
OMJulia: An OpenModelica API for Julia-Modelica Interaction

DOI Proceedings of the 13th International Modelica Conference 699
10.3384/ecp19157699 March 4-6, 2019, Regensburg, Germany

OMJulia: An OpenModelica API for Julia-Modelica Interaction
Lie, Bernt and Palanisamy, Arunkumar and Mengist, Alachew and Buffoni, Lena and Sjölund, Martin and
Asghar, Adeel and Pop, Adrian and Fritzson, Peter

699

OMJulia: An OpenModelica API for Julia-Modelica Interaction

Bernt Lie1, Arunkumar Palanisamy2, Alachew Mengist2, Lena Buffoni2, Martin Sjölund2, Adeel
Asghar2, Adrian Pop2, Peter Fritzson2

1University of South-Eastern Norway, Porsgrunn, Norway, Bernt.Lie@usn.no;
2Linköping University, Linköping, Sweden, Peter.Fritzson@liu.se

Abstract
Modelica is an object oriented, acausal equation-based
language for describing complex, hybrid dynamic mod-
els. About ten Modelica implementations exist, of which
most are commercial and two are open source; the imple-
mentations have varying levels of tool functionality. Many
Modelica implementations have limited support for model
analysis. It is therefore of interest to integrate Model-
ica tools with a powerful scripting and programming lan-
guage, such as Julia. Julia is a modern and free language
for scientific computing. Such integration would facil-
itate the needed analysis possibilities and can speed up
the development of effient simulation models. A number
of design choices for interaction between Julia and Mod-
elica tools are discussed. Next, Julia package OMJulia
is introduced with an API for interaction between Open-
Modelica and Julia. Some discussion of the reasoning be-
hind the OMJulia design is given. The API is based on a
new class ModelicaSystem within package OMJulia, with
systematic methods which operate on instantiated mod-
els. OMJulia supports handling of FMU and Modelica
models, setting and getting model values, as well as some
model operations. Results are available in Julia for fur-
ther analysis. OMJulia is a further development of a pre-
vious OMPython package; a key advantage of Julia over
Python is that Julia has better support for control engineer-
ing packages. OMJulia represents a first effort to interface
a relatively complete Modelica tool to Julia, giving access
to an open source set-up for modeling and analysis, in-
cluding control synthesis, easily installable from a unified
package manager. Some possibilities of OMJulia are illus-
trated by application to a few simple, yet industrially rele-
vant problems within control design. Keywords: Model-
ica, FMI, FMU, OpenModelica, Julia, Julia API, OMJulia

1 Introduction
Julia is a modern, rich script language, (Bezanson et al.,
2017), with excellent support for efficient and fast differ-
ential equation solvers (Rackauckas and Nie, 2017), in-
cluding DAEs (Sund et al., 2018), as well as a number of
other packages for plotting, control engineering, optimiza-
tion, statistics, machine learning, etc., (JuliaLang, 2018).

Modelica is a modern, equation based, acausal lan-
guage for encoding models of dynamic systems in the
form of differential algebraic equations (DAEs), see, e.g.,

(Modelica Association, 2016), (Modelica Association,
2017), (Fritzson, 2015) on Modelica, and, e.g., (Brenan
et al., 1989) on DAEs. The Functional Mock-up Inter-
face (FMI) is a common standard format to support both
model exchange and co-simulation of dynamic models in
the form of Functional Mock-up Units (FMU) between
many modelling and simulation environments, (FMI Con-
sortium, 2018).

OpenModelica1 (Fritzson et al., 2018) is a mature,
freely available tool set that includes OpenModelica Con-
nection Editor (flow sheeting, textual editor with debug-
ging facilities, and simulation environment), the OMShell
(command line/script based execution), and a number of
extensions. OpenModelica Shell supports commands for
simulation of Modelica models, for use of the Modelica
extension Optimica, for carrying out analytic linearization
via the Modelica package Modelica_LinearSystem2, and
for converting Modelica models into Functional Mock-
Up Units (FMUs) as well as for converting FMUs back
to Modelica models. However, the OMShell is relatively
limited wrt. other, advanced analysis possibilities such
as availability of random number generator, control tools,
etc.

