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Chemotherapy is a mainstream cancer treatment, but has a constant challenge of drug

resistance, which consequently leads to poor prognosis in cancer treatment. For better

understanding and effective treatment of drug-resistant cancer cells, omics approaches

have been widely conducted in various forms. A notable use of omics data beyond routine

data mining is to use them for computational modeling that allows generating useful

predictions, such as drug responses and prognostic biomarkers. In particular, an

increasing volume of omics data has facilitated the development of machine learning

models. In this mini review, we highlight recent studies on the use of multi-omics data for

studying drug-resistant cancer cells. We put a particular focus on studies that use

computational models to characterize drug-resistant cancer cells, and to predict

biomarkers and/or drug responses. Computational models covered in this mini review

include network-based models, machine learning models and genome-scale metabolic

models. We also provide perspectives on future research opportunities for combating

drug-resistant cancer cells.
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INTRODUCTION

Drug resistance has been a major obstacle for a successful treatment of cancers, as manifested by
over 90% mortality of cancer patients that appeared to be associated with drug resistance
(Bukowski et al., 2020). Drug resistance is a phenotypic state that arises as a result of a complex
interplay between genetic and non-genetic mechanisms (Marine et al., 2020). Such genetic and

non-genetic reprogramming consequently leads to drug resistance through various
mechanisms (Gatti and Zunino, 2005; Housman et al., 2014; Zheng, 2017; Lim and Ma,
2019; Vasan et al., 2019; Bukowski et al., 2020), including: drug inactivation, for example by an
excessive level of glutathione that detoxifies xenobiotics (Jiang et al., 2017; De Luca et al., 2019);
alteration of a drug target by mutations or changes in an expression level (Likhite et al., 2006;
Costa et al., 2008); drug efflux by transporters (Giddings et al., 2021); enhanced DNA damage
repair system (Harte et al., 2014); development of resistance via dysregulated autophagy
(Martin et al., 2017; Cai et al., 2019); epithelial-mesenchymal transition (EMT) (Fischer
et al., 2015; Zheng et al., 2015); or heterogeneity of a cancer cell population having cancer
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stem cells (Seth et al., 2019; Zhao et al., 2021). A state of drug
resistance is indeed a highly complex phenotype that requires
multidimensional approaches.

Omics technologies have now become indispensable for
characterizing mechanisms of cancer progression, and for
identifying effective biomarkers and treatment targets for
cancers. For this reason, large-scale projects have been

launched to generate omics data of various cancer cells. A
recent representative example is the Pan-Cancer Analysis of
Whole Genomes (PCAWG) Consortium of the International
Cancer Genome Consortium (ICGC) and The Cancer Genome
Atlas (TCGA), which has allowed advanced studies on gene
mutations and gene expression profiles across cancers
(Consortium, 2020). The resulting various datasets from such
large-scale efforts have been found to be useful for studying drug-
resistant cancer cells. Relevant representative datasets include the
NCI-60 Human Tumor Cell Lines Screen (Shoemaker, 2006), the
Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al.,

2013), TCGA (Cancer Genome Atlas Research et al., 2013), the
Cancer Therapeutic Response Portal (CTRP) (Seashore-Ludlow
et al., 2015), L1000 profiles from The Library of Integrated
Network-Based Cellular Signatures (LINCS) Program
(Subramanian et al., 2017), the Cancer Cell Line Encyclopedia
(CCLE) (Ghandi et al., 2019), and the Catalogue Of Somatic
Mutations In Cancer (COSMIC) (Tate et al., 2019). All these
datasets have served as a source of novel insights that help
characterize and overcome drug-resistant cancer cells. In

particular, it is expected that an increasing volume of such
large-scale datasets will facilitate development of various
computational models that will better systematize our
approaches to studying drug-resistant cancer cells.

