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Abstract

We present Omid – a transaction processing service that

powers web-scale production systems at Yahoo. Omid

provides ACID transaction semantics on top of tradi-

tional key-value storage; its implementation over Apache

HBase is open sourced as part of Apache Incubator.

Omid can serve hundreds of thousands of transactions

per second on standard mid-range hardware, while in-

curring minimal impact on the speed of data access in

the underlying key-value store. Additionally, as expected

from always-on production services, Omid is highly

available.

1 Introduction

In recent years, there is an increased focus on support-

ing large-scale distributed transaction processing; exam-

ples include [6, 7, 11, 17, 18, 20, 28]. Transaction sys-

tems have many industrial applications, and the need for

them is on the rise in the big data world. One prominent

use case is Internet-scale data processing pipelines, for

example, real-time indexing for web search [31]. Such

systems process information in a streamed fashion, and

use shared storage in order to facilitate communication

between processing stages. Quite often, the different

stages process data items in parallel, and their execution

is subject to data races. Overcoming such race conditions

at the application level is notoriously complex; the sys-

tem design is greatly simplified by using the abstraction

of transactions with well-defined atomicity, consistency,

isolation, and durability (ACID) semantics [27].

We present Omid, an ACID transaction processing

system for key-value stores. Omid has replaced an initial

prototype bearing the same name, to which we refer here

as Omid1 [25], as Yahoo’s transaction processing engine;

it has been entirely re-designed for scale and reliability,

thereby bearing little resemblance with the origin (as dis-

cussed in Section 3 below). Omid’s open source version

recently became an Apache Incubator project1.

Internally, Omid powers Sieve2, Yahoo’s web-scale

content management platform for search and personal-

ization products. Sieve employs thousands of tasks to

digest billions of events per day from a variety of feeds

and push them into a real-time index in a matter of sec-

onds. In this use case, tasks need to execute as ACID

transactions at a high throughput [31].

The system design has been driven by several im-

portant business and deployment considerations. First,

guided by the principle of separation of concerns,

Omid was designed to leverage battle-tested key-value

store technology and support transactions over data

stored therein, similar to other industrial efforts [6, 31,

17]. While Omid’s design is compatible with multi-

ple NoSQL key-value stores, the current implementation

works with Apache HBase [1].

A second consideration was simplicity, in order to

make the service easy to deploy, support, maintain, and

monitor in production. This has led to a design based

on a centralized transaction manager (TM)3. While its

clients and data storage nodes are widely-distributed and

fault-prone, Omid’s centralized TM provides a single

source of truth regarding the transaction history, and fa-

cilitates conflict resolution among updating transactions

(read-only transactions never cause aborts).

Within these constraints, it then became necessary

to find novel ways to make the service scalable for

throughput-oriented workloads, and to ensure its con-

tinued availability following failures of clients, storage

nodes, and the TM. Omid’s main contribution is in pro-

viding these features:

Scalability Omid runs hundreds of thousands of trans-

actions per second over multi-petabyte shared stor-

1http://omid.incubator.apache.org
2http://yahoohadoop.tumblr.com/post/129089878751
3The TM is referred to as Transaction Status Oracle (TSO)

in the open source code and documentation.
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age. As in other industrial systems [31, 25, 6], scal-

ability is improved by providing snapshot isolation

(SI) rather than serializability [27] and separating

data management from control. Additionally, Omid

employs a unique combination of design choices in

the control plane: (i) synchronization-free transac-

tion processing by a single TM, (ii) scale-up of the

TM’s in-memory conflict detection (deciding which

transactions may commit) on multi-core hardware,

and (iii) scale-out of metadata (HBase).

High availability The data tier is available by virtue of

HBase’s reliability, and the TM is implemented as

a primary-backup process pair with shared access

to critical metadata. Our solution is unique in tol-

erating a potential overlap period when two pro-

cesses act as primaries, and at the same time avoid-

ing costly synchronization (consensus), as long as a

single primary is active. Note that, being generic,

the data tier is not aware of the choice of primary

and hence serves operations of both TMs in case of

such overlap.

We discuss Omid’s design considerations in Section 2

and related transaction processing systems in Section 3.

We detail the system guarantees in Section 4. Section 5

describes Omid’s transaction protocol, and Section 6 dis-

cusses high-availability. An empirical evaluation is given

in Section 7. We conclude, in Section 8, by discussing

lessons learned from Omid’s production deployment and

our interaction with the open source community, as well

as future developments these lessons point to.

2 Design Principles and Architecture

Omid was incepted with the goal of adding transactional

access on top of HBase, though it can work with any

strongly consistent key-value store that provides multi-

versioning with version manipulation and atomic putI-

fAbsent insertions as we now describe.

The underlying data store offers persistence (using

a write-ahead-log), scalability (via sharding), and high

availability (via replication) of the data plane, reliev-

ing Omid to manage only the transaction control plane.

Omid further relies on the underlying data store for fault-

tolerant and persistent storage of transaction-related

metadata. This metadata includes a dedicated table that

holds a single record per committing transaction, and in

addition, per-row metadata for items accessed transac-

tionally. The Omid architecture is illustrated in Figure 1.

Omid leverages multi-versioning in the underlying

key-value store in order to allow transactions to read con-

sistent snapshots of changing data as needed for snap-

shot isolation. The store’s API allows users to manipu-

late versions explicitly. It supports atomic put(key, val,

Figure 1: Omid architecture. Clients manipulate data

that resides in data tables in the underlying data store (for

example, HBase) and use the TM for conflict detection.

