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Abstract

Treatments for neurodegenerative disorders remain rare, although recent FDA approvals, such as Lecanemab and

Aducanumab for Alzheimer’s Disease, highlight the importance of a mechanistic approach in creating disease

modifying therapies. As a large portion of the global population is aging, there is an urgent need for therapeutics that
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can stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for

evidence based identification of therapeutic targets for neurodegenerative disease. We use Summary-data-based

Mendelian Randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide

mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics.

We identified 116 Alzheimer’s disease, 3 amyotrophic lateral sclerosis, 5 Lewy body dementia, 46 Parkinson’s

disease, and 9 Progressive supranuclear palsy target genes passing multiple test corrections (pSMR_multi < 2.95E-06 and

pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on

druggability and approved therapeutics - classifying 41 novel targets, 3 known targets, and 115 difficult targets. Our

novel class of genes provides a springboard for new opportunities in drug discovery, development and repurposing

in the pre-competitive space. We also provide a user-friendly web platform to help users explore potential

therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community

[https://nih-card-ndd-smr-home-syboky.streamlit.app/].

Introduction

Currently, there are few approved disease-modifying therapeutics available to those with neurodegenerative diseases

(NDD), the most recent being Lecanamab for the treatment of Alzheimer’s disease [1]. NDD such as Alzheimer’s

disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), Lewy body dementia (LBD),

Frontotemporal lobar degeneration (FTLD), and progressive supranuclear palsy (PSP) are diseases caused by

progressive nerve cell degeneration that result in a loss of cognition and/or motor function [2]. The World Health

Organization (WHO) expects dementia diagnoses alone to reach 78 million in 2030 and 139 million in 2050.

Without disease modifying therapies, the devastating health, social, and economic impacts of dementia and related

NDD will be catastrophic [3]. There exists a clear need to generate new understanding of the basis of NDD and to

identify rational therapeutic targets for these diseases; this need will require not only the generation of new data, but

also the development and deployment of rapid, open, and transparent tools with which to analyze these data and

identify targets.

Drugs that are supported by genetic or genomic data frequently outperform those without such evidence in clinical

trials. Over two-thirds of the Food and Drug Administration (FDA) approved drugs in 2021 were supported by

genetic or genomic evidence [4]. Therapeutics with genetically supported target mechanisms are twice as likely to

pass a trial phase as those without supporting genetic data [5]. Given the importance of anchoring therapeutic targets

to a disease mechanism substantiated by genetic evidence, we have set out to create a resource that would identify

therapeutic targets in the neurodegenerative disease space using large scale genetic and genomic data, and to make

that resource dynamic, open, and accessible.
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To accomplish this, we combined genetic data, primarily in the form of genome-wide association studies (GWAS)

from population-scale resources including data on millions of samples across multiple neurodegenerative diseases,

and genomic data from tissue banks in the form of quantitative trait loci (QTL) studies taken from methylation, gene

expression, chromatin, and proteomics assays. To integrate these sources of genetic and genomic evidence we used

summary-data-based Mendelian randomization (SMR), a post-GWAS method that facilitates functional inferences

relating to disease etiology, statistically connecting disease risk from GWAS to QTL data in relevant cell types as a

means of identifying potential mechanisms. Additionally, in an attempt to address the lack of multi ancestry data in

NDD research, we incorporated limited multiancestry eQTL data into our SMR analyses in search of significant and

meaningful functional inferences about the similarities or differences between ancestral populations.

In this work, we prioritize identified genes as therapeutic targets of interest, leveraging known druggability and

product market information, into three categories: “novel”, “known”, and “difficult” druggable targets (Figure 1a-b).

We define novel targets as genes with significant functional inferences in relevant tissue and cell types in druggable

regions of the genome that are not currently targeted by disease-specific therapeutics and should be prioritized in

future repurposing studies. Known targets include genes within relevant tissue and cell types that have documented

significant functional inferences, but are impacted by a known drug that specifically targets any NDD. Lastly,

difficult targets are significant genes from the SMR analyses that are not in regions of the genome currently

annotated as druggable. For all novel targets, we also examined up- and down-stream in the target network to

identify companion genes that could also be useful as therapeutic targets for the primary gene of interest. Potential

upstream and downstream effects on targeting these genes for therapeutic intervention were also provided based on

network memberships and toxicity within these networks was evaluated by way of evaluating liver QTLs within the

network. To make this data more accessible to the research community we have also developed a companion

web-based platform to accompany this research, further decreasing activation energy for some biotech community

members to explore targets [https://nih-card-ndd-smr-home-syboky.streamlit.app/].
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Figure 1: a. Workflow Summary | Graphical representation of general workflow used in conducting our analyses. NDD =

Neurodegenerative Disease, SMR = Summary-data-based Mendelian Randomization b. Graphical Summary of Results |

Sankey plot depicting the flow of candidate genes into their respective tier. On the left, we highlight novel genes but the

remainder of the plot visualizes all 159 candidate genes regardless of final classification tier.