Based on OMPython (Ganeson, 2012; Ganeson et al.,
2012), an API was developed for simple operation on
Modelica models from within Python (Lie et al., 2016).
Both Modelica (Baur et al., 2009) and Python2 have lim-
ited support for control tools, and it is of interest to ex-
plore connecting OpenModelica to other scripting tools
with richer eco-systems for control engineering — two
possibilities are MATLAB and Julia. To ease the mainte-
nance of interfacing Modelica with 3 different script lan-
guages, it is necessary to compromise on the specific style
of each language. This paper discusses the API adapted to
Julia, and illustrates how OMJulia can be used for analysis
of Modelica models, exemplified by a simple water tank
model, and then for more advanced analysis of a nonlinear
reactor model3. The paper is organized as follows. In Sec-
tion 2, an overview of the API is given. In Section 3, use of
the API is applied to analysis of a simple, process oriented
model. In Section 4, a somewhat more complex chemical
engineering type process is used to illustrate possibilities

1www.openmodelica.org
2https://sourceforge.net/p/python-control/wiki/Home/
3The nonlinear reactor case will be added in the final paper.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

700 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157699

with combining OpenModelica with Julia. In Section 5,
some discussion of the API is provided with conclusions.

2 Overview of Julia API
2.1 Goal
Julia is a modern, rich script language, while Model-
ica, offers mature, equation based encoding of physically
based models, with system (input-output), and library sup-
port. It is of interest to consider the use of Modelica with
Julia for a wide range of engineering disciplines. The
computer science threshold of using Modelica with Julia
should be low. The OMJulia extension should be installed
via the standard Julia packet manager (Git-based), and
support the same platforms as Julia does. Results should
be returned as standard Julia structures.

OMJulia can be installed as described at https://
github.com/OpenModelica/OMJulia.jl.

2.2 Design Choices
Essentially, four paths to Modelica–Julia interaction are
realistic4.

1. Sending Modelica script commands as text strings
from Julia to the Modelica tool via the ZMQ com-
munication protocol5 (Hintjens, 2013), and retriev-
ing results. This is similar to the original idea of
OMPython6. Advantage: simple solution. Disadvan-
tage: requires detailed knowledge of Modelica tool
script commands; possibly relatively slow if the in-
teraction time is a large fraction of the computation
time.

2. Julia API with commands native to Julia, which are
translated to Modelica script commands “behind-the-
scene”, interacts with Modelica via ZMQ, and with
results returned to Julia in Julia objects. Advantage:
simple to use within Julia. Disadvantage: limited to
existing possibilities in Modelica tool; possibly rela-
tively slow.

3. Translate Modelica code to Julia code. Currently,
OpenModelica code is translated to C code. It is pos-
sible to alternatively translate the code to Julia code.
Advantage: utilize specialized syntax (Modelica) for
describing models, and with full integration with Ju-
lia, fast. Disadvantage: the user must handle two
languages.

4. Extend Julia with Modelica-like structures, such as
the Modia initiative (Elmqvist et al., 2017). Advan-
tage: the user operates in one language, fast. Disad-
vantage: limitations in Julia syntax and slightly dif-
ferent language semantics may make the extensions
more complex for the user than Modelica is.

4The same paths are possible with other script languages such as
Python and MATLAB

5http://zeromq.org/
6Originally, OMPython used CORBA technology instead of ZMQ

Ideal integration for speed and use of Julia tools would be
achieved by either design choices 3 or 4. Sims.jl rep-
resents an early exploration of choice 4, while Modia.jl
represents a newer, more extensive work within choice 4.7

Here, we describe the OMJulia API, which belongs to de-
sign choice 2. A longer term plan is to improve on the pre-
vious OMPython API (Lie et al., 2016), and offer a suite
for Python, Julia, and MATLAB.