Only the primary TM is active, and the backup is in hot

standby mode. The TM maintains persistent metadata

in the data store as well as separately managed recovery

state (for example, using Zookeeper).

ver) and putIfAbsent(key, val, ver) operations for updat-

ing or inserting a new item with a specific version, and

an atomic get(key, ver) operation for retrieving the item’s

value with highest version not exceeding ver. Specifi-

cally, when the item associated with an existing key is

overwritten, the new version (holding the key, its new

value, and a new version number) is created, while the

previous version persists. An old version might be re-

quired as long as there is some active transaction that

had begun before the transaction that overwrote this ver-

sion has committed. Though this may take a while, over-

written versions eventually become obsolete. A cleaning

process, (in HBase, implemented as a coprocessor [2]),

frees up the disk space taken up by obsolete versions.

The transaction control plane is implemented by a cen-

tralized transaction manager. The TM has three roles: (i)

version (timestamp) allocation; (ii) conflict detection in

order to determine which transactions may commit; and

(iii) persistent logging of the commits. The TM provides

high availability via a primary-backup approach— if the

primary TM becomes unresponsive, then the backup be-

comes the new primary and takes over. This design of-

fers durability and high availability; it further facilitates

scalability of storage and compute resources separately

– metadata storage access scales out on the underlying

distributed data store, whereas conflict management is

done entirely in RAM, and scales up on a shared-memory

multi-core server.

Our high availability solution tolerates “false” fail-

overs, where a new primary replaces one that is simply

slow, (for example, due to a garbage collection stall),

leading to a period with two active primaries. Syn-

chronization between the two is based on shared persis-
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tent metadata storage, and induces overhead only in rare

cases when more than one TM acts as primary. Omid

uses time-based leases in order to minimize potential

overlap among primaries. The implementation employs

Apache Zookeeper [4] for lease management and syn-

chronization between primary and backup.

3 Related Work

Distributed transaction processing has been the focus of

much interest in recent years. Most academic-oriented

papers [7, 8, 11, 18, 20, 32, 36] build full-stack solu-

tions, which include transaction processing as well as a

data tier. Some new protocols exploit advanced hardware

trends like RDMA and HTM [19, 20, 33]. Generally

speaking, these solutions do not attempt to maintain sep-

aration of concerns between different layers of the soft-

ware stack, neither in terms of backward compatibility

nor in terms of development efforts. They mostly pro-

vide strong consistency properties such as serializability.

On the other hand, production systems such as

Google’s Spanner [17], Megastore [9] and Percola-

tor [31], Yahoo’s Omid1 [25], Cask’s Tephra [6], and

more [22, 30, 5], are inclined towards separating the re-

sponsibilities of each layer. These systems, like the cur-

rent work, reuse an existing persistent highly-available

data-tier; for example, Megastore is layered on top of

Bigtable [16], Warp [22] uses HyperDex [21], and Cock-

roachDB [5] uses RocksDB.

Omid most closely resembles Tephra [6] and

Omid1 [25], which also run on top of a distributed key-

value store and leverage a centralized TM (sometimes

called oracle) for timestamp allocation and conflict res-

olution. However, Omid1 and Tephra store all the infor-

mation about committed and aborted transactions in the

TM’s RAM, and proactively duplicate it to every client

that begins a transaction (in order to allow the client

to determine locally which non-committed data should

be excluded from its reads). This approach is not scal-

able, as the information sent to clients can consist of

many megabytes. Omid avoids such bandwidth over-

head by storing pertinent information in a metadata ta-

ble that clients can access as needed. Our performance

measurements in Section 7 below show that Omid signif-

icantly out-performs Omid1, whose design is very close

to Tephra’s. For high availability, Tephra and Omid1

use a write-ahead log, which entails long recovery times

for replaying the log; Omid, instead, reuses the inherent

availability of the underlying key-value store, and hence

recovers quickly from failures.

Percolator also uses a centralized “oracle” for times-

tamp allocation but resolves conflicts via two-phase com-

mit, whereby clients lock database records rendering

them inaccessible to other transactions; the Percolator

paper does not discuss high availability. Other systems

like Spanner and CockroachDB allot globally increas-

ing timestamps using a (somewhat) synchronized clock

service. Spanner also uses two-phase commit whereas

CockroachDB uses distributed conflict resolution where

read-only transactions can cause concurrent update trans-

actions to abort. In contrast, Omid never locks (or pre-

vents access to) a database record, and never aborts due

to conflicts with read-only transactions.

The use cases production systems serve allow them

to provide SI [31, 25, 6, 5], at least for read-only trans-

actions [17]. It is nevertheless straightforward to extend

Omid to provide serializability, similarly to a serializable

extension of Omid1 [35] and Spanner [17]; it is merely

a matter of extending the conflict analysis to cover read-

sets [24, 14], which may degrade performance.

A number of other recent efforts avoid the complexity

of two-phase commit [26] by serializing transactions us-

ing a global serialization service such as highly-available

log [11, 23, 13] or totally-ordered multicast [15]. Omid

is unique in utilizing a single transaction manager to re-

solve conflicts in a scalable way.

4 Service Semantics and Interface

Omid provides transactional access to a large collec-

tion of persistent data items identified by unique keys.

The service is highly available, whereas its clients are

ephemeral, i.e., they are alive only when performing op-

erations and may fail at any time.

Semantics. A transaction is a sequence of put and get

operations on different objects that ensures the so-called

ACID properties: atomicity (all-or-nothing execution),

consistency (preserving each object’s semantics), iso-

lation (in that concurrent transactions do not see each

other’s partial updates), and durability (whereby updates

survive crashes).

Different isolation levels can be considered for the

third property. Omid opts for snapshot isolation [12],

which is provided by popular database technologies such

as Oracle, PostgreSQL, and SQL Server. Note that under

SI, concurrent transactions conflict only if they update

the same item, whereas with serializability, a transac-

tion that updates an item conflicts with transactions that

get that item. Thus, for read-dominated workloads, SI

is amenable to implementations (using multi-versioned

concurrency control) that allow more concurrency than

serializable ones, and hence scale better.

API. Omid’s client API offers abstractions both for

control (begin, commit, and abort) and for data access

(get and put). Following a commit call, the transaction
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may successfully commit, whereby all of its operations

take effect; in case of conflicts, (i.e., when two concur-

rent transactions attempt to update the same item), the

transaction may abort, in which case none of its changes

take effect. An abort may also be initiated by the pro-

grammer.