We here review recent studies that utilized multi-omics and
computational modeling approaches to better understand
mechanisms associated with the progression of drug resistance,

and to identify biomarkers and/or drug responses (Figure 1 and
Table 1). Especially, we put more focus on computational
modeling that makes predictions for various scenarios for the
treatment of drug-resistant cancer cells. We also provide an
outlook for further advances on the use of computational
models for studying drug-resistant cancer cells.

MULTI-OMICS ANALYSES

Multiple omics data are often generated to examine various
biological aspects of drug-resistant cancer cells (Figure 1).
Target genotypes and phenotypes examined using omics data
(Table 1) include: cancer-associated mutations (Niehr et al.,
2018; Marczyk et al., 2020; Sinkala et al., 2021); changes in the
expression level of specific genes (Niehr et al., 2018; Nava et al.,
2019; Kagohara et al., 2020;Marczyk et al., 2020; Poojan et al., 2020;
Sinkala et al., 2021); changes in chromosome structure (Kagohara
et al., 2020; Marczyk et al., 2020; Aissa et al., 2021); epigenetic
alterations (e.g., methylation or acetylation states of histone

FIGURE 1 | Scheme of omics data generation and computational modeling to better understand and treat drug-resistant cancer cells.
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TABLE 1 | Recent studies on the use of omics data and computational models to better understand and treat drug-resistant cancer cells.

Approaches Cancer types Resistance type Objectives Drugs References

Multi-omics analyses

• ChiP-seq • Lung cancer • Both acquired

and intrinsic

resistance

• Identification of

biomarkers

• Erlotinib, osimertinib, crizotinib,

vemurafenib, celastrol, and GSK-

1059615

Aissa et al. (2021)

• Single-cell RNA-seq

• RNA-seq

• Proteome (LC-MS/MS)

• ATAC-seq • Breast cancer • Intrinsic

resistance

• Biological

characterization

• Doxorubicin Kumar et al. (2021)

• RNA-seq

• Identification of

therapeutic

targets

• Genome sequencing • 101 Types of

cancers from

40,848 patients

from cBioPortal

• Not specified • Biological

characterization

• MAPK pathway inhibitors (e.g.,

selumetinib)

Sinkala et al. (2021)

• Methylome (reduced representation

bisulfite sequencing)

• mRNA microarray and RNA-seq

• RNA-seq • Melanoma • Intrinsic

resistance

• Biological

characterization

• Vemurafenib Torre et al. (2021)

• Pooled CRISPR screen (MiSeq)

• Genome sequencing • Breast cancer • Acquired

resistance

• Biological

characterization

• Tamoxifen and fulvestrant Achinger-Kawecka

et al. (2020)• Methylome (bisulfite sequencing)

• Hi-C

• ChiP-seq

• RNA-seq

• Methylome (EPIC array) • Breast cancer • Acquired

resistance

• Biological

characterization

• Paclitaxel Deblois et al.

(2020)• ChiP-seq

• RNA-seq

• Metabolome (LC-HRMS)

• ATAC-seq • Head and neck

squamous

carcinoma

• Acquired

resistance

• Biological

characterization

• Cetuximab Kagohara et al.

(2020)• Single-cell RNA-seq

• RNA-seq

• Translatome (microarray) • Leukemia • Not specified • Biological

characterization

• Cytosine arabinoside Lee et al. (2020)

• mRNA microarray

• Identification of

therapeutic

targets

• Proteome (LC-MS/MS)

• Genome sequencing • Breast cancer • Acquired

resistance

• Biological

characterization

• Navitoclax Marczyk et al.

(2020)• Methylome (bisulfite sequencing)

• Identification of

biomarkers

• ATAC-seq

• Single-cell RNA-seq

• RNA-seq

• ChiP-seq • Breast cancer • Acquired

resistance

• Biological

characterization

• Doxorubicin and 5-fluorouracil

(5-FU)

Mukherjee et al.