Methods

GWAS Summary Statistics

Genome-wide Association Studies (GWAS) summary statistics for each of the six NDDs highlighted in our study

were used to obtain SNPs that served as instrumental variables in the Mendelian randomization pipeline. GWASs

used are the latest and/or largest for each corresponding disease: Bellenguez et al., 2022 for AD (n = 788,989), Chia

et al., 2021 for LBD (n = 7,372), Hoglinger et al 2011 for PSP (n = 4,361), Nalls et al., 2019 for PD (n = 1,456,306),

Nicolas et al., 2018 for ALS (n = 80,610 ), and Pottier et al., 2019 for FTLD (n = 1,355)[6-11]. All GWAS summary

statistics were lifted over, as needed, to hg19 (GRCh37) using University of California, Santa Cruz’s liftOver

command line tool [12].

x-QTL Summary Statistics

Expression quantitative trait loci (eQTL), protein quantitative trait loci (pQTL), chromatin quantitative trait loci

(caQTL) and methylation quantitative trait loci (mQTL) were used as the outcome variables in the Mendelian

randomization (MR) analyses. eQTLs are genetic loci that explain the variation in mRNA expression levels.

Cis-eQTL, eQTLs that act on local genes, data makes up the majority of all x-QTL data used for our study due to the
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volume of publicly available data sources. All eQTL and mQTL data obtained, except from the sources eQTLgen,

metaBrain and Zeng, et al. (multi ancestry), were already in SMR format and obtained from the Yang Lab’s Data

Resource page [13-15]. The eQTL sources from the Yang Lab include Genotype-Tissue Expression (GTEx) project

v8 release, PsychENCODE, and BrainMeta v1 (formerly brain-eMeta) [16-18]. The tissues used varied by data

source but consisted of NDD-related tissues, which we have defined in this study as brain, nerve, muscle, blood, and

liver tissues. Liver was included due to its role in metabolizing medications, toxicity, and potential impacts on

clinical trial progress [19].

mQTLs are genetic variants that affect methylation patterns of CpG sites. mQTL data sources include Brain-mMeta

and McRae et al., 2018 which are derived from blood tissues [18,20]. We additionally included caQTLs - caQTLs

alter traits by modifying chromatin structure - data from Bryois et al., obtained from the Yang Lab, in our analysis

but it did not return any significant associations [21]. Blood tissues have been shown to have high correlation in

expression levels with brain tissues, allowing blood tissues to provide a gain of power and ease of use in biomarker

studies due to the relative ease of availability of this tissue [18]. All genome positions are mapped to the human

reference genome build hg19 (GRCh37).

pQTLs are genetic variants that regulate protein expression levels. Similarly to eQTLs and mQTLs, pQTLs can be

used as our exposure variable. We obtained pQTL summary statistics data from Yang et al., 2021. The pQTLs are

from plasma, brain and cerebrospinal fluid tissues (CSF) from participants with and without AD. Samples are on

human reference genome build hg19 (GRCh37). More details on the samples and methods used can be found in the

original manuscript [22]. pQTLs were nominated for inclusion for SMR analysis if they were significant (p < 0.05)

in at least one of the three tissues per the original manuscript. We included 453 unique pQTLs across the three

tissues; 223 pQTLs from CSF, 159 from plasma, and 77 from the brain into our analyses.

Gene Co-expression Networks

Data was obtained from the Open Targets and Gene Friends platforms [23]. Open Targets provides an API to cross

reference annotations and relationships on diseases, genes, and drugs. Companion genes were pulled from the

SIGnaling Network Open Resource (Signor) database due to the manual curation of gene interactions [24].

Therapeutic Drug Data

Therapeutic drug data was obtained from various sources including Drugbank, Finan, et al. (“druggable genome”),

and the Drug Gene Interaction Database [25]. Druggable genome data were obtained from the supplementary

materials in Finan, et al. in CSV format [26]. The obtained data provided insight on 3000+ potential gene targets

with evidence for drug targets or potential targets. DGIdb drug data (accessed January 2023) were downloaded from

the DGIdc online database as files consisting of known gene and drug interactions as well as details such as

interaction types, drug categories, etc.
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Pre-processing

All data pre-processing was carried out using custom Python scripts for data that was not obtained via the Yang Lab

or was missing information such as gene symbols (see URLs). Preprocessing included gene annotation, BESD

format preparation and conversion, and/or calculation of necessary measures such as beta values.

Gene annotation was performed as necessary if no gene symbol was provided in the original data source. Annotation

conducted using both the Python biomart package and pyensembl [27,28] using ENSG IDs. mQTL gene annotation

was conducted by obtaining Illumina 450k chip probe data using

IlluminaHumanMethylation450kanno.ilmn12.hg19, an R package available through Bioconductor [29].

Data sources that were not obtained in SMR ready format (BESD file format) such as pQTL and multiancestry

eQTL data were formatted into BESD format using the flist method outlined by the Yang Lab. BESD format is a

format used by the Yang lab to store x-QTL summary data that consists of three files - .esi, .epi, .besd. More

information on the format and how to process data into BESD format can be found on the SMR Yang Lab website

(https://yanglab.westlake.edu.cn/software/smr/#DataManagement).

Our multi-ancestry eQTL data did not contain allele frequency, beta, or standard error values. Allele frequencies

were obtained using the 1000 Genomes reference panel. We then derived beta and standard error values using each

eQTL’s random effects model z-score, allele frequency and total number of samples from the original study (n =

2,119).