5 Transaction Processing

We now explain how Omidmanages transactions so as

to guarantee SI semantics. For clarity of the exposition,

we defer discussion of the TM’s reliability to the next

section; for now, let us assume that this component never

fails. We describe Omid’s data model in Section 5.1, then

proceed to describe the client operation in Section 5.2

and the TM’s operation in Section 5.3.

5.1 Data and metadata

Omid employs optimistic concurrency control with

commit-time conflict resolution. Intuitively, with SI, a

transaction’s reads all appear to occur the time when it

begins, while its writes appear to execute when it com-

mits. Omid therefore associates two timestamps with

each transaction: a read timestamp tsr when it begins,

and a commit timestamp tsc upon commit. Both are pro-

vided by the TM using a logical clock it maintains. In ad-

dition, each transaction has a unique transaction id txid,

for which we use the read timestamp; in order to ensure

its uniqueness, the TM increments the clock whenever a

transaction begins.

The data store is multi-versioned. A write operation by

a transaction starting at some time t needs to be associ-

ated with a version number that exceeds all those written

by transactions that committed before time t. However,

the version order among concurrent transactions that at-

tempt to update the same key is immaterial, since at least

one of these transactions is doomed to abort. To ensure

the former, we use the writing transaction’s txid, which

exceeds those of all previously committed transactions,

as the version number.

Since transaction commit needs to be an atomic step,

Omid tracks the list of committed transactions in a per-

sistent Commit Table (CT), as shown in Table 1, which in

our implementation is also stored in HBase. Each entry

in the CT maps a committed transaction’s txid to its re-

spective tsc. To commit a transaction, the TM writes the

(txid, tsc) pair to the CT, which makes the transaction

durable, and is considered its commit point. Gets refer to

the CT using the txid in the data record in order to find

out whether a read value has been committed. In case

it has, they use the commit timestamp to decide whether

the value appears in their snapshot.

Data Table Commit Table

key value version commit txid commit

(txid) (cf) ts

k1 a 5 7 5 7

k1 b 8 nil

Table 1: Omid data and metadata. Data is multi-

versioned, with the txid as the version number. The com-

mit field indicates whether the data is committed, and if

so, its commit timestamp. The commit table (CT) maps

incomplete committed transaction ids to their respective

commit timestamps. Transaction 5 has already commit-

ted and updated cf for k1, but has not yet removed itself

from CT; transaction 8 is still pending.

While checking the CT for every read ensures cor-

rectness, it imposes communication costs and contention

on the CT. To avoid this overhead, Omid augments each

record in the data store with a commit field (cf), indicat-

ing whether the data is committed, and if it is, its commit

timestamp. Initially the commit field is nil, indicating

that the write is tentative, i.e., potentially uncommitted.

Following a commit, the transaction updates the com-

mit fields of its written data items with its tsc, and then

removes itself from the CT. Only then, the transaction

is considered complete. A background cleanup process

helps old (crashed or otherwise slow) committed trans-

actions complete.

Table 1 shows an example of a key k1 with two ver-

sions, the second of which is tentative. A transaction that

encounters a tentative write during a read still refers to

the CT in order to find out whether the value has been

committed. In case it has, it helps complete the transac-

tion that wrote it by copying its tsc to the commit field.

The latter is an optimization that might reduce accesses

to the commit table by ensuing transactions.

5.2 Client-side operation

Transactions proceed optimistically and are validated at

commit time. In the course of a transaction, a client’s

get operations read a snapshot reflecting the data store

state at their read timestamp, while put operations write

tentative values with txid. Since SI needs to detect only

write-write conflicts, only the transaction’s write-set is

tracked. The operations, described in pseudocode in Al-

gorithm 1, execute as follows:

Begin. The client obtains from the TM a read times-

tamp tsr, which also becomes its transaction id (txid).

The TM ensures that this timestamp exceeds all the com-

mit timestamps of committed transactions and precedes

all commit timestamps that will be assigned to commit-

ting transactions in the future.
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Algorithm 1 Omid’s client-side code.

1: local variables txid, write-set

2: procedure BEGIN

3: txid← TM.BEGIN()

4: write-set← /0

5: procedure PUT(key, value)

6: ds.put(key, value, txid, nil)

7: add 64-bit hash of key to write-set

8: procedure GET(key)

9: for rec← ds.get(key, versions down from tsr) do

10: if rec.commit 6=nil then ⊲ not tentative

11: if rec.commit < tsr then

12: return rec.value

13: else ⊲ tentative

14: value← GETTENTATIVEVALUE(rec, key)

15: if value 6=nil then

16: return value

17: return nil

18: procedure GETTENTATIVEVALUE(rec,key)

19: lookup rec.version in CT

20: if present then ⊲ committed

21: update rec.commit ⊲ helping

22: if rec.commit < tsr then return rec.value

23: else ⊲ re-read version not found in CT

24: rec← ds.get(key, rec.version)

25: if rec.commit6=nil ∧ rec.commit < tsr then

26: return rec.value

27: return nil

28: procedure COMMIT

29: tsc← TM.COMMIT(txid, write-set)

30: for all key in write-set do

31: rec← ds.get(key, txid)

32: if tsc =⊥ then ⊲ abort

33: remove rec

34: else

35: rec.cf← tsc

36: remove record with txid from CT

Put(key,val). The client adds the tentative record to

the data store (line 6) and tracks the key in its local write-

set. To reduce memory and communication overheads,

we track 64-bit hashes rather than full keys.

Get(key). A get reads from the data store (via ds.get())

records pertaining to key with versions smaller than tsr,

latest to earliest (line 9), in search of the value written

for this key by the latest transaction whose tsc does not

exceed tsr (i.e., the latest version written by a transaction

that committed before the current transaction began).