(2020)• RNA-seq

• Single-cell RNA-seq • Lung cancer • Acquired

resistance

• Biological

characterization

• Cisplatin and paclitaxel Poojan et al. (2020)

• RNA-seq • Gastric cancer

• ATAC-seq • Leukemia • Acquired

resistance

• Biological

characterization

• Bromodomain and Extra-Terminal

motif (BET) inhibitor

Bell et al. (2019)

• ChiP-seq

• Single cell RNA-seq • Identification of

therapeutic

targets

• RNA-seq

• Click-seq

• RNA-seq • Lymphoma • Not specified • Identification of

biomarkers

• Anthracycline-based regimen R-

CHOP (i.e., rituximab,

cyclophosphamide, doxorubicin,

vincristine and prednisone)

Fornecker et al.

(2019)• Proteome (nanoLC-MS/MS)

• Identification of

therapeutic

targets

(Continued on following page)
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TABLE 1 | (Continued) Recent studies on the use of omics data and computational models to better understand and treat drug-resistant cancer cells.

Approaches Cancer types Resistance type Objectives Drugs References

• Proteome, phosphoproteome,

kinome (LC-MS/MS)

• Breast cancer • Acquired

resistance

• Biological

characterization

• 2,5-diaziridinyl-3-hydroxyl-6-

methyl-1,4-benzoquinone (RH1)

Kuciauskas et al.

(2019)

• ChiP-seq • Breast cancer • Intrinsic

resistance

• Biological

characterization

• Trastuzumab Nava et al. (2019)

• RNA-seq

• Identification of

biomarkers

• Exome sequencing • Breast cancer • Both acquired

and intrinsic

resistance

• Biological

characterization

• Epirubicin, docetaxel, and

bevacizumab

Kim et al. (2018)

• Single-cell DNA-seq

• Single-cell RNA-seq

• Genome sequencing

• mRNA microarray

• Phosphoproteome (LC-MS/MS)

• Head and neck

squamous

carcinoma

• Intrinsic

resistance

• Identification of

therapeutic

targets

• Biological

characterization

• Cisplatin Niehr et al. (2018)

Network-based modeling

• GCNA using mRNA microarray data • Breast cancer • Not specified • Identification of

biomarkers

• Trastuzumab and docetaxel Li et al. (2021a)

• Cox regression model

• Weighted GCNA using RNA-seq

data

• Breast cancer • Not specified • Identification of

biomarkers

• Doxorubicin Li et al. (2021b)

• Cox regression model

• Gene co-expression network

analysis (GCNA) using RNA-seq

data

• Breast cancer • Not specified • Identification of

biomarkers

• Doxorubicin, cytoxan, and

tamoxifen

Cui et al. (2020)

• Methylome (BeadChip array)

• Genome sequencing

• Biological

characterization

• Weighted GCNA using mRNA

microarray data

• Gastric cancer • Acquired

resistance

• Identification of

biomarkers

• 5-FU and cisplatin Qi and Zhang,

(2020)

• ceRNA network for correlation

between lncRNA and mRNA levels

using RNA-seq data

• 19 Types (e.g., Lung

cancer, breast

cancer, and

melanoma)

• Not specified • Identification of

biomarkers

• 138 Drugs (e.g., vorinostat and

bosutinib)

Liu et al. (2019a)

• Biological

characterization

• GCNA using RNA-seq data • Glioma • Acquired

resistance

• Identification of

biomarkers

• Dibutyryl cyclic adenosine

monophosphate

Zhang et al. (2019)

• Cox regression model

• Weighted GCNA using RNA-seq

data

• Breast cancer • Acquired

resistance

• Identification of

biomarkers

• Docetaxel Huang et al. (2018)

Machine learning

• Deep neural network (DNN) with

neighborhood component analysis

using CNV, somatic mutation,

methylome, mRNA microarray,

RNA-seq, and proteome data

• Breast cancer • Not specified • Prediction of a

drug response

• 100 Drugs (e.g., tamoxifen) Malik et al. (2021)