Summary data-based Mendelian Randomization

Summary data-based Mendelian Randomization (SMR) is a MR computational tool that uses summary-level data to

test if an exposure variable (i.e., gene expression) and outcome (i.e.,

trait) are causally associated because of a shared causal variant (i.e. instrumental variable)[30]. A key feature

incorporated into the SMR method is the ability to discern potentially causal variants from those in linkage

disequilibrium with the functional variant. In order to distinguish pleiotropy from linkage, the heterogeneity in

dependent instruments (HEIDI) method was implemented using the default version which uses the top 20 SNPs at a

locus. Linkage disequilibrium reference data was obtained from 1000 Genomes phase 3 reference panel [31].

Additionally, in order to increase statistical power we applied the SMR-multiple exposures (SMR-multi) method, an

extension of the SMR method, which allows for simultaneous testing of multiple traits or exposures on a single

outcome by using a Bayesian framework to estimate the effects of multiple traits or exposures while accounting for

the correlation between them. SMR and HEIDI analysis were conducted using the SMR software established and

maintained by the Yang Lab using all default parameters including those previously detailed [30,32].

The post SMR-processing first consisted of removal of potential associations with no available gene annotations,

associations annotated to “novel genes”, associations with genes in the major histocompatibility complex (MHC), or

associations not annotated as protein-coding genes. In order to obtain significance we first implemented a
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significance threshold of pSMR_multi < 2.95E-06 (0.05/16,875). We chose to correct for 16,875 protein coding genes

given that is the maximum number of tested genes across all NDD and omic pairs. We then filtered based on the

presence of pleiotropy via the computed HEIDI score (pHEIDI > 0.01 for inclusion in this study) using a less

conservative threshold than the threshold originally used by the creators of the package [30]. SNPs were then split

on their associated genes status as a therapeutic target or as a non-therapeutic target. After initial processing,

analyses were conducted as demonstrated in our workflow diagram (Figure 1a) and explained further in our gene

nomination workflow below. In total, when building this reference resource for the community, we tested a total of

186 omic-tissue pairs across six NDDs (Table 1).

Disease

Total Genes

(Unique) Liver Genes

Total eQTL Genes

(non multi

ancestry)

Replicated in

Multi Ancestry

Total

Therapeutic

Genes % Therapeutic

Total

Non-therapeutic

Genes % Non-therapeutic

All Tested Genes (Protein Coding)

AD 16833 1597 15112 8404 3,562 21.2% 13,271 78.8%

ALS 16875 1610 15163 8408 3,565 21.1% 13,310 78.9%

FTLD 16788 1537 15038 8394 3,551 21.2% 13,237 78.8%

LBD 16797 1540 15069 8388 3,554 21.2% 13,243 78.8%

PD 16872 1596 15159 8407 3,566 21.1% 13,306 78.9%

PSP 16042 1033 13839 8073 3,420 21.3% 12,622 78.7%

Significance p_SMR_multi < 0.05 & p_HEIDI > 0.01

AD 4948 175 3189 2079 1,142 23.1% 3,806 76.9%

ALS 3188 83 1857 1260 715 22.4% 2,473 77.6%

FTLD 2318 78 1243 810 542 23.4% 1,776 76.6%

LBD 2530 82 1384 900 580 22.9% 1,950 77.1%

PD 3592 108 2161 1434 811 22.6% 2,781 77.4%

PSP 2275 30 1270 842 574 25.2% 1,701 74.8%

Significance p_SMR_multi < 2.95E-06 (testing all protein coding genes) & p_HEIDI > 0.01

AD 159 4 97 44 31 19.5% 128 80.5%

ALS 4 0 3 3 0 0.0% 4 100.0%

FTLD 0 0 0 0 0 0.0% 0 0.0%

LBD 6 0 2 0 1 16.7% 5 83.3%

PD 71 5 56 26 15 21.1% 56 78.9%

PSP 14 1 8 5 2 14.3% 12 85.7%
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Significance p_SMR_multi < 1.58E-08 (testing all protein coding genes across all omics) & p_HEIDI > 0.01

AD 60 1 39 19 14 23.3% 46 76.7%

ALS 1 0 0 0 0 0.0% 1 100.0%

FTLD 0 0 0 0 0 0.0% 0 0.0%

LBD 2 0 1 0 1 50.0% 1 50.0%

PD 42 2 36 14 8 19.0% 34 81.0%

PSP 13 0 8 5 2 15.4% 11 84.6%

Table 1: Summary of SMR data mining across diseases | AD = Alzheimer’s Disease, ALS = Amyotrophic Lateral Sclerosis,

FTLD = Frontotemporal Dementia Lobar Degeneration, LBD = Lewy Body Dementia, PD = Parkinson’s Disease, PSP =

Progressive Supranuclear Palsy

Gene Nomination and Drug Target Identification

Gene nomination was conducted by focusing on identifying shared significant genetic targets between the different

NDDs. Gene nomination was then conducted using a system consisting of the three categories previously described

in the introduction. Therapeutic targets were initially nominated using data sources from the two previously outlined

database resources. Further target curation was conducted using Open Targets to verify if any approved indications

included an NDD thus allowing us to classify drugs into either the novel or known tiers. Identified network

companion genes upstream and downstream of the initial target identified were further categorized into groups based

on therapeutic status and approved use in treating any NDD. Our known and difficult tiers were further investigated

using gene co-expression networks via Open Targets interaction annotations through the Signor database. Using

interaction we identified companion genes (genes that are manually annotated for their causal relationships with the

gene of interest by Signor) for our nominated genes. We additionally searched known therapeutics that target any

identified companion genes to potentially identify proxy gene targets thus expanding the net for drug discovery and

repurposing. We implemented custom python scripts in order to query Open Targets’ API to extract relevant

annotations for this workflow.