If the read value is committed with a commit times-

tamp lower than tsr, it is returned (line 12). Upon en-

countering a tentative record (with cf=nil), the algorithm

calls GETTENTATIVEVALUE (line 18) in order to search

its tsc in the CT. If this txid was not yet written, then

it can safely be ignored, since it did not commit. How-

ever, a subtle race could happen if the transaction has

updated the commit timestamp in the data store and then

removed itself from the CT between the time the record

was read and the time when the CT was checked. In

order to discover this race, a record is re-read after its

version is not found in the CT (line 23). In all cases, the

first value encountered in the backward traversal with a

commit timestamp lower than tsr is returned.

Commit. The client requests commit(txid, write-set)

from the TM. The TM assigns it a commit timestamp tsc

and checks for conflicts. If there are none, it commits the

transaction by writing (txid, tsc) to the CT and returns

a response. Following a successful commit, the client

writes tsc to the commit fields of all the data items it

wrote to (indicating that they are no longer tentative), and

finally deletes its record from the CT. Whether the com-

mit is successful or not a background process helps trans-

actions to complete or cleans their uncommitted records

from the data store, thereby overcoming client failures.

5.3 TM operation

The TM uses an internal (thread-safe) clock to assign

read and commit timestamps. Pseudocode for the TM’s

begin and commit functions is given in Algorithm 2;

both operations increment the clock and return its new

value. Thus, read timestamps are unique and can serve as

transaction ids. Begin returns once all transactions with

smaller commit timestamps are finalized, (i.e., written to

the CT or aborted).

Commit involves compute and I/O aspects for conflict

detection and CT update, resp. The TM uses a pipelined

SEDA architecture [34] that scales each of these stages

separately using multiple threads. Note that the I/O stage

also benefits from such parallelism since the CT can be

sharded across multiple storage nodes and yield higher

throughput when accessed in parallel.

In order to increase throughput, writes to the com-

mit table are batched. Both begin and commit opera-

tions need to wait for batched writes to complete before

they can return – begin waits for all smaller-timestamped

transactions to be persisted, while commit waits for the

committing transaction. Thus, batching introduces a

tradeoff between I/O efficiency, (i.e., throughput), and

begin/commit latency.

The CONFLICTDETECT function checks for conflicts

using a hash table in main memory. (The TM’s com-

pute aspect is scaled by running multiple instances of this

function for different transactions, accessing the same

table in separate threads.) For the sake of conflict de-

tection, every entry in the write-set is considered a key,

(though in practice it is a 64-bit hash of the appropriate

key). Each bucket in the hash table holds an array of

pairs, each consisting of a key hashed to this bucket and

the tsc of the transaction that last wrote to this key.
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CONFLICTDETECT needs to (i) validate that none of

the keys in the write-set have versions larger than txid

in the table, and (ii) if validation is successful, update

the table entries pertaining to the write-set to the trans-

action’s newly assigned tsc. However, this needs to be

done atomically, so two transactions committing in par-

allel won’t miss each other’s updates. Since holding a

lock on the entire table for the duration of the conflict

detection procedure would severely limit concurrency,

we instead limit the granularity of atomicity to a single

bucket: for each key in the write-set, we lock the cor-

responding bucket (line 52), check for conflicts in that

bucket (line 54), and if none are found, optimistically

add the key with the new tsc to the bucket (lines 56–61).

The latter might prove redundant in case the transaction

ends up aborting due to a conflict it discovers later. How-

ever, since our abort rates are low, such spurious addi-

tions rarely induce additional aborts.

Algorithm 2 TM functions.

37: procedure BEGIN

38: txid = Clock.FetchAndIncrement()

39: wait until there are no pending commit operations

40: with tsc < txid

41: return txid

42: procedure COMMIT(txid, write-set)

43: tsc← Clock.FetchAndIncrement()

44: if ConflictDetect(txid, write-set) = COMMIT then

45: UpdateCT(txid, tsc) ⊲ proceed to I/O stage

46: return tsc

47: else

48: return ABORT

49: procedure CONFLICTDETECT(txid,write-set)

50: for all key ∈ write-set do

51: b← key’s bucket

52: lock b

53: small← entry with smallest ts in b

54: if ∃ (key, t) ∈ b s.t. t > txid then ⊲ conflict

55: unlock b; return ABORT

⊲ no conflict on key found – update hash table

56: if ∃ (key, t) ∈ b s.t. t < txid then

57: overwrite (key, t) with (key, tsc)

58: else if ∃ empty slot s ∈ b then

59: write (key, tsc) to s

60: else if small.t ≤ txid then

61: overwrite small with (key, tsc)

62: else ⊲ possible conflict

63: unlock b; return ABORT

64: unlock b

65: return COMMIT

A second challenge is to limit the table size and

garbage-collect information pertaining to old commits.

Since a transaction need only check for conflicts with

transactions whose tsc exceeds its txid, it is safe to re-

move all entries that have smaller commit times than the

txid of the oldest active transaction. Unfortunately, this

observation does not give rise to a feasible garbage col-

lection rule: though transactions usually last few tens of

milliseconds, there is no upper bound on a transaction’s

life span, and no way to know whether a given outstand-

ing transaction will ever attempt to commit or has failed.

Instead, we use the much simpler policy of restricting

the number of entries in a bucket. Each bucket holds a

fixed array of the most recent (key, tsc) pairs. In order

to account for potential conflicts with older transactions,

a transaction also aborts in case the minimal tsc in the

bucket exceeds its txid (line 62). In other words, a trans-

action expects to find, in every bucket it checks, at least

one commit timestamp older than its start time or one

empty slot, and if it does not, it aborts.

The size of the hash table is chosen so as to reduce

the probability for spurious aborts, which is the proba-

bility of all keys in a given bucket being replaced during

a transaction’s life span. If the throughput is T trans-

actional updates per second, a bucket in a table with e

entries will overflow after e/T seconds on average. For

example, if 10 million keys are updated per second, a

bucket in a one-million-entry table will overflow only af-

ter 100ms on average, which is much longer than most

transactions. We further discuss the impact of the table

size in Section 7.