• Logistic regression using CNV,

somatic mutation, mRNA

microarray, drug targets, and drug

descriptor data

• 955 Cell lines from

GDSC (lung cancer,

urogenital, and

leukemia)

• Not specified • Prediction of a

drug response

• 219 Drugs (e.g., AT-7519) for

GDSC cell lines

Yu et al. (2021)

• 491 Cell lines from

CCLE

• 24 Drugs (e.g., AZD6244) for

CCLE cell lines

(Continued on following page)
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proteins) (Nava et al., 2019; Kagohara et al., 2020; Marczyk et al.,
2020; Poojan et al., 2020; Sinkala et al., 2021); and the presence
of heterogeneity of a cell population (Niehr et al., 2018), often

increasingly examined at a single-cell resolution (Kagohara
et al., 2020; Aissa et al., 2021). In a recent study for cell line
heterogeneity, for example, application of single-cell DNA and
RNA sequencing (RNA-seq) to 20 triple-negative breast cancer
(TNBC) patients revealed that rare pre-existing clones having
genotypes associated with chemoresistance were adaptively
selected in response to neoadjuvant chemotherapy, which
subsequently led to acquired transcriptional reprogramming
(Kim et al., 2018). For epigenetic alteration, chromosome
conformation capture (Hi-C) along with additional omics
analyses were conducted for estrogen receptor positive (ER+)

breast cancer, which showed that resistance development to
endocrine therapy was accompanied with notable 3-
dimensional (3D) epigenome alterations (Achinger-Kawecka
et al., 2020). Application of multi-omics analyses has also
been extended to examine biological processes in quiescent

cancer cells that show drug resistance (Lee et al., 2020;
Kumar et al., 2021).

Understanding the biology of drug resistance often helps devise

effective treatment strategies for drug-resistant cancer cells.
Relevant examples (Table 1) include targeting: cancer stem cell
phenotypes, in particular stem cell factor receptor c-KIT, for TNBC
cells resistant to an anticancer agent RH1 that is currently under
clinical trials (Kuciauskas et al., 2019); a range of biological
pathways (e.g., metabolism), microenvironment as well as
proliferation, migration and invasion of cells, which are all
associated with drug resistance for diffuse large B-cell
lymphoma patients (Fornecker et al., 2019); zinc finger MYND
domain-containing protein 8 (ZMYND8), a putative chromatin
reader that appeared to suppress tumorigenic potential and drug

resistance induced by doxorubicin (Mukherjee et al., 2020); and
EZH2 responsible for histone methylation in taxane-resistant
TNBC (Deblois et al., 2020).

As representative examples of overcoming drug resistance on
the basis of omics analyses, recent studies additionally conducted

TABLE 1 | (Continued) Recent studies on the use of omics data and computational models to better understand and treat drug-resistant cancer cells.

Approaches Cancer types Resistance type Objectives Drugs References

• DNN with multiple elastic nets using

mRNA microarray and drug

descriptor data

• 983 Cell lines from

GDSC

• Not specified • Identification of

biomarkers

• 222 Drugs (e.g., 5-FU) for GDSC

cell lines

Choi et al. (2020)

• 491 Cell lines from

CCLE

• Prediction of a

drug response

• 12 Drugs for CCLE cell lines

• Weighted GCNA, elastic net, and

random forest using proteome and

phosphoproteome data

• NCI60 cell line panel • Not specified • Identification of

biomarkers

• Various drugs (e.g., cytarabine,

5-FU)

Frejno et al. (2020)

• Cox regression model

• Prediction of a drug

response • CRC65 cell line

panel

• Ridge regression and support

vector regression using mRNA

microarray and RNA-seq data

• Colorectal cancer • Not specified • Identification of

biomarkers

• 5-FU for colorectal cancer Kong et al. (2020)