Results

Overview

We identified 540 candidate gene-level SMR associations (159 unique gene targets) across six NDDs and 186

tissue-omic pairings with a stringent disease-level multiple test correction (pSMR_multi < 2.95E-06 and pHEIDI > 0.01;

Supplementary Table S1). On a per disease basis we identified 317 significant associations and 116 unique gene

targets for AD, 4 significant associations and 3 unique gene targets for ALS, no associations or gene targets for

FTLD, 13 significant associations and 5 unique genes for LBD, 184 significant associations and 46 unique gene
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targets for PD, and 22 significant associations and 9 unique gene targets for PSP. We were unable to identify

significant associations in any pQTL or caQTL omics as well as in ALS or FTLD at our corrected p value threshold.

SMR analysis identifies 15 common genes significant across multiple NDD

Using SMR, we identified 15 unique genes across 182 associations to be significant in two or more NDDs at a

stringent significance threshold (pSMR_multi < 2.95E-06 and pHEIDI > 0.01, Table 2, Supplementary Table S2,

Supplementary Table S3). Of the identified genes, five genes, MAPT, CRHR1, KANSL1, ARL17A, and

ARHGAP27, were found to be significant across 97 tested associations and three NDDs (AD, PD, and PSP). MAPT

and CRHR1 were found to be largely significant in mQTL omics with MAPT significant in whole blood and brain

mQTL data for all previously mentioned NDDs and CRHR1 found to be significant in whole blood mQTL data for

all three NDDs (Supplementary Tables S2 - S4). Additionally, MAPT and CRHR1 are considered druggable in

multiple drug data sources while the remaining three genes are not considered druggable as of the writing of this

manuscript. All aforementioned genes, except for ARL17A, had multiple significant associations in both brain and

blood mQTL tissues. ARHGAP27 and KANSL1 had significant associations replicated in our multi-ancestry cohort

(African, American, East Asian, European, and South Asian ancestries) with both genes showing an associated

decreased expression when disease risk increased by a standard deviation from the population mean genetic risk for

that specific disease suggesting generalizability across populations.

Gene Diseases Omics

ARL17B AD, PD Cerebellum eQTL, Cortex eQTL, Spinalcord eQTL

KAT8 AD, PD

Cerebellum eQTL, Whole Brain meta-analysis mQTL, Cerebellar Hemisphere eQTL,
Cortex eQTL, Tibial Nerve eQTL, Skeletal Muscle eQTL, Hypothalamus eQTL, Whole
Brain eQTL, Cerebellum eQTL, Spinalcord eQTL

LRRC37A2 AD, PD

Hippocampus eQTL, Cortex eQTL, Frontal Cortex BA9 eQTL, Prefrontal Cortex eQTL,
Caudate Basal Ganglia eQTL, Skeletal Muscle eQTL, Multi Ancestry, Whole Brain
Meta-analysis eQTL, Hypothalamus eQTL, Liver eQTL, Anterior Cingulate Cortex BA24
eQTL, Putamen Basal Ganglia eQTL, Amygdala eQTL, Whole Brain eQTL, Cerebellum
eQTL, Nucleus Accumbens eQTL, Basal Ganglia eQTL, Spinalcord eQTL, Hippocampus
eQTL, Substantia nigra eQTL

KANSL1 AD, PD, PSP

Whole Brain meta-analysis mQTL, Whole Blood mQTL, Cortex eQTL, Multi Ancestry
Whole Brain Meta-analysis eQTL, Spinalcord eQTL, Anterior Cingulate Cortex BA24
eQTL

ARL17A AD, PD, PSP

Spinalcord eQTL, Amygdala eQTL, Multi Ancestry Whole Brain Meta-analysis eQTL,
Hypothalamus eQTL, Hippocampus eQTL, Cerebellar Hemisphere eQTL, Cortex eQTL,
Caudate Basal Ganglia eQTL, Anterior Cingulate Cortex BA24 eQTL, Putamen Basal
Ganglia eQTL, Cerebellum eQTL, Nucleus Accumbens Basal Ganglia

PRSS36 AD, PD
Whole Brain meta-analysis mQTL, Cortex eQTL, Cerebellar Hemisphere eQTL, Multi
Ancestry Whole Brain Meta-analysis eQTL, Whole Brain eQTL

MAPT AD, PD, PSP Whole Brain meta-analysis mQTL, Whole Blood mQTL

IDUA LBD, PD Whole Brain meta-analysis mQTL, Whole Blood mQTL, Whole Blood eQTL(eQTLgen)
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TMEM175 LBD, PD Whole Blood mQTL