Garbage collection. A dedicated background proce-

dure (co-processor) cleans up old versions. To this end,

the TM maintains a low water mark, which is used in two

ways: (1) the co-processor scans data store entries, and

keeps, for each key, the biggest version that is smaller

than the low water mark along with all later versions.

Lower versions are removed. (2) When a transaction at-

tempts to commit, if its txid is smaller than the low water

mark, it aborts because the co-processor may have re-

moved versions that ought to have been included in its

snapshot. The TM attempts to increase the low water

mark when the probability of such aborts is small.

6 High Availability

Very-high-end Omid-powered applications are expected

to work around the clock, with a mean-time-to-recover

of just a few seconds. Omid therefore needs to provide

high availability (HA). Given that the underlying data

store is already highly available and that client failures

are tolerated by Omid’s basic transaction processing pro-

tocol, Omid’s HA solution only needs to address TM fail-

ures. This is achieved via the primary-backup paradigm:

during normal operation, a single primary TM handles
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client requests, while a backup TM runs in hot standby

mode. Upon detecting the primary’s failure, the backup

performs a failover and becomes the new primary.

The backup TM may falsely suspect that the primary

has failed. The resulting potential simultaneous opera-

tion of more than one TM creates challenges, which we

discuss in Section 6.1. We address these in Section 6.2 by

adding synchronization to the transaction commit step.

While such synchronization ensures correctness, it also

introduces substantial overhead. We then optimize the

solution in Section 6.3 to forgo synchronization during

normal (failure-free) operation.

Our approach thus resembles many popular protocols,

such as Multi-Paxos [29] and its variants, which expe-

dite normal mode operation as long as an agreed leader

remains operational and unsuspected. However, by re-

lying on shared persistent state in the underlying highly

available data store, we obtain a simpler solution, elimi-

nating the need to synchronize with a quorum in normal

mode or to realign state during recovery.

6.1 Failover and concurrent TMs

The backup TM constantly monitors the primary’s live-

ness. Failure detection is timeout-based, namely, if the

primary TM does not re-assert its existence within a con-

figured period, it is deemed failed, and the backup starts

acting as primary. Note that the primary and backup

run independently on different machines, and the time it

takes the primary to inform the backup that it is alive can

be unpredictable due to network failures and processing

delays, (e.g., garbage-collection stalls or long I/O opera-

tions). But in order to provide fast recovery, it is undesir-

able to set the timeout conservatively so as to ensure that

a live primary is never detected as faulty.

We therefore have to account for the case that the

backup performs failover and takes over the service

while the primary is operational. Though such simulta-

neous operation of the two TMs is a necessary evil if one

wants to ensure high availability, our design strives to

reduce such overlap to a minimum. To this end, the pri-

mary TM actively checks if a backup has replaced it, and

if so, “commits suicide”, i.e., halts. However, it is still

possible to have a (short) window between the failover

and the primary’s discovery of the existence of a new

primary when two primary TMs are active.

When a TM fails, all the transactions that began with it

and did not commit (i.e., were not logged in the CT) are

deemed aborted. However, this clear separation is chal-

lenged by the potential simultaneous existence of two

TMs. For example, if the TM fails while a write it is-

sued to the CT is still pending, the new TM may begin

handling new transactions before the pending write takes

effect. Thus, an old transaction may end up committing

Figure 2: The challenge with two concurrent TMs. An

old transaction, tx1, commits while a new one tx2 is pro-

cessed, causing tx2 to see an inconsistent snapshot.

after the new TM has begun handling new ones. Unless

handled carefully, this can cause a new transaction to see

partial updates of old ones, as illustrated in Figure 2. To

avoid this, we must ensure that once a new transaction

obtains a read timestamp, the status of all transactions

with smaller commit timestamps does not change.

A straightforward way to address the above challenge

is via mutual exclusion, i.e., making sure that at most

one TM commits operations at a time. However, this so-

lution would entail synchronization upon each commit,

not only at failover times, which would adversely affect

performance. We therefore forgo this option.

6.2 Basic HA algorithm

Upon failover from T M1 (the old primary) to T M2 (the

new one), we strive to ensure the following properties:

P1 all timestamps assigned by T M2 exceed all those as-

signed by T M1;

P2 after a transaction tx2 with read timestamp ts2r be-

gins, no transaction tx1 that will end up with a com-

mit timestamp ts1c < ts2r can update any additional

data items (though it may still commit); and

P3 when a transaction reads a tentative update, it can de-

termine whether this update will be committed with

a timestamp smaller than its read timestamp or not.

Properties P1–P3 are sufficient for SI: P1 implies that

commit timestamps continue to be totally ordered by

commit time, P2 ensures that a transaction encounters

every update that must be included in its snapshot, and

P3 stipulates that the transaction can determine whether

to return any read value.
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Figure 3: Addressing the challenge of two concurrent

TMs. The old transaction is invalidated by the new one

and therefore cannot commit.

To ensure the first two properties, the TMs publish the

read timestamps they allot as part of initiating a transac-

tion in a persistent shared object, maxTS. Before com-

mitting, the TM checks maxTS. If it finds a timestamp

greater than its last committed one, it deduces that a new

TM is active, aborts the transaction attempting to com-

mit, and halts.

In Figure 2 we saw a scenario where the third prop-

erty, P3, is violated— when tx2 reads key a it cannot tell

that tx1, which wrote it, will end up committing with a

smaller ts1c than ts2r. This leads to an inconsistent snap-

shot at tx2, as it sees the value of key b written by tx1.