• Cisplatin for bladder cancer• Bladder cancer

• Prediction of a

drug response

• Ensemble transfer learning

(LighGBM, or DNNs with two

different architectures) using RNA-

seq data and drug descriptor data

• Hundreds of cancer

cell lines from CCLE,

CTRP, gCSI and

GDSC

• Not specified • Prediction of a

drug response

• Hundreds of drugs from CCLE,

CTRP, gCSI and GDSC

Zhu et al. (2020)

• Artificial neural network using single-

cell metabolome data

• Leukemia • Intrinsic

resistance

• Prediction of a

drug response

• Cell adhesion as a indication of

drug resistance without addition

of a drug

Liu et al. (2019b)

• DNN using mRNA microarray and

RNA-seq data

• 1,001 Cell lines from

55 tissues (e.g.,

leukemia) in GDSC

• Not specified • Prediction of a

drug response

• Bortezomib, PARP inhibitor,

cisplatin, and paclitaxel

Sakellaropoulos et

al. (2019)

• Random forest using RNA-seq,

CNV, and methylome data

• Bladder cancer • Not specified • Identification of

biomarkers

• Cisplatin and gemcitabine (for

bladder cancer)

Xu et al. (2019)

• Prediction of a

drug response

• Glioma

• Temozolomide (for glioma)• Cox regression model • Pancreatic cancer

• Gemcitabine (for pancreatic

cancer)
• Gastric cancer

• 5-FU (for gastric cancer)

• Elastic net using proteome and

kinome data

• Colorectal cancer • Not specified • Identification of

biomarkers

• 577 Drugs (e.g., cetuximab and

afatinib)

Frejno et al. (2017)

• Cox regression model • Prediction of a

drug response
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CRISPR-Cas9-based genetic screens to examine cellular plasticity,
which was suggested as a therapeutic target for drug-resistant
cancer cells (Bell et al., 2019; Torre et al., 2021). Cellular
plasticity describes non-genetic transformation of a cellular state

into a drug-resistant state by reprogramming gene expression
profiles. In a study by Torre et al., CRISPR-Cas9 genetic screens
were implemented for melanoma cells to identify genes that affect
cell fate decisions by altering cellular plasticity (Torre et al., 2021).
In particular, modulating the cellular plasticity was demonstrated
for vemurafenib inhibiting B-Raf, encoded by a proto-oncogene, in
melanoma. Interestingly, inhibiting DOT1L, associated with the
onset of melanoma, before the B-Raf inhibition showed more
drug resistance than simultaneous inhibition of DOT1 and B-Raf
using pinometostat and vemurafenib, respectively. Subsequent
transcriptome analysis of knockout cell lines generated clues for

non-genetic mechanisms of drug resistance. Another study by Bell
et al. focused on acute myeloid leukemia patients that showed non-
genetic drug resistance (Bell et al., 2019). Single-cell RNA-seq,
followed by CRISPR-Cas9 screening, led to the identification of
genes responsible for transcriptional plasticity that triggered
epigenetic resistance. Among the genes identified was Lsd1, the
inhibition of which was shown to overcome non-genetic drug
resistance. As demonstrated by these two recent studies,
implementation of genome engineering in addition to omics
analyses provides compelling evidence for targets that can help
overcome drug resistance.

COMPUTATIONAL MODELING
APPROACHES

While various bioinformatic analyses are available for analyzing

omics data, such as enrichment analyses, gene co-expression
networks (GCNs) (Cui et al., 2020; Qi and Zhang, 2020) and
their variants (e.g., a network of long non-coding RNAs and
mRNAs) (Huang et al., 2018; Liu H. et al., 2019) as well as
dimensionality reduction (e.g., t-SNE and UMAP), omics data
have also been subjected to computational modeling to make
predictions for discovering novel mechanisms and devising
treatment strategies for drug-resistant cancers (Figure 1). Use
of survival analysis in combination with GCNs, and development
of a gene regulatory network (GRN) model using a set of ordinary
differential equations (ODEs), machine learning models, and

genome-scale metabolic models (GEMs) are representative
computational modeling approaches that have recently been
considered for studying drug-resistant cancer cells (Table 1).