ARHGAP27 AD, PD, PSP
Whole Blood mQTL, Whole Blood eQTL (eQTLgen), Multi Ancestry Whole Brain
Meta-analysis eQTL, Caudate Basal Ganglia eQTL, Nucleus Accumbens Basal Ganglia

CRHR1 AD, PD, PSP
Whole Brain meta-analysis mQTL, Whole Blood mQTL, Cortex eQTL, Skeletal Muscle
eQTL

FMNL1 AD, PSP Multi Ancestry Whole Brain Meta-analysis eQTL, Whole Blood mQTL

PLEKHM1 PD, PSP

Cortex eQTL, Frontal Cortex BA9 eQTL, Prefrontal Cortex eQTL, Caudate Basal Ganglia
eQTL, Skeletal Muscle eQTL, Anterior Cingulate Cortex BA24 eQTL, Putamen Basal
Ganglia eQTL, Whole Brain eQTL

WNT3 AD, PD Cortex eQTL metaBrain, Skeletal Muscle eQTL, Tibial Nerve eQTL

SPPL2C AD, PD Cerebellum eQTL, Prefrontal Cortex eQTL

Table 2: Candidate genes for multiple neurodegenerative diseases. This table shows genes with functional inferences passing

multiple test correction at a multi-SNP SMRP < 2.95E-06 for multiple neurodegenerative diseases. We provide details for all the

omics and diseases in which a given gene has significant associations.

We identified 10 unique genes across 85 significant associations in any two NDDs (pSMR_multi < 2.95E-06 and pHEIDI >

0.01). One of the identified genes is considered therapeutic and the remaining nine are non-therapeutic. KAT8,

ARL17B, PRSS36, LRRC37A2, WNT3, and SPPL2C were all found to be significant in both AD and PD, IDUA and

TMEM175 were found to be significant in LBD and PD, PLEKHM1 was significant in PD and PSP, and FMNL1

was significant in AD and PSP (Supplementary Tables, S2, S3, S5). KAT8, the only therapeutic gene, showed

significant associations in both mQTL tissues where it had an associated increased expression compared to the other

omic tissues. Of the remaining nine genes, IDUA, FMNL1, PRSS36, and TMEM175 had significant associations in

mQTL sources. Additionally, FMNL1, LRRC37A2, and PRSS36 had significant associations replicated in our multi

ancestry cohort (pSMR_multi < 2.95E-06; Supplementary Table S6).

Drug Target Discovery using significant genes identifies 41 novel gene targets for follow-up study.

Using the approach previously outlined in our introduction and methods for drug target gene nomination, we

categorized 159 gene hits into one of three tiers (Table 3). In our first tier, novel genes, we nominated 41 gene

targets which are listed in Supplementary Table S7. Current literature, knowledge base, and drug databases do not

identify any therapeutics targeting novel genes that are FDA approved for treatment in any NDDs and in druggable

regions of the genome able to be targeted by common molecular methods. Our second tier, known genes, had three

gene targets identified - MAPT, KCNN4, and ADORA2B, indicating that these genes have at least one therapeutic

that has FDA approved use for treatment on an NDD (Supplementary Table S8). These gene targets are targeted by

four therapeutics - Apomorphine, Carbidopa, Istradefylline, and Riluzole. The two diseases targeted by the

aforementioned therapeutics are ALS and PD. In our last and largest tier, difficult genes, we identified 115 gene

targets with no currently known therapeutics that target these genes. A total of 52 of the identified difficult genes
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were associated with at least two significant associations, with LRRC37A2 having the maximum number of

significant associations at 25 genes across AD and PD.

Tier Requirements
# of
Genes Genes

Novel - Druggable
- Not approved for use in
treating NDD 41

ADAM10, SNCA, EGFR, POU5F1, STK39, INPP5D, CRHR1, APH1B,
MINK1, CLU, CR1, ACE, CD38, RABEP1, ERCC2, KAT8, ITGAX, GAK,
STX4, EPHB4, EPHA1, GPNMB, STAG3, CHRNE, NDUFS2, FCER1G,
VKORC1, DNTT, CKM, HSD3B7, BST1, STX1B, PSMC3, CDSN, MICB,
MS4A2, PSORS1C1, EPHX2, SLC44A4, MAT1A, FBXL19

Known

- Druggable
- Approved for use in
treating NDD 3 MAPT, KCNN4, ADORA2B

Difficult - No known druggability 115

TRIM27, PPP4C, SPI1, EFNA3, KIF1C, WNT3, CD2AP, CCNE2, KCTD13,
C9orf72, SRCAP, CELF1, HIP1R, GRN, APOC2, ARHGAP27, MEPCE,
LRRFIP2, COPS6, GIGYF1, BCKDK, POLR2E, EFNA4, DYDC1, ATF6B,
LLGL1, MTMR2, GPC2, LRRC37A, ARL17B, INO80E, SNX31,
CEACAM19, DGKQ, NUP42, LRRC37A2, KANSL1, ARL17A, ANXA11,
TSPAN14, CASTOR3, ZNF232, ZNF45, TSBP1, TREM2, PRSS36, IDUA,
CCDC158, CCDC189, ZSWIM7, PLEKHM1, STH, PVRIG, YPEL3,
MMRN1, SPPL2C, SCIMP, PILRB, PILRA, LACTB, FMNL1, APOC4,
ZNF646, CPSF3, ZSCAN9, ZKSCAN3, TREML2, EPDR1, UFSP1,
FAM131B, TAS2R60, USP6NL, MS4A4A, CASS4, G2E3, SCFD1,
PCGF3,SETD1A,DCAKD, ZNF668, AGFG2, TMEM175, TOMM40,
TRIM40, WDR81, TMEM106B, FNBP4, SHROOM3, CYP21A2, REXO1,
TNXB, MS4A3, AIF1, RAB8B, ZFP57, FAM200B, BTNL2, IGSF9B,
HS3ST1, ZNF311, NDUFAF6, TMEM163, APOC1, C17orf107, EXOC3L2,
DYDC2, DOC2A, ACMSD, TRIM31, PRDM7, TRIM10, ZAN, MS4A6A,
CPLX1, SFTA2