To enforce P3, tx2 cannot wait for T M1, because the

latter might have failed. Instead, we have tx2 proactively

abort tx1, as illustrated in Figure 3. More generally, when

a read encounters a tentative update whose txid is not

present in the CT, it forces the transaction that wrote it

to abort. We call this invalidation, and extend the CT’s

schema to include an invalid field to this end. Invalida-

tion is performed via an atomic put-if-absent (supported

by HBase’s checkAndMutate API) to the CT, which adds

a record marking that tx1 has “invalid” status. The use of

an atomic put-if-absent achieves consensus regarding the

state of the transaction.

Commits, in turn, read the CT after adding the commit

record in order to check whether an invalidation record

also exists, and if so, halt without returning a commit re-

sponse to the client. In addition, every read of a tentative

update checks its invalid field in the CT, and ignores the

commit record if the transaction has been invalidated.

While this solution satisfies the three required prop-

erties, it also induces a large number of synchronization

steps: (i) writing allotted read timestamps to maxTS to

ensure P1; (ii) checking maxTS at commit time to ensure

P2; and (iii) checking the CT for invalidation at the end

of every commit to ensure P3. The next section presents

an optimization that reduces the cost of synchronization.

6.3 Synchronization-free normal operation

In order to eliminate the synchronization overhead most

of the time, Omid’s HA solution uses two mechanisms.

First, to reduce the overheads (i) and (ii) associated

with timestamp synchronization, it allocates timestamp

ranges in large chunks, called epochs. That is, instead

of incrementing maxTS by one timestamp at a time, the

TM increments it by a certain range, and is then free to

allot timestamps in this range without further synchro-

nization. Second, to reduce cost (iii) of checking for in-

validations, it uses locally-checkable leases, which are

essentially locks that live for a limited time. As with

locks, at most one TM may hold the lease at a given time

(this requires the TMs’ clocks to advance roughly at the

same rate). Omid manages epochs and leases as shared

objects in Zookeeper, and accesses them infrequently.

Algorithm 3 summarizes the changes to support HA.

On the TM side, CHECKRENEW is called at the start of

every commit and begin. It first renews the lease ev-

ery δ time, for some parameter δ (lines 68–70). This

parameter defines the tradeoff between synchronization

frequency and recovery time: the system can remain un-

available for up to δ time following a TM failure. Since

clocks may be loosely synchronized, Omid defines a

guard period of δ ′< δ , so that the lease must be renewed

at least δ ′ time before it expires. The production default

for δ ′ is δ/4. The primary TM fails itself (halts) if it can-

not renew the lease prior to that time. From the clients’

perspective, this is equivalent to a TM crash (line 70).

Second, CHECKRENEW allocates a new epoch if needed

(lines 71–74).

The backup (not shown in pseudocode) regularly

checks the shared lease, and if it finds that it has expired,

it immediately sets its clock to exceed maxTS, allocates

a new epoch for itself (by increasing maxTS), and be-

gins serving requests, without any special recovery pro-

cedure. Since the epoch claimed by a new TM always

exceeds the one owned by the old one, Property P1 holds.

Property P2 is enforced by having the TM (locally)

check that its lease is valid before committing a transac-

tion (lines 68–70). Since at most one TM can hold the

lease at a given time, and since the commit is initiated

after all writes to items that are part of the transaction

complete, Property P2 holds.

Nevertheless, the lease does not ensure Property P3,

since the lease may expire while the commit record is

in flight, as in the scenario of Figures 2 and 3. To this

end, we use the invalidation mechanism described above.

However, we limit its scope as follows: (1) A commit

needs to check whether the transaction has been invali-
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Algorithm 3 Omid’s HA algorithm.

66: procedure CHECKRENEW

67: ⊲ called by the TM at start of BEGIN and COMMIT

68: if lease < now + δ ′ then

69: renew lease for δ time ⊲ atomic operation

70: if failed then halt

71: if Clock = epoch then

72: epoch← Clock + range

73: extend maxTS from Clock to epoch

74: if failed then halt

75: procedure TMCHECKINVALIDATE(txid)

76: ⊲ called by the TM before COMMIT returns

77: if lease < now + δ ′ then

78: if txid invalid in CT then halt

79: procedure GETTENTATIVEVALUE(REC)

80: ⊲ replaces same function from Algorithm 1

81: lookup rec.version in CT

82: if present then

83: if invalidated then return nil

84: update rec.commit ⊲ helping

85: if rec.commit < tsr then return rec.value

86: else ⊲ new code – check if need to invalidate

87: if rec.version ∈ old epoch by an old TM then

88: invalidate t in CT ⊲ try to invalidate

89: if failed then

90: lookup rec.version in CT

91: if invalidated then return nil

92: update rec.commit ⊲ helping

93: if rec.commit < tsr then

94: return rec.value

95: else ⊲ invalidated

96: return nil

97: else ⊲ original code – no invalidation

98: rec← ds.get(key, rec.version)

99: if rec.commit6=nil ∧ rec.commit < tsr then

100: return rec.value

101: return nil

dated only if the TM’s lease has expired. This is done in

the TMCHECKINVALIDATE function. (2) A read needs

to invalidate a transaction only if it pertains to an earlier

epoch of a different TM. We extend client’s GETTEN-

TATIVEVALUE function to perform such invalidation in

Algorithm 3 lines 83, 87–96. Note that a transaction

reading a tentative update still checks its validity status

regardless of the epoch, in order to avoid “helping” in-

validated transactions complete their tentative updates.

Finally ,we note that on TM failover, some clients may

still be communicating with the old TM. While the old

TM may end up committing some of their requests, a

problem arises if the client times out on the old TM be-

fore getting the commit response, since the client might

unnecessarily retry a committed transaction. To avoid

this problem, a client that times out on its TM checks the

CT for the status of its transaction before connecting to

a new TM. If the status is still undetermined, the client

tries to invalidate the CT entry, thus either forcing the

transaction to abort or learning that it was committed (in

case the invalidation fails).

7 Evaluation

Omid’s implementation complements Apache HBase

with transaction processing. It exploits HBase to store

both application data and the CT metadata. HBase, the

TMs, and Zookeeper are all deployed on separate dedi-

cated machines.