Network-Based Modeling
GCN has been a popular analysis for understanding gene

expression patterns from transcriptome data. GCN is an
undirected graph that can be constructed from transcriptome
data (e.g., RNA-seq), and connects pairs of genes (nodes in a
GCN) with an edge if each pair of genes shows significant co-
expression patterns across the transcriptome data. GCN analysis,
such as identifying hub genes and/or modules, allows prioritizing
candidate genes that may be highly associated with drug resistance
of cancer cells. Weighted GCN additionally considers the level of
significance in the co-expression relationship between genes in a

pair. Often, outcomes from (weighted) GCN analysis are further
subjected to other computational analyses, for example survival
analysis, to validate the biological and/or clinical significance of the
candidate genes. As a recent example, Li et al. focused on PPP2R2B,

encoding serine/threonine-protein phosphatase 2A 55 kDa
regulatory subunit B beta isoform, as a potential prognostic
biomarker for TNBC on the basis of a series of bioinformatic
analyses involving a GCN (Li Z. et al., 2021). Kaplan-Meier survival
analysis for this gene revealed that patients with a low expression
level of PPP2R2B showed shorter survival time than those with a
high expression level of PPP2R2B. Interestingly, PPP2R2B
upregulation could attenuate the resistance of TNBC cells to
doxorubicin. Likewise, Cox proportional hazards regression
model (Cox regression model) was used for genes selected from
GCNs to predict prognostic biomarkers for breast cancer, and to

suggest genes (e.g., CCNE2 and KIF14) that may help overcome
drug resistance (Li Y.-K. et al., 2021).

While GCNs can provide clinically important information
when combined with additional predictive models, such as
survival analysis above, they have limitations in generating
clues on a molecular mechanism associated with development
of drug resistance, in particular dynamic interactions between
genes. To address this problem, Zhang et al. developed a time-
course RNA-seq data-driven computational framework
(DryNetMC) to construct GRNs that help elucidate
dynamic interactions between genes, and identify key genes

associated with mechanisms of drug resistance (Zhang et al.,
2019). DryNetMC involves a set of ODEs, a regularized
regression method as well as a series of network analyses.
Using DryNetMC, GRNs were constructed for dbcAMP-
sensitive and dbcAMP-resistant glioma cells based on their
time-course RNA-seq data. These differential GRNs were
subsequently subjected to a systematic characterization to
identify their unique network properties (e.g., node
importance) that helped identify key genes (e.g., KIF2C,
CCNA2, NDC80, KIF11, and KIF23) that are predictive of a
cancer cell’s drug response. Because network-based models,

either by using a GCN or other methods (e.g., ODEs), can
visualize a biological context (e.g., association between genes),
they will continue to be actively used in the analysis of omics
data, and likely along with additional predictive models.

Machine Learning
Increasing availability of omics data for drug-resistant cancer cells
has also provided unprecedented opportunities for building
machine learning models. In general, machine learning models
perform classification or regression, depending on a given problem.
Recently, prediction of anticancer drug response was attempted by

using various types of machine learning methods, such as logistic
regression (Frejno et al., 2017; Yu et al., 2021), random forest (Xu
et al., 2019) and deep neural network (DNN; e.g., multilayer
perceptron) (Malik et al., 2021) on the basis of a range of omics
and drug response data (Table 1).When developing thesemachine
learning models, transcriptome (RNA-seq or mRNA microarray)
was themost frequently adopted dataset, but other types of datasets
were also considered, including genome (e.g., gene mutations) (Yu
et al., 2021), proteome (Frejno et al., 2020), epigenome (Xu et al.,
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2019), mass spectrometry data (Liu R. et al., 2019) and molecular
features of a target drug (Zhu et al., 2020).