Table 3: Therapeutic Classification Scheme by Tier. Table providing information on the three classifications tiers in our

therapeutic classification scheme including requirements for each tier. The number of genes in each tier and which genes are in

each tier are provided.

Network analysis provides insight into druggable companion genes to non-druggable genes of interest.

We further implemented a gene network analysis for our novel and difficult tier candidates to identify potential

proxy gene targets within each nominated genes Signor curated network. In the novel tier gene we identified 87

companion genes of which 58 are considered potentially druggable (Supplementary Table S8). Of the 58 druggable

companion genes, 30 were found to be targeted by a known drug and a further five are targeted by therapeutics

approved for treatment of AD. The five companion genes with AD targeted therapeutics are NCSTN, MAPK14,

PSEN1, PSEN2, and PSENEN. Genes NCSTN, PSEN1, PSEN2, and PSENEN are all targeted by Tarenflurbil,

Semagacestat, and Avagacestat while MAPK14 is targeted by Neflamapimod, an oral p38 alpha kinase inhibitor

FDA approved for use in the treatment of AD and LBD. Further analysis of difficult genes co-expression networks
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identified 27 genes with 65 curated companion genes (Supplementary Table S10, Supplementary Table S11). Of

the 65 identified companion genes, 34 were found to be druggable with 18 having known drugs.MAPK14 was the

only companion gene to have a therapeutic approved to treat an NDD. MAPK14 was identified as a companion gene

to the difficult gene TRIM27 and is targeted by Neflamapimod.

Multi-ancestry analyses reveal opposing gene expression patterns in significant disease risk loci between

Non-European and European ancestries.

Multi ancestry eQTL data was compared against all other eQTL data sources in order to replicate significant hits

(PSMR_multi < 2.95E-06 & PHEIDI > 0.01). Overall, our validation analysis included 8,536 multi ancestry eQTL hits and

15,183 non multi ancestry eQTL hits. In total, there were 11 significant multi ancestry SNPs and 99 significant

SNPS in the non multi ancestry eQTL data; we identified nine replicated significant hits, ARHGAP27, ARL17A,

GPNMB, KANSL1, LRRC37A2, PILRA, PILRB, PRSS36, and ZNF232 (Supplementary Table S6). Additionally, we

split the nine replicated hits by their known druggable status and non-druggable status. We identified one replicated

significant druggable hit, GPNMB, and the remaining 8 replicated hits were non-druggable.

Discussion

As the global population continues to age, the threat posed by NDD presents a behemoth and multifaceted challenge.

Our research aims to address the challenge of treating NDD by identifying therapeutic targets anchored in genetic

data - a proven strategy in therapeutic development. Implementation of this strategy has been impeded by the small

sample size and dispersed nature of the genetic and disease related data, such as proteomics and transcriptomics, let

alone in a harmonized fashion. Here we attempted to address this need by creating and implementing an open source

framework to identify druggable targets across varied NDDs.

In our targeted analyses, we were unable to identify any significant and potentially causal genes present across all

six NDDs. While NDDs share prominent hallmarks, such as cell death, inflammation, and pathological protein

aggregation, the role that each hallmark and its associated biological processes plays in the pathogenesis of each

NDD differs, creating a spectrum [33,34]. We identified MAPT, CRHR1, KANSL1, ARL17A, and ARHGAP27 to be

significant in multiple different omics for AD, PD, and PSP (Supplementary Tables S2-S4). MAPT was found to

have significant associations with primarily increased expression for AD, PD, and PSP across eQTL and mQTL

omic data, as supported by previous research [35-37]. The MAPT locus, 17q21, contains genes CRHR1, KANSL1,

ARL17A, and ARHGAP27, and mutations in this locus have been previously associated with both PD and PSP [38].

Previous evidence of significant association in AD is more fragmented and sparse. Evidence of AD association

includes genes KANSL1 andMAPT within the 17q21 locus [39]. ARL17A has been reported to harbor eQTL SNPs

implicated in both brain and blood tissues in relation to AD [40]. CRHR1’s role in stress response has been

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 12, 2023. ; https://doi.org/10.1101/2023.04.06.23288266doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.06.23288266


hypothesized to exacerbate AD pathologies given its abundance in the brain including areas implicated in learning

and memory [41]. Lastly, evidence of ARHGAP27’s significance in AD includes associations between complex traits

such as cognitive functioning, reaction time, and cortical structure phenotypes [42,43].