Based on experience with the OMPython API, the syn-
tax of the OMJulia API is updated/improved for easier
use. To be future proof, the tool developer should “own”
the API. Ease of maintenance of such a suite is essen-
tial, which implies that the syntax should be similar across
script languages. Thus, some compromises must be made
wrt. syntax. As an example, the key paradigm in Python
is objects, and applying method simulate to object mod

would have the syntax mod.simulate(). The key
paradigms in Julia are types and multiple dispatch (“func-
tion overloading”), and the natural syntax in Julia would
be simulate(mod) where the type of mod decides which
method/function implementation is used (“dispatching”).
Still, Julia allows for the same syntax as Python, and the
Pythonian syntax is therefore chosen — for ease of main-
tenance. Ease of maintenance also dictates that OMJulia
should depend on as few packages as possible, and take
advantage of existing packages in Julia for plotting, etc.

2.3 Description of the API
The API is described in the subsections below.

2.3.1 Julia Class and Constructor

The first step to using the OMJulia API is to introduce it
in the Julia session using the using command:8

julia> using OMJulia

Next, an empty Julia model object is constructed which
communicates with OpenModelica:9

julia> mod = OMJulia.OMCSession()

We are now ready to fill the model object with con-
tent. The OMJulia method which is used to populate the
model object with a Modelica model is the model con-
structor ModelicaSystem(). This constructor requires
two arguments, with an optional third argument:

1. The first argument is a string containing the name of
the Modelica file which holds the model, if necessary
with full directory path.

2. The second argument is a string containing the name
of the main Modelica model within the file.

7See www.julialang.org under Explore packages.
8The Julia prompt julia> is not typed, and does not appear in

script files, nor in IJulia/Jupyter notebooks.
9Any valid Julia identifier can be used as the model object name.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

DOI Proceedings of the 13th International Modelica Conference 701
10.3384/ecp19157699 March 4-6, 2019, Regensburg, Germany

3. If the main Modelica model uses some libraries (e.g.,

the Modelica Standard Library), these are listed as
strings in a Julia vector (= 1D array) in a third argu-
ment. If a single library is used, the vector of a single
string can be replaced by the string.

Example 1. Use of Model Constructor

Suppose that we have establised a Julia object mod which
communicates with OpenModelica, see above. Suppose
next that we have a Modelica model with name CSTR,
wrapped in a Modelica package Reactors — stored in file
Reactors.mo:

package Reactors
// ...
model CSTR

/// ...
end CSTR;
//

end Reactors;

Assuming that no external Modelica code is used, the
following Julia code populates the Julia object mod with
the Modelica model:

julia> mod.ModelicaSystem("Reactors.mo", "
Reactors.CSTR")

N

2.3.2 Methods, Arguments, and Return Values

In the Julia language, it is in general recommended not
to use class functions (“methods”) in the way we have
done in OMJulia. Instead of using get and set methods
(as in Python), one could operate directly on the object at-
tributes10. And instead of using methods that transform
the object, e.g., simulate, linearize, etc., one could de-
fine general functions combined with type dispatching.
However, because OMJulia is part of a family of script
language interfaces for OpenModelica, some compromise
has been made in order to simplify maintenance. To this
end, in OMJulia, “methods” in the sense of object oriented
languages a la Python are appended to the object after a
dot.11

Methods in OMJulia have zero or one argument. In the
case of one argument, this is either a Julia string or a vector
(= 1D array) of strings.12 The following Julia syntax is
useful in this context:

10In Julia, operating directly on the object attributes is safe because
Julia is a strongly typed language, contrary to, e.g., Python. Safe, as-
suming that strong type definition has been used.

11In Julia, the word method as a different meaning than in general
object oriented languages. Here, the word “method” is used as in object
oriented languages such as Python.

12In the OMPython initiative, (Lie et al., 2016), Python’s keyword
assignment syntax was used. Keyword assignment is, however, trouble-
some, since possible Modelica identifiers such as mod.K and der(x)
are invalid as identifiers/keywords in Python, Julia, etc.

1. String concatenation is achieved by symbol *, thus
strings "K", "=", and "5" can be concatenated by
"K"*"="*"5" to become "K=5".

2. String substitution (referred to as string interpolation
in the Julia community) is achieved by the reserved
symbol $, e.g., "T=\$(25+273)" is interpreted as
"T=298", while T0=298 followed by "T=\$T0" or
"T=$(T0)" gives the same result.13

Some methods return a single string s holding a numerical
value, or a vector v holding strings each with a numerical
value. Such a string s can be trivially converted to a float-
ing point number by parse(Float64,s); such a vector
v can be converted to a vector of floating point numbers
by [parse(Float64,s)for s in v].