In large-scale deployments, HBase tables are sharded

(partitioned) into multiple regions. Each region is man-

aged by a region server; one server may serve multiple

regions. HBase is deployed on top of Hadoop Distributed

Filesystem (HDFS), which provides the basic abstraction

of scalable and reliable storage. HDFS is replicated 3-

fold in all the settings described below.

Section 7.1 presents performance statistics obtained in

Omid’s production deployment, focusing on the end-to-

end application-level overhead introduced by transaction

processing. Section 7.2 further zooms in on the TM scal-

ability under very high loads.

7.1 End-to-end performance in production

We present statistics of Omid’s use in a production de-

ployment of Sieve – Yahoo’s content management sys-

tem. Sieve digests streams of documents from multiple

sources, processes them, and indexes the results for use

in search and personalization applications. Each docu-

ment traverses a pipeline of tasks, either independently

or as part of a mini-batch. A task is an ACID processing

unit, framed as a transaction. It typically reads one or

more data items generated by preceding tasks, performs

some computation, and writes one or more artifacts back.

Sieve scales across task pipelines that serve multiple

products, performing tens of thousands of tasks per sec-

ond on multi-petabyte storage. All are powered by a

single Omid service, with the CT sharded across 10 re-

gions managed by 5 region servers. Sieve is throughput-

oriented, and favors scalability over transaction latency.

Figure 4 presents statistics gathered for five selected

Sieve tasks. For each task, we present its average latency

broken down to components – HBase access (two bottom

components in each bar), compute time, and the TM’s

begin and commit (top two components). In this deploy-

ment, Omid updates the commit fields synchronously

upon commit, that is, commit returns only after the com-

mit fields of the transaction’s write-set have been up-

dated. Note that since a begin request waits for all

transactions with smaller txids to commit, its processing
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Figure 4: Transaction latency breakdown in produc-

tion deployment of Omid in Sieve. The top two com-

ponents represent transaction management overhead.

latency is similar to that of a commit operation, minus

the time commit takes to update the commit fields.

We see that for tasks that perform significant process-

ing and I/O, like document inversion and streaming to in-

dex, Omid’s latency overhead (for processing begin and

commit) is negligible – 2–6% of the total transaction du-

ration. In very short tasks such as duplicate detection and

out-link processing, Omid accounts for up to roughly one

third of the transaction latency.

The transaction abort rates observed in Sieve are neg-

ligible (around 0.002%). They stem from either transient

HBase outages or write-write conflicts, e.g., concurrent

in-link updates of extremely popular web pages.

7.2 TM microbenchmarks

We now focus on TM performance. To this end, our mi-

crobenchmarks invoke only the TM’s begin and commit

APIs, and do not access actual data. We run both the

TM and HBase (holding the CT) on industry-standard 8-

core Intel Xeon E5620 servers with 24GB RAM and 1TB

magnetic drive. The interconnects are 1Gbps Ethernet.

We generate workloads in which transaction write-

set sizes are distributed Zipf, i.e., follow a power-law

(Pr[X ≥ x] = x−α ) with exponent values of α = 1.2,

α = 1.6, and α = 2 (the smaller the heavier-tailed), cut-

off at 256 keys. Each transaction’s latency, (i.e., the time

we wait after invoking its begin and before invoking its

commit), is set to 5ms per write. Note that read-sets are

not sent to the TM and hence their size is immaterial.

We note that key selection affects real conflicts: if the

written keys are drawn from a heavy-tailed distribution,

then two concurrent transactions are likely to update the

same key, necessitating one of them to abort. Since this

is an artifact of the workload, which is unaffected by our

system design, we attempt to minimize this phenomenon

Figure 5: Scalability of Omid’s CT updates with the

number of HBase region servers, and comparison

with Omid1. Non-durable versions do not persist trans-

actions and thus provide upper bounds on throughput un-

der perfect storage scaling.

in our experiments. We therefore uniformly sample 64-

bit integers for the key hashes. Recall that our experience

in production shows that real conflicts are indeed rare.

We begin by evaluating scalability, which is our prin-

cipal design goal. The TM throughput is constrained

by two distinct resources – the storage access required

for persisting commits in the CT, and the compute re-

sources used for conflict detection. These resources scale

independently: the former, evaluated in Section 7.2.1,

scales out across multiple HBase region servers, whereas

the latter scales up on multi-core hardware, and is stud-

ied in Section 7.2.2. Section 7.2.3 then evaluates the

throughput-latency tradeoff that Omid exhibits when us-

ing a single region server. Finally, in Section 7.2.4, we

exercise Omid’s high-availability mechanism.

7.2.1 Commit table scalability

Since the commit records are fixed-length (two 64-bit in-

tegers), the CT performance does not depend on transac-

tion sizes, and so we experiment only with α = 1.6. Re-

call that in order to optimize throughput, the TM batches

writes to the CT and issues multiple batches in paral-

lel. Experimentally, we found that the optimal number of

concurrent CT writer threads is 4, and the batch size that

yields the best throughput is 2K transactions per writer.

Figure 5 depicts Omid’s commit rate as function of

the number of HBase region servers, which scales to al-

most 400K tps. It further compares Omid’s throughput

to that of Omid1 [25], which, similarly to Omid, runs

atop HBase, and uses a centralized TM. It is worth noting

that even in the single-server configuration, Omid outper-

forms Omid1 by more than 25x. This happens because

upon each begin request, Omid1 sends to the client a

large amount of information (equivalent to the combina-

tion of Omid’s CT and the in-memory conflict detection
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table). This saturates the CPU and network resources.

The “non-durable” bars – leftmost and second from

the right – represent experiments where commits are not

persisted to stable storage. In Omid this means forgoing

the write to the CT, whereas in Omid1 it means disabling

the write to BookKeeper in which the system stores its

commit log. These results provide upper bounds on the

throughput that can be obtained with perfect storage scal-

ing in both systems. Omid peaks at 518K transactions

per second, whereas Omid1 peaks at 50K.