A deep dive into KANSL1 highlights its role in autophagy pathways. KANSL1 is a core member of the nonspecific

lethal (NSL) complex that binds to MOF (also known as KAT8) which is necessary for the acetylation of histone H4

lysine 16 acetylation (H4K16ac)[44,45]. Some studies have associated elevated expression levels of KANSL1 with

over promoted autophagic activity resulting in cell death and cytotoxicity from autophagosome accumulation;,

although further research is required to understand this mechanism [46]. Additional research into the role of

autophagy and lysosomal pathways in NDDs have indicated that altered autophagy function results in the inability to

clear out protein aggregates resulting in cell death and potentially contributing to disease pathogenesis and

neurodegeneration. [45,47-49]. Our results are consistent with previous research linking increased expression of

KANSL1 with neurodegenerative effects. When assessing associations with AD, PD, and PSP, KANSL1 is associated

with an increased expression in brain mQTLs, three different brain eQTLs (psychEncode, multi ancestry, and

anterior cingulate cortex), and spinal cord eQTLs. The consistent significance of KANSL1 and the majority of our

gene hits in mQTL omics highlights the influence of DNA methylation for NDD pathogenesis and progression.

We identified 10 genes as significant in two diseases. The nominated genes do not share any explicit relationships,

but are common in their importance for varying biological processes and cellular functions such as cell proliferation

and differentiation, degradation of transmembrane proteins, calcium homeostasis, and autophagy regulation [50-54].

Six of our nominated genes, ARL17B, KAT8, LRRC37A2, PRSS36, SPPL2C, and WNT3, are associated with both

AD and PD. Given the significantly larger sample sizes and increased power of the two diseases in GWAS summary

statistics, we did not find this unexpected. LBD and PD share two genes, IDUA and TMEM175, while AD and PSP

share FMNL1 and PD and PSP share PLEKHM1 (Supplementary Tables S2, S3, S5). In general, the bulk of the

gene hits were found to be significant in mQTL data for both brain and blood tissues (nwhole brain= 4; nwhole blood= 4)

followed by cortex eQTLs (ncortex metaBrain = 6, ncortex GTEx = 3, nFrontal Cortex BA9 = 2, nprefrontal cortex = 3).

The only gene found in two diseases, AD and PD, that could be targeted therapeutically was KAT8, which we

previously mentioned in the context of the KANSL1 gene. In literature, KAT8 (Lysine Acetyltransferase 8) is

identified as a protein-coding gene that plays a vital role in the NSL complex for acetylation of H4K16ac [49].

Scientific observation has identified the consequences of autophagic dysfunction in NDDs to include impaired

neuronal function, neuronal death, and neuron loss. In opposition to the expression pattern of KANSL1, decreased

expression of KAT8 is associated with deacetylation of H4K16ac in AD patients, while an overexpression of the two

has been linked to increased expression levels of neuroprotective soluble amyloid precursor protein (sAPP)α and

β-secretase (BACE)2 [55]. In our results, we found blood mQTLs for AD and brain mQTLs for AD and PD to be

associated with increased expression of KAT8; this is in contrast to gene expression in some of the same tissues,

such as blood and brain mQTLs, for KANSL1. The associated increased expression of KAT8 in our results suggest
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that an increase in expression may be correlated with excess autophagy resulting in cell death, which is a hallmark

symptom of all three NDDs (AD, PD, and LBD; 56,57). There currently does not exist any FDA approved

therapeutics that target KAT8 in NDDs. However, compound MG149, a histone acetyltransferase inhibitor, has been

found to reduce proinflammatory genes via inhibition of MYST type histone acetyltransferase KAT8 [5858]. MG149

has also been found to be effective in restoring impaired autophagic flux via the inhibition of histone acetylation of

H4K16ac in cases of ischemic stroke and inflammatory diseases [48,59]. Further research into the application of

MG149 could result in a novel treatment targeting the characteristic accumulation of toxic proteins in NDDs.

FTLD was the only tested disease that did not have any suggestive targets at our test correction threshold. This may

be due to the fact that the FTLD GWAS had the smallest sample size out of all the diseases tested, and results will

likely improve as larger FTLD GWAS are conducted. As there were no significant results for FTLD after correction,

we decided to investigate potential pleiotropic relationships between FTLD and the other NDDs. To do this, we

looked for FTLD associations at a less-stringent P value threshold (pSMR_multi < 0.05) only in the 254 unique candidate

genes passing our original threshold of pSMR_multi < 2.95E-06, a process detailed by Baird et al. [60] This resulted in

124 FTLD hits made up of 31 unique genes that have a potential pleiotropic relationship between FTLD and another

NDD. Of those 31, 12 were classified as druggable through our sources (STX4, STX1B, VKORC1, POU5F1,

HSD3B7, PSORS1C1, SLC44A4, CD38, EPHX2, FBXL19, CLU, CDSN). All 12 fall into the novel tier of drug

targets, representing potential avenues for drug repurposing for FTLD.