In the subsequent overview of methods, object name
mod is used for illustration — in real use, any valid Ju-
lia identifier can be used as object name. Methods may
or may not return results — if the methods do not return
results, the results are stored within the object.

2.3.3 Utility Routines, Converting Modelica ↔ FMU

Two utility methods convert files between Modelica files
with file extension .mo and Functional Mock-up Unit
(FMU) files with file extension .fmu.

1. mod.convertMo2Fmu() — method for converting
the Modelica model of the object into an FMU file.

• Required arguments: none, operates on the
Modelica file associated with the object.

• Optional input arguments:

– version: string with FMU version, "1.0
" or "2.0"; the default is "1.0".

– fmuType: string with FMU type, "
me" (model exchange) or "cs" (co-
simulation); the default is "me".

– fileNamePrefix: string; the default is
"className".

• Return argument:

– generatedFileName: string, returns the
full path + filename of the generated FMU
(.fmu).

2. mod.convertFmu2Mo(s)— method for converting
an FMU file into a Modelica file.

• Required input arguments: string s, where s
holds the name of the FMU file, including ex-
tension .fmu.

13With $ being a reserved symbol in Julia, it is necessary to use the
escape character \, i.e., \$ to achieve the effect of character $ in strings,
e.g., to specify LaTeX typesetting. Alternatively, by using Julia package
LaTeXString, syntax L"..." replaces $ with \$ in the string
without user intervention.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

702 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157699

• Optional input arguments: a number of op-

tional input arguments, e.g., the possibility
to change working directory for the imported
FMU files.

• Return argument:

– generatedFileName: string, returns the
full path + filename of the generated Mod-
elica file (.mo).

2.3.4 Get and Set Information

Several methods are dedicated to getting and setting
information about objects. With two exceptions —
getQuantities() and getSolutions() — the get
methods have identical use of arguments and results, while
all the set methods have identical use of input arguments,
with results stored in the object.

Get Quantity Information. Show Quantity Informa-
tion Method mod.getQuantities() has no input ar-
guments, and returns a vector14 of dictionaries, one dictio-
nary for each quantity. Each dictionary has the following
keys (strings) — with values being strings, too.

• "name" — the name of the quantity, e.g., "T", "der
(T)", "n[1]", "mod1.T", etc.,

• "aliasvariable" — typically nothing,

• "variability" — typically "continuous", "
parameter", etc.,

• "changeable" — value "true" or "false",

• "causality" — value "internal" or "
external" (for inputs),

• "value" — string of number "50", text string, or
"None",

• "description" — string copied from Modelica:
description of the quantity, e.g. "Mass in tank,
kg", or nothing.

• "alias" — typically "noAlias".

Modelica constants are not included in the returned vector
of dictionaries.15

A Julia specific utility function mod.
showQuantities() is included with the same syntax
as mod.getQuantities(), taking advantage of Julia
DataFrames to present the quantities in a table.16

14In Julia, a vector is a 1D array.
15In Modelica, constant is used for values which require recom-

pilation when changed. parameter values, on the other hand, can
be changed without recompilation.

16In Python, mod.showQuantities() is redundant because
the return object directly produces a table with Python pandas.

Get Solutions We consider method getSolutions()
— which assumes that the simulate() method has been
applied (see below). Three calling possibilities are ac-
cepted.

• mod.getSolutions(), i.e., without input argu-
ments, returns a vector of strings of names of quan-
tities for which there is a solution.17

• mod.getSolutions(s), where s is a string of a
name, returns a single time series (= vector of float-
ing point numbers) for the corresponding name.

• mod.getSolutions(v), where v is a vector of
strings of names, returns a vector of time series
(= vectors of floating point numbers) for the corre-
sponding names.

It follows that a vector of all time series can
be returned by the construct mod.getSolutions(
mod.getSolutions()).

Standard Get Methods We consider meth-
ods getXXX(), where XXX is either of {
Continuous, Parameters, Inputs, Outputs,
SimulationOptions, LinearizationOptions
}. Thus, methods mod.getContinuous(),
mod.getParameters(), etc. Three calling possi-
bilities are accepted.