7.2.2 Conflict detection scalability

In the experiment reported above, the conflict detection

algorithm is evaluated as part of the system. There, the

commit table I/O is the bottleneck, and the conflict detec-

tion process can keep up with the pace of four I/O threads

even when running sequentially, i.e., in a single thread.

We next focus on scale-up of this component running

by itself using 1 to 8 threads, in order to study its poten-

tial scalability in even larger configurations. The exper-

iment employs a conflict table of 128M 64-bit integers

(1G total size). The bucket size is 32 integers, i.e., the

table is 4M buckets big.

Figure 6(a) illustrates the processing rate. As ex-

pected processing shorter transactions (a bigger α) is

faster. The rate scales to 2.6M transactions per second

for α = 1.2, and to 5M for α = 2. Note that exercis-

ing such high throughput in a complete system would re-

quire an order of magnitude faster network to sustain the

request/response packet rate. Clearly the TM’s compute

aspect is far from being a bottleneck.

Finally, we analyze the false abort rate. (The uniform

sampling of key hashes and relatively short transaction

latencies render real collisions unlikely, hence all aborts

are deemed false). The overall abort rate is negligibly

small. In Figure 6(b) we zoom-in on transactions clus-

tered into three buckets: shorter than 8 writes, 8 to 63

writes, and 64+ writes. The worst abort rate is below

0.01%. It occurs, as expected, for long transactions in

the most heavy-tailed distribution. Further reduction of

the false abort rate would require increasing the table size

or using multiple hashes (similarly to Bloom filters).

7.2.3 Latency-throughput tradeoff

We now examine the impact of load on TM access la-

tency with a single region server managing the CT. We

use here α = 1.6. For every given system load, the batch

size is tuned for optimal latency: under light load, no

batching is employed, (i.e., commits are written one at a

time), whereas under high load, we use batches of 10K.

Figure 7 reports the average client-side latency of

commit operations, broken down to three components:

(1) network round-trip delay and conflict detection,

which are negligible, and do not vary with the load or

batch size; (2) HBase CT write latency, which increases

with the batch size; and (3) queueing delay at the TM,

which increases with the load. Begin latency is similar,

and is therefore omitted. We increase the load up to 70K

transactions per second, after which the latency becomes

excessive; to exceed this throughput, one may use multi-

ple region servers as in the experiment of Section 7.2.1.

Figure 7: Omid throughput vs. latency. Client-

perceived commit latency (average broken down and

90% of total); single region server; power-law transac-

tion sizes with α = 1.6; batch sizes optimized for mini-

mum latency (in square brackets below each bar).

Figure 8: Omid throughput with four failovers; recov-

ery takes around 4 seconds.

7.2.4 High availability

Finally, we exercise the high-availability mechanism. As

long as the primary TM does not fail, HA induces neg-

ligible overhead. We now examine the system’s recov-

ery following a primary TM failure. The failure detec-
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(a) Conflict detection scalability (b) Conflict detection false abort rate

Figure 6: Conflict detection scalability and false abort rate. Transaction write-set sizes are distributed power-law

(Pr[X ≥ x] = x−α ) with exponent values of α = 1.2, α = 1.6, and α = 2 (the smaller the heavier-tailed); the key hashes

are 64-bit integers, uniformly sampled to avoid real conflicts whp; transaction latency is 5ms per write.

tion timeout is δ = 1 sec. Figure 8 depicts the system

throughput over time, where the primary TM is force-

fully shut down after 40 sec, is then allowed to recover,

and the new primary (original backup) is shut down after

120 sec. The primary is shut down two more times at 180

and 220 sec; the failover completes within 4 sec.

8 Lessons Learned and Future Work

Omid was originally designed as a foundational building

block for Sieve – Yahoo’s next-generation content man-

agement platform. The need for transactions emerges

in scenarios similar to Percolator [31]. Analogously to

other data pipelines, Sieve is more throughput-sensitive

than latency-sensitive. This has led to a design that trades

off latency for throughput via batching. The original de-

sign of Omid1 [25] did not employ a CT, but instead

had the TM send clients information about all pending

transactions. This design was abandoned due to limited

scalability in the number of clients, and was replaced by

Omid, which uses the CT to track transaction states. The

CT may be sharded for I/O scalability, but its update rate

is bounded by the resources of the single (albeit multi-

threaded) TM; this is mitigated by batching.

Since becoming an Apache Incubator project, Omid is

witnessing increased interest, in a variety of use cases.

Together with Tephra, it is being considered for use by

Apache Phoenix – an emerging OLTP SQL engine over

HBase storage [3]. In that context, latency has increased

importance. We are therefore developing a low-latency

version of Omid that has clients update the CT instead

of the TM, which eliminates the need for batching and

allows throughput scaling without sacrificing latency.

Similar approaches have been used in Percolator [31],

Corfu [10], and CockroachDB [5]. We note, however,

that such decentralization induces extra synchronization

oerhead at commit time and may increase aborts (in par-

ticular, reads may induce aborts); the original design may

be preferable for throughput-oriented systems.

Another development is using application semantics

to reduce conflict detection. Specifically, some appli-

cations can identify scenarios where conflicts need not

be checked because the use case ensures that they won’t

happen. Consider, e.g., a massive table load, where

records are inserted sequentially, hence no conflicts can

arise. Another example is a secondary index update,

which is guaranteed to induce no conflict given that the

primary table update by the same transaction has been

successful. To reduce overhead in such cases, we plan to

extend the write API to indicate which written keys need

to be tracked for conflict detection.

On the scalability side, faster technologies may be

considered to maintain Omid’s commit metadata. In par-

ticular, since Omid’s commit table is usually written se-

quentially and infrequently read, it might be more effi-

cient to use log-structured storage that is better optimized

for the above scenario.
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