Our creation of a drug target classification scheme is an attempt to inform drug discovery and repurposing from

genes considered significant with evidence of causative roles in NDDs. Further inspection of our 41 novel genes

provides multiple insights into the genes that compose the tier. The majority of genes that compose our novel tier

have therapeutics used in the treatment of multiple types of cancers and tumors. Fourteen of our novel genes have

therapeutics approved for use in the treatment of cancer (MONDO_0004992). Other common approved indications

for therapeutics that target our novel genes include, but are not limited to, neoplasm (EFO_0000616), hypertension

(EFO_0000537), and cardiovascular disease (EFO_0000319). GPNMB, which is of particular interest due to support

for its role in PD, falls into this grouping of 14 genes. Similar to its role in cancer and tumor growth, our results

highlight GPNMB’s pattern of increased expression as shown in brain related PD eQTLs. We were able to find

replication of increased GPNMB expression in brain related tissues in Li et al, Ortiz et al, and Nalls et all [61-63].

Glembatumumab Vedotin is one of the therapeutics that targets GPNMB where its primary mechanism of action

(MOA) is Tubulin inhibition [23]. Consequently, Glembatumumab Vedotin’s inhibitory MOA could be repurposed

for use in PD treatment for suppression of inflammation given the recognized role of inflammatory

response/neuroinflammation in PD onset and progression [64,65]. However, any treatment developed targeting

GPNMB, would most likely be limited in treating people of European ancestries due to the gene’s importance and

role compared to non-European ancestries - further increasing inequality.
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Our largest and most uncertain classification tier contains 121 difficult genes. Despite not having any currently

known therapeutics, this classification tier could lead to the development of NDD targeted therapeutics or the

repurposing of existing ones. Our approach for these genes focused on analyzing well curated networks centered on

each difficult gene in order to identify any partner genes with existing therapeutic drugs. This approach provides us

context into any biological pathways and processes that may be affected by a targeted treatment which could help

eliminate the time and resources spent on developing and researching ineffective therapies.

The smallest tier, known genes, is composed of the three genes targeted by NDD targeted therapeutics.

Apomorphine, Carbidopa, and Istradefylline are indicated for use in treatment of PD. Riluzole is indicated for the

treatment of ALS but has undergone phase 2 clinical trials for use in treatment of AD. The results in clinical trials

for use of Riluzole in AD treatment were promising with cerebral glucose metabolism, an AD biomarker, preserved

in patients receiving riluzole compared to those in the placebo group [66]. The researchers conducting the study

suggested a more powerful and longer study but no follow up studies have yet been initiated. Our results support the

continued follow up of Riluzole clinical trials.

Genes such as GPNMB had different expression patterns in European and non European ancestries. For example,

GPNMB had decreased associated expression in multi ancestry eQTLs but an increased associated expression in all

other tested eQTLs. Previous research in certain Asian populations has found no significant association between

GPNMB and PD [67,68]. Rizig and colleagues, conducting the largest PD GWAS in the African and African

admixed populations in ~200,000 individuals, of which 1,488 are cases, report the following per SNP in GPNMB:

rs858275, P=0.1250, beta=-0.0824, indicating no association in African/African admixed ancestries. Our multi

ancestry data reports the same direction of expression in GPNMB SNP rs858275, P=1.080397e-08, beta=-0.107745

in PD. Interestingly, the reported direction of expression in our multi ancestry data and Rizig and colleagues data is

in contrast to the direction of expression reported for European ancestries, in addition to indicating no significant

associations (Supplementary Table S12, under preparation).

The limitations we encountered in our research included limited GWAS data for diseases excluding AD and PD,

limited non-eQTL omic data, as well as limited multi ancestry omic data and reference panels. In general, the

availability of publicly and freely available omic data is consistently increasing. As new data is published we intend

to conduct updates and incorporate new omic types into our analysis such as more pQTL, single cell QTLs, and

splicing quantitative trait loci (sQTLs). The incorporation of additional multi omic data should provide new and

novel insights into the complex underpinnings of NDD.

The limitation we feel presents the most barriers is that of limited multi ancestry data. The state of diversity in the

NDD research space has historically been eurocentric which remains the case in this study due to the limited

availability of genetic data from non-European participants. One of the distinguishing aspects of this study is the

inclusion of multi ancestry eQTL data in the search for generalizable drug targets. This is particularly important in
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an era where precision medicine and machine learning can introduce inherent bias when the only reference data is

from European ancestry populations. We identified common hits which are consistent with current understanding

that there are NDD risk loci that are shared across genetic ancestries while providing insight on which gene loci and

differences in expression may play a role in NDD development and treatment in non-Europeans. It is worth noting

that while replication was limited at our stringent significance threshold we were able to make some interesting

observations. While we made attempts to include a limited set of multi ancestry in the future we would like to be

able to include more multi ancestry disease GWAS and omic data in order to make more meaningful insights. We

look forward to the increasing availability of non-European data with the creation of data sources such All of Us, an

NIH research program focusing on inclusion of health data of marginalized populations in the United States [69].

This report is a description of the foundation for a community driven resource to identify and investigate future

genetically derived drug targets in an open source context. Ultimately, we are working on creating a network tool

that incorporates multi-omic data, disease GWAS summary statistics, drug data, and other relevant data types to ease

research such as this study; eliminating barriers to drug discovery and drug repurposing and potentially enabling

precision medicine in the NDD space. Using multi omics integration methods, deep learning techniques, and most

importantly, community input to better parse and interpret the data presented by the platform we aim to make our

community resource a robust tool for NDD research.
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