• mod.getXXX(), i.e., without input argument, re-
turns a dictionary with names (strings) as keys and
values given in strings.

• mod.getXXX(s), where s is a string of a name, re-
turns a single string with value of the corresponding
name.

• mod.getXXX(v), where v is a vector of strings of
names, returns a vector of strings of values for the
corresponding names.

Set Methods The information that can be set is a
subset of the information that can be get. Thus, we
consider methods setXXX(), where XXX is either of
{Parameters, Inputs, SimulationOptions,
LinearizationOptions}, thus methods

mod.setParameters(), mod.setInputs(), etc.
Two calling possibilities are accepted.

• mod.setXXX(s), with s being a string of key-
word assignments of type quantity "name = value
". Here, the quantity name could be a parameter
name, an input name, etc.

– For parameters and simulation/linearization
options, the value should be a single value such
as a numerical value or a name of a solver, etc.,
e.g., s is "R=8.31" or "solver=dassl".

17The reason why a dictionary with every name as key and time series
as value is not returned, is that the amount of data might be exhaustive.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

DOI Proceedings of the 13th International Modelica Conference 703
10.3384/ecp19157699 March 4-6, 2019, Regensburg, Germany

– For inputs, the value could be a numerical value

if the input is constant in the time range of the
simulation, e.g., "u = 1.0", or

– For inputs, the value could alternatively be
a vector of tuples (t_{j},u_{j}), i.e., [(
t1,u1),(t2,u2),...,(tN,uN)] where the
input varies linearly between (t_{j},u_{j})
and (t_{j+1},u_{j+1}), where t_{j}<=
t_{j+1}, and where at most two subsequent
time instances t_{j},t_{j+1} can have the
same value. As an example, "u=[...,
(1,10), (1,20), ...]" describes a per-
fect jump in input value from value 10 to value
20 at time instance 1.

• mod.setXXX(v), with v being a vector of strings as
described for mod.setXXX(s). An example could
be could be ["R=8.31","cp=4.18"].

2.3.5 Operating on Julia Object: Simulation

The following method operates on the object, and has no
input arguments. The method has no return values; instead
the results are stored within the object.

• mod.simulate() — simulates the system with the
given simulation options

To retrieve the results, method mod.getSolutions() is
used as described previously.

2.3.6 Operating on Julia Object: Linearization

The following methods are used for linearization:

• mod.linearize() — with no input argument, re-
turns a tuple of 2D arrays (matrices) A, B, C, D.

• mod.getLinearInputs() — with no input argu-
ment, returns a vector of strings of names of inputs
used when forming matrices B and D.

• mod.getLinearOutputs() — with no input argu-
ment, returns a vector of strings of names of outputs
used when forming matrices C and D.

• mod.getLinearStates() — with no input argu-
ment, returns a vector of strings of names of states
used when forming matrices A, B, C, D.

Observe that linearization is carried out at the stopTime
specified in LinearizationOptions. The reason why
linearization is not carried out at initial time, is that to han-
dle DAEs, OpenModelica needs to initialize the model at
initial time — before linearization can be carried out. For
normal use, stopTime should be given a small value if
linearization at the current operating value is intended.

Figure 1. Driven water tank, with externally available quantities
framed in red: initial mass is emptied through bottom at rate ṁe,
while at the same time water enters the tank at rate ṁi.

2.3.7 Operating on Julia Object: Sensitivity

Sensitivy is related to ∂y(t)
∂θ , i.e., how an infinitesimal

change in a parameter θ leads to an infinitesimal change
in the solution of variable y; both θ and y can in princi-
ple be vectors. Sensitivity is very important in connection
with model fitting and identifiability analysis. The follow-
ing method is implemented on the Julia side, and provides
numeric sensitivities. The method has 2 or 3 input argu-
ments, and returns a tuple of 2 return arguments.

