with more than 50,000 relevant papers.
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TABLE IV

Selected Tools for -Omic Data Pre-processing

Tool Assay -Omic Data Key Functionality

GMAP* [63]

Next-
generatio
n
sequenci
ng

Genomic,
transcriptomic
, and
epigenomic

Sequence mappingBWA* [64]

STAR* [65]

GATK* [30]
Genomic

Genomic variant
discovery

SAMtools* [66]

HTSeq* [67]

Transcriptomi
c

Gene and transcript
expression quantificationBEDTools*

[68]

RSEM* [69]
Gene and transcript
expression quantification

Cufflinks* [70]

defuse [25]

Gene fusion detection
TopHat-Fusion
[24]

Trans-ABySS*

[71]

Alternative splicing
detection and
quantification

Trinity* [72]

Cufflinks* [70]

Scripture* [73]

MACS* [74]
Epigenomic ChIP-seq peak calling

SISSRs* [75]

OpenMS [76]
Mass
spectrom
etry

Proteomic and
metabolomic

Peak detection and
quantificationMZmine 2*

[77]

GMAP stands for genomic mapping and alignment program; BWA, Burrows-Wheeler aligner; STAR, spliced transcripts alignment to a reference; 

GATK, genome analysis toolkit; RSEM, RNA-seq by expectation-maximization; Trans-ABySS, transcriptome assembly and analysis pipeline; 

MACS, model-based analysis of ChIP-seq; and SISSRs, site identification from short sequence reads.

*
Highly impactful tool with more than 50 citations per year.
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TABLE V

Selected Tools for -Omic Biomarker Identification

Tool -Omic Data -Omic Biomarker Approach

SNPassoc [89]

Genomic

Significant SNPs
associated with traits

Genome-
wide
association
studies

SNPTEST* [90]

VAT [91]
Significant SNPs and
indels associated with
traits

PLINK* [92]

Significant SNPs, indels,
and CNVs associated with
traits

CNVRuler [93]
Significant CNVs
associated with traits

edgeR* [94]

Transcriptomic

Differentially expressed
genes /transcripts

Differential
analysis
(model fitting
and statistical
tests)

DESeq2* [95]

omniBiomarker [96]

DiffSplice [97]
Differential alternative
splicing

MATS [98]

DBChIP [99]

Epigenomic

Differential binding sites

ChIPDiff [100]
Differential histone
modification sites

QDMR [101]
Differentially methylated
regions

DetectTLC [102]

Proteomic and
metabolomic

Molecular patterns in
mass spectrometry images

Similarity
scoring

Automics [103]

Differentially abundant
metabolites

Supervised
and
unsupervised
learning

MetaboAnalyst*

[104]

SNPassoc stands for SNP-based whole genome association studies; VAT, variant association tools; PLINK, population-based linkage analyses; 

edgeR, empirical analysis of digital gene expression data in R; MATS, multivariate analysis of transcript splicing; DBChIP, differential binding 

with ChIP-seq data; and QDMR, quantitative differentially methylated regions.

*
Highly impactful tool with more than 50 citations per year.
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TABLE VI

Selected Tools for -Omic Data Modeling

Tool Modeling
Type

Approach Key Functionality

WGCNA*

[106]

Static
Network
analysis

Correlation between
quantitative variables

Network construction, module
detection, and gene selection

CODENSE
[107]

Summary graphs and
dense subgraphs for
frequent edges

Mining frequent coherent dense
subgraphs across large numbers
of massive graphs

MEMo* [108]
Mutually exclusive
genomic alterations

Network construction, module
detection, and gene selection

CellDesigner
[109]

Dynamic
Temporal
Analysis

Ordinary and partial
differential equations

Graphical interface for ODE or
PDE model implementation and
simulation; systems biology
markup language compatibility

NetLogo*

[110]
Agent-based models

General-purpose modeling
environment capable of
simulating hundreds to
thousands of interacting agents

BoolNet [111] Boolean models
Simulating and analyzing
Boolean and probabilistic
Boolean models

Snoopy [112] Petri nets
Network modeling using Petri
nets; hierarchical structure and
multiple class compatibility

WGCNA stands for weighted correlation network analysis; CODENSE, coherent dense subgraphs; and MEMo, mutual exclusivity modules in 

cancer.

*
Highly impactful tool with more than 50 citations per year.
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TABLE VII

Selected Methods for EHR Data Pre-processing

Method Advantages Limitations

Missing data: list-wise

deletion, mean filling* [118,
119]

Simple to implement;
complete case analysis

Loss of statistical power;
introduces biases;
underestimates variances

Missing data: hot deck,

nearest neighbor* [120]

Simple to implement and
interpret; immune to
cross-user inconsistencies

Introduces biases;
underestimates variances

Missing data: interpolation
(linear, piece-wise linear,
spline, cubic) [121]

Simple to implement and
interpret; direct estimation
on the basis of neighbors

Does not account for
relationships among
different features

Missing data: model-based
filling (expectation
maximization, maximum
likelihood, multiple

imputations)* [122]

Accounts for uncertainty
in imputations

Does not account for
missing data mechanisms
(i.e., MCAR, MAR, and
MNAR)

Waveforms: noise filtering
(IIR, FIR, PCA, ICA,
Kalman filter, wavelets)
[50, 123]

Generally simple to
implement

Falls short in situations
where “true” waveform is
obscured by artifact such as
patient motion