In a recent study by Kong et al., a machine learning model was
developed that can predict a patient’s drug response on the basis of

the analysis of protein-protein interaction (PPI) network and
pharmacogenomic data from 3D organoid culture models (Kong
et al., 2020). Specifically, potential biomarkers were first inferred
from the PPI network analysis, and their corresponding expression
profiles along with drug response data (IC50) were used to train a
machine learning model (e.g., ridge regression). The resulting drug
responses were validated using survival analysis by focusing on
colorectal and bladder cancer patients treated with 5-fluorouracil
and cisplatin, respectively. The predicted drug responses also
appeared to be consistent with transcriptome profiles from
drug-sensitive and drug-resistant isogenic cancer cell lines as

well as data on somatic mutations associated with already
known biomarkers. In this study, consideration of the network
analysis not only helped improve the performance of the developed
machine learning model, but also facilitated the interpretation of
model prediction outcomes. Likewise, in another study, elastic net
and random forest regression were used to predict drug responses
from abundance data of proteins and their phosphorylation sites in
cancer cell lines (Frejno et al., 2020).

Among machine learning methods, DNNs are increasingly
used for various predictions, and they have also been used to
predict drug responses. Sakellaropoulos et al. developed a DNN

model by using GDSC datasets (i.e., transcriptomic data for 1,001
cancer cell lines and IC50 values of 251 drugs) to predict drug
responses (Sakellaropoulos et al., 2019). Across several datasets
tested, the DNN model showed consistently better performance
than elastic net and random forest models. The DNN model was
validated by conducting survival analyses for the model-predicted
IC50 values, which split patients based on their drug responsiveness.
Importantly, pathway enrichment analysis using information from
the DNN model (i.e., weights that connect the input layer and the
first hidden layer) appeared to associate specific biological pathways
with mechanisms of action for drugs. In a more recent study,

predicting drug response was also attempted by using a DNN
model combined with multiple elastic nets (Choi et al., 2020),
referred to as Reference Drug-based Neural Network (RefDNN).
RefDNN was developed more in the context of drug resistance,
which predicts whether a given cell line is resistant to a target drug by
processing gene expression profiles and molecular structure of a
drug. RefDNN was also shown to help identify biomarker genes
associated with drug resistance, and explore a novel anticancer drug
via drug repositioning.

Despite its demonstrated performance,machine learning is often
challenged with the limited availability of training datasets for many

technical fields. This challenge can be addressed to a certain extent
by employing transfer learning as recently demonstrated (Zhu et al.,
2020). Zhu et al. demonstrated that ensemble transfer learning can
improve the prediction of drug responses in the context of drug
repositioning (i.e., use of a drug for another cancer that is already
known), precision oncology (i.e., use of a drug for a new cancer that
has never been treated before) and new drug development (i.e., use
of a new drug for already known cancer). In this particular study,
LightGBM (Light Gradient Boosting Machine) and two different

DNNmodels were considered for ensemble transfer learning; larger
datasets from the CTRP and GDSC were used as source data for
initial training of models, and smaller datasets from CCLE and the
Genentech Cell Line Screening Initiative (gCSI) served as target data

for further refinement and testing of the models. It was shown that
ensemble transfer learning-based models almost always
outperformed models that were not developed using transfer
learning. This study suggests the use of transfer learning for
other drug-resistant cancer cells where a training dataset is
sufficiently not available.

Genome-Scale Metabolic Modeling
GEM is a computational model that describes gene-protein-
reaction (GPR) associations, and can be simulated to predict
genome-scale metabolic flux distributions (Gu et al., 2019). GEMs

are now available for an increasing number of organisms that are
important in biotechnology and biomedicine. Several versions of
human GEMs (Ryu et al., 2017; Brunk et al., 2018; Robinson et al.,
2020) are currently available, which have been used to examine a
target cell’s metabolism, and to predict biomarkers and drug
targets for various diseases (Cook and Nielsen, 2017; Gu et al.,
2019). For a medical application, a generic human GEM, covering
all the known GPR associations in human metabolism, is initially
integrated with omics data, often transcriptome (e.g., RNA-seq),
to build a context-specific GEM, a GEM that is specific to a target
cell or tissue (Ryu et al., 2015; Opdam et al., 2017). The resulting

context-specific GEM is then simulated for various metabolic
studies.