• mod.sensitivity(a1,a2[,a3]) — computes
sensitivity ∂y(t)

∂θ . Input arguments must be vectors:
a1 holds strings of the name of model parameters
(θ), a2 holds strings of the name of system vari-
ables (y), while the optional third argument a3 holds
floating point values for fractional parameter pertur-
bation. The return tuple holds two vectors, r1 and
r2. The first vector, r1, holds strings of the name of
the sensitivities that have been computed, while vec-
tor r2 holds the corresponding time series (vector of
solution values) — computed at the time instances
given by the simulation options.

3 Basic Use of API for Model Analysis
3.1 Case: Simple Tank Filled with Liquid
We consider the tank in Figure 1 filled with water.

Water with initial mass m(0) is emptied by gravity
through a hole in the bottom at effluent mass flow rate ṁe,
while at the same time water is filled into the tank at in-
fluent mass flow rate ṁi. Our modeling objective is to find
the liquid level h. Here, the input variable is the influent
mass flow rate ṁi, while the output variable is the quantity
we are interested in, h.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

704 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157699

Table 1. Parameters for driven tank with constant cross sectional
area.

Parameter Value Comment
ρ 1kg/L Density of liquid
A 5dm2 Constant cross sectional area
K 5kg/s Valve constant
hς 3dm Level scaling

Table 2. Operating condition for driven tank with constant cross
sectional area.

Quantity Value Comment
h(0) 1.5dm Initial level
m(0) ρh(0)A Initial mass
ṁi (t) 2kg/s Nominal influent mass flow

rate; may be varied

3.2 Model Summary
The model can be summarized in a form suitable for im-
plementation in Modelica as

dm
dt

= ṁi − ṁe (1)

m = ρV (2)
V = Ah (3)

ṁe = K

√
h
hς (4)

To complete the model description, we need to specify
model parameters and operating conditions. Model pa-
rameters (constants) are given in Table 1.

The operating conditions are given in Table 2.

3.3 Modelica Encoding of Model
The Modelica code describes the core model of the tank,
ModWaterTank, and consists of a first section where con-
stants and variables are specified, and a second section
where the model equations are specified (compactified
Modelica code is shown below).

model ModWaterTank
constant Real rho = 1 "Density";
parameter Real A=5, K=5, h_s=3;
parameter Real h_0=1.5, m_0=rho*h_0*A;
Real m(start=m_0, fixed=true);
Real V, md_e;
input Real md_i;
output Real h;

equation
der(m)=md_i-md_e;
m=rho*V, V=A*h, md_e=K*sqrt(h/h_s);

end ModWaterTank;

As seen from the first section of model ModWaterTank,
the model has 4 essential parameters (rho–h_s) of which
one is a Modelica constant (rho) while other 3 are de-
sign parameters, compare this to Table 1. Furthermore,

the model contains 2 “initial state” parameters, where 1 of
them can be chosen at liberty, h_0, while the other one,
m_0, is computed automatically from h_0, see Table 2.
The purpose of the “free parameter” h_0 is that it is easier
for the user to specify level than mass. Also, free “initial
state” parameters makes it possible for the user to change
the initial states from outside of model ModWaterTank,
e.g., from Julia.

Next, one variable is given with initial value — the state
m — is initialized with the “initial state” parameter m_0.
Then, 2 variables are defined as auxiliary variables (alge-
braic variables), V and md_e.18

One input variable is defined — md_i — this is the in-
fluent mass flow rate ṁi, see Table 2. Inputs are charac-
terized by that their values are not specified in the core
model — here ModWaterTank. Instead, their values must
be given in an external model/code — we will specify this
input in Julia. Finally, 1 output is given — h.

In the second section of model ModWaterTank, the
Model equations exactly map the mathematical model
given in Eqs. 1–4. For illustrative purposes, the core
model ModWaterTank is wrapped within a package
named WaterTank and stored in file WaterTank.mo,

package WaterTank
// Package for simulating

// driven water tank
model ModWaterTank

// Main driven water tank model
// ...
...

end ModWaterTank;
// End package
end WaterTank;

3.4 Use of Julia API
First, the following Julia statements are executed — we
did this in Jupyter notebook (IJulia).

using Plots; pyplot()
using LaTeXStrings
using DataFrames
using OMJulia
Linewidth
LW1 = 1.5
LW2 = 1
Colors - core
usn_red = colorant"#D64349"
usn_blue = colorant"#27B2DO"
usn_green = colorant"#3BAFA2"
usn_purple = colorant"#4646A5"
usn_gold = colorant"#FFD240"