Waveforms: signal quality
indices [123–125]

Human-interpretable
metrics of signal quality

Can be complex to
implement and
computationally intensive;
may require ad-hoc
calibration based on the
features of the target
waveform

Waveforms: sensor fusion
[126, 127]

Improved SNR; reduces
data dimensionality while
increasing data quality

Computationally intensive;
loss of detail from
individual sensor
waveforms

*
Highly impactful method with more than 50,000 relevant papers.
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TABLE VIII

Selected Methods for EHR Data Mining

Method Advantages Limitations

Logistic regression, cox
regression, local regression

(LOESS)* [133]

Simple to implement and
interpret; direct estimates of
relevant hazards for Cox
regression

Sensitive to outliers

Logistic regression with
LASSO regularization [134]

Reduces feature space Prone to overfitting

Hidden Markov models
[135]

Simultaneous detection,
segmentation, and
classification in a waveform

Sensitive to the design of
the Markov model being
trained

Conditional random fields
[136]

Supports temporal analysis;
resistant to differences in
class prevalence

Sensitive to regularization
and feature space size

Relational subgroup
discovery, episode rule

mining, windowing* [137]

Valid sequential techniques
for some clinical
applications

Tradeoffs between
simplicity, complexity,
and temporal resolution

Rule mining, Allen’s
interval algebra, directed

acyclic graph* [138]

Temporal mining/modeling
capabilities

Requires specific
experimental design

*
Highly impactful method with more than 50,000 relevant papers.
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TABLE IX

Selected Platforms for Big Data Analytics

Platform Advantages Limitations

Apache Hadoop

(MapReduce)* [11,
142]

Horizontally scalable; fault-
tolerant; designed to be deployed
on commodity-grade hardware;
free and open-source

Generally most effective for
batch-mode processing; not
always appropriate for real-
time, online analytics

IBM InfoSphere

Platform* [143]

Includes purpose-built tools to
handle streaming information;
integrates with open-source tools
such as Hadoop

Commercial licensing

Apache Spark

Streaming* [144]

Integrates with the Hadoop stack;
allows one code base for both
batch-mode and online analysis

Depends on more expensive
hardware with large amounts
of RAM to work efficiently

Tableau, QlikView,
TIBCO Spotfire,
and other visual

analytics tools*

Visualization of large and
complex data sets

Generally incomplete
solutions, requiring other
tools to effectively handle
data storage

*
Highly impactful platform.
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TABLE X

Selected Biomedical Big Data Initiatives

Consortium Data Sources Data Elements

TCGA Multi-omic data for 27 cancer types,
covering more than 11,000 cases

Clinical, genomic,
transcriptomic, epigenomic, and
proteomic data

Project Data
Sphere

Patient-level data from comparator
arms of Phase IIB and III clinical
trials; currently contains 33 trials
covering 12 cancer types

Common data include baseline,
safety, efficacy, medication,
dosing, lab test, medical history,
and demographic data

TARGET Multi-omic data for 7 types of
childhood cancers

Clinical, genomic,
transcriptomic, and epigenomic
data

1,000
Genomes
Project

Large-scale genome sequencing
project for populations of African,
European, and East Asian ancestry

Low-coverage whole genome
sequencing for 179 individuals;
high-coverage targeted exome
sequencing for 697 individuals

100,000
Genomes
Project

Large-scale genome sequencing
project for studying cancers and rare
diseases in the UK

Genome sequencing will be
completed in 2017

ICGC Genomic data for 18 cancer types;
partially overlap the TCGA data

SNPs, CNVs, methylation, and
gene and miRNA expression

RD-
Connect

Infrastructure project funded by
European Union for facilitating rare
disease research

Currently links to 3 biobanks and
more than 150 rare disease
registries

ADNI Multi-center, longitudinal study with
elderly control subjects, early
Alzheimer’s disease subjects, and
mild cognitive impairment subjects

Clinical, genetic, magnetic
resonance imaging, and positron
emission tomography imaging
data

iDASH Data from 17 focused trials, each of
which represents a specific objective
and a patient population

Imaging, EHR, sensor, and
genomic data from multiple
clinical trials

GHO Worldwide population and
environmental data for infectious
diseases, noncommunicable diseases,
sexually transmitted diseases, and
children’s health

Population-level statistics and
modeling

BMIC Large trials encompassing thousands
of samples

EHR, imaging, genetic, and
social research data

MIMIC II ICU data for more than 30,000
patients with more than 40,000 ICU
stays

Chart data, administrative data,
alert data, lab results, electronic
documentation, and bedside
monitor trends and waveforms

HIW Federal data for aggregated health
indices by geography; covers data
from claims, healthcare cost, to
population statistics

Data element varies, depending
on the trials

TCGA stands for The Cancer Genome Atlas; TARGET, Therapeutically Applicable Research to Generate Effective Treatments; ICGC, 

International Cancer Genome Consortium; ADNI, Alzheimer’s Diseases Neuroimaging Initiative; iDASH, Integrating Data for Analysis, 

Anonymization, and Sharing; GHO, WHO Global Health Observatory Data Repository; BMIC, Trans-NIH BioMedical Informatics Coordinating 

Committee; MIMIC II, Multiparameter Intelligent Monitoring in Intensive Care II; and HIW, Health Indicators Warehouse.
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