Human GEMs have recently been used to study radiation-
resistant tumors (Lewis et al., 2021; Lewis and Kemp, 2021), but
not drug-resistant cancer cells, to the best of our knowledge. Lewis
et al. newly constructed GEMs for radiation-sensitive and radiation-
resistant tumors throughmulti-omics integration (i.e., transcriptome
data, mutational data, kinetic data and thermodynamic data) (Lewis
et al., 2021). These context-specific GEMs were used to identify
changes in redox cofactor production that give resistance to radiation
therapy. In the other study, ensemble machine learning classifiers

were developed to predict whether an individual is responsive or
resistant to a radiation therapy by considering data of metabolite
production rates predicted from context-specific GEMs as well as
mutation data, transcriptome data and clinical data from TCGA
(Lewis and Kemp, 2021). These two studies obviously suggest that
GEM-based approaches can also be considered to identify metabolic
signatures of drug-resistant cancer cells, and to predict effective drug
targets for these cancer cells.

OUTLOOK

Understanding genotype-phenotype associations in drug-resistant
cancer cells is a highly complex problem, and therefore use of
multi-omics data has been considered to capture various aspects of
these troubling cancer cells. In particular, multi-omics analyses along
with additional tools, such as genome engineering (e.g., CRISPR-
Cas9), will continue to play an important role in thorough
characterization of drug-resistant cancer cells. Also, an increasing
volume of omics data will facilitate development of various types of
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computational models. As a consequence, prediction outcomes from
computational models will allow more systematically designing
experiments for drug-resistant cancer cells.

Despite the promises of omics data and computational models,

technical challenges exist. First, current coverage of multi-omics
data is not sufficient for thoroughly studying a range of drug-
resistant cancer cells. In particular, generation of a consistent set of
multi-omics data from each single cell is necessary for in-depth
study of a target cancer cell and comparison of different types of
cancer cells. Also, it will be interesting to examine the effects of
using datasets obtained from patients having a specific disease
instead of publicly available datasets (e.g., GDSC and CTRP).
While currently available machine learning models have been
rigorously validated by using public datasets, they might reveal
previously unnoticed limitations in a clinical setting because the

public datasets are often generated in a highly controlled condition.
In particular, additional consideration of non-genetic factors (e.g.,
age, gender, and lifestyle) may help reveal new insights on drug-
resistant cancer cells. Use of patient-specific datasets will allow
more widespread use of the state-of-the-art computational models
in a clinical setting.

For network-based modeling, including both GCN and GRN, a
breakthrough is needed that allows efficiently developing a cell-
specific large-scale GRN that can be simulated under various
conditions (e.g., gene perturbation). For machine learning,
despite its high predictive performance, there is always a

challenge of avoiding overfitting and achieving explainability.
Explainability in terms of biological processes is particularly
important in the field of biomedicine in order to explain
prediction outcomes and make medical decisions. In case of
human GEMs, because patient-specific omics data (e.g., RNA-
seq) are available to a certain extent, human GEMs should be more

actively considered to systematically examine metabolism of drug-
resistant cancer cells. Availability of multi-omics data will be
particularly useful for interpreting human GEMs and their
prediction outcomes; because human GEMs only cover a

metabolic network, use of multi-omics data can help explain a
complex interplay between metabolic and regulatory networks.
Prediction outcomes from the simulation of human GEMs will in
turn help explain the insights reaped from omics analyses.

Taken together, advances in omics technologies and
computational modeling will bring about positive impacts
in understanding and treating drug-resistant cancer cells.
Feedback from clinicians and biomedical researchers will
be additionally useful for the successful development and
clinical application of computational models.
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