Here, package Plots is the plotting meta pack-
age of Julia; we use pyplot as back-end. Package
LaTeXStrings makes it possible to automate insertion
of escape symbol \ in LaTeX code to produce proper
Julia strings. Package DataFrames is used to present
quantities in Jupyter notebook tables. Two line widths

18md is notation for m with a dot, ṁ, i.e., a mass flow rate.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

DOI Proceedings of the 13th International Modelica Conference 705
10.3384/ecp19157699 March 4-6, 2019, Regensburg, Germany

Figure 2. Typesetting of quantity vector of dictionaries as a table
in a Jupyter notebook.

are assigned, to variables LW1 and LW2, to obtain uniform
line width.

Colors are taken from the graphical profile of the em-
ployer of first author are used to illustrate how one can de-
fine colors using hex code. Alternatively, the CSS color
names are available19 as case insensitive symbols, e.g., :
red, :cornflowerblue, etc.

3.5 Basic Simulation of Model
We instantiate object tank with the following command:

tnk = OMJulia.OMCSession()
tnk.ModelicaSystem("WaterTank.mo","WaterTank.

ModWaterTank")

In the sequel, Julia prompt julia> is used when
Jupyter20 notebook actually uses In[*] — where * is
some number, while the response in Jupyter notebook is
prepended with Out[*] .

julia> q = tnk.getQuantities()
julia> typeof(q)
Array{Any,1}
julia> length(q)
11
julia> q[1]
Dict{Any,Any} with 8 entries:
"name" => "m"
"aliasvariable" => nothing
"variability" => "continuous"
"changeable" => "false"
"causality" => "internal"
"value" => "None"
"description" => "Mass in tank, kg"
"alias" => "noAlias"

julia> tnk.showQuantities()

Method tnk.showQuantities() produces a table
overview, Fig. 2.

The results in Figure 2 should be compared to the Mod-
elica model in Section 3.2. Observe that Modelica con-
stants are not included in the quantity list.

Next, we check the simulation options:

julia> tnk.getSimulationOptions()

19https://www.w3schools.com/colors/
colors_groups.asp

20Jupyter is denoted IJulia in Julia.

Dict{Any,Any} with 5 entries:
"startTime" => "0"
"stopTime" => "1"
"solver" => "dassl"
"stepSize" => "0.002"
"tolerance" => "1e-006"

It should be observed that the stepSize is the fre-
quency at which solutions are stored, and is not the step
size of the solver. The number of data points stored, is thus
(stopTime–startTime)/stepSize with due rounding.
This means that if we increase the stopTime to a large
number, we should also increase the stepSize to avoid
storing large amounts of data.

Possible inputs are:

julia> tnk.getInputs()
Dict{Any,Any} with 1 entry:
"md_i" => "None"

where value None implies that the available input, md_i,
has yet not been set. The simulation will not work with
value None; let us instead set ṁi = 3, simulate for a long
time, and then change “initial state” parameter h(0) to the
steady state value of h:

julia> tnk.setInputs("md_i=3")
julia> tnk.setSimulationOptions(["stopTime=1

e4", "stepSize=10"])
julia> tnk.simulate()
julia> h, = tnk.getSolutions("h")
julia> tnk.setParameters("h_0=$(h[end])")

Observe that the syntax h, is needed to unpack the time
series for h when the vector of solutions has a single ele-
ment.

Next, we reset the stop time to 10, and specify an input
sequence with a couple of jumps:

julia> tnk.setSimulationOptions(["stopTime=10
","stepSize=0.02"])

julia> tnk.setInputs("md_i = [(0,3),(2,3),
(2,4),(6,4),(6,2),(10,2)]")

Finally, we simulate the model with the time varying
input, and plot the result:21

julia> tnk.simulate()
julia> tm, h = tnk.getSolutions(["time","h"])
julia> plot(tm,h,linewidth=LW1, color=

usn_blue, label=L"h")
julia> plot!(title="Water tank level")
julia> plot!(xlabel=L"time t [s]")
julia> plot!(ylabel=L"h [dm]")

The result is displayed in Figure 3.

3.6 Monte Carlo Simulation
It is of interest to study how the model behavior varies
with varying uncertain parameter values, e.g., the effluent
valve constant K. This can be done as follows:

21plot() plots a result, plot!() overlays information on an
existing plot.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

706 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157699

Figure 3. Tank level when starting from steady state, and ṁi (t)
varies in a straight line between the points (t j, ṁi (t j)) given by
the list [(0,3),(2,3),(2,4),(6,4),(6,2),(10,2)
].

Figure 4. Uncertainty in tank level with a 5% uncertainty in
valve constant K. The input is like in Figure 3.

julia> par = tnk.getParameters()
julia> K = parse(Float64,par["K"])
julia> Nmc = 10;
julia> KK = K + (randn(Nmc)-0.5)*K/20;
julia> tnk.simulate()
julia> tm, h = tnk.getSolutions(["time","h"])
julia> v_h = Vector{Vector}(Nmc)
julia> for (i,K) in enumerate(KK)

tnk.setParameters("K=$(K)")
tnk.simulate()
v_h[i] = tnk.getSolutions("h")

end
julia> plot(tm,h,lw=LW1,lc=usn_red,label=L"

h")
julia> plot!(tm,v_h,lw=LW2,ls=:dot,lc=usn_red

,legend=false)
julia> plot!(title="Tank level sensitivity")
julia> plot!(xlabel=L"time t [s]")
julia> plot!(ylabel=L"h [dm]")

The result is as shown in Figure 4.

3.7 Linearizing Model
We can find a linearized approximation of the system.
First we reset K to 5, then set the stop time of the lin-
earization to 10−6 before we linearize the system and ex-
tract matrices A, B, C, and D.

julia> tnk.setParameters("K=5")
julia> tnk.setLinearizationOptions("stopTime

=1e-6")
julia> A,B,C,D = tnk.linearize();

If we use the Julia ControlSystems package,22 we can
define an LTI system and find the transfer function:

julia> using ControlSystems
julia> sys = ss(A,B,C,D)
julia> tf(sys)
ControlSystems.TransferFunction{

ControlSystems.SisoRational{Float64}}
0.2

1.0*s + 0.2587650960551352

Continuous-time transfer function model

We may also like to know the state which OpenModelica
has chosen:

julia> tnk.getLinearStates()
1-element Array{Any,1}:
"m"

4 Case study: PI control of reactor
4.1 Reactor
We consider an extension of a reactor described in (Se-
borg et al., 2011); see (Sund et al., 2018), (Khalili and
Lie, 2018) for details of the model and linearization of the
model. The reactor is exothermal with water cooling via a
heat exchanger, and is unstable at the operating point. The
original model (org) in (Seborg et al., 2011) has 2 states:
reactor temperature T and concentration cA of species A.
An extended model which only assumes ideal solution (is
) has 3 states: the states of the org model as well as con-
centration cB of species B. Both models exhibit nonlinear
oscillations when forced away from the equilibrium point.
A possible control problem is to control the reactor tem-
perature T by means of the cooling water temperature Tc
of the heat exchanger.

4.2 PI Controller
A linearized model can easily be found by using the
mod.linerize() method of OMJulia — the linearized
model is as in (Khalili and Lie, 2018), with cooling tem-
perature Tc as control input. The closed loop matrix Acl
with a proportional controller (P controller) is

Acl = A−KpBC (5)

where B is the input matrix and Kp is the controller gain.
Looping through Kp ∈ [−1,8] leads to the closed loop
eigenvalues as depicted in Figure 5.23

22A similar tool in Python is limited in scope, and rather complicated
to install.

23Here, Julia’s ControlSystems package has been used, together
with a user-modified rlocus() function.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

DOI Proceedings of the 13th International Modelica Conference 707
10.3384/ecp19157699 March 4-6, 2019, Regensburg, Germany

Figure 5. Root locus plot λ
(
Acl;Kp

)
for Kp ∈ [−1,8].

The P-controller stabilizes the system for Kp ' 1.14;
Kp = 5.7 gives two real, closed loop eigenvalues/poles at
approximately λ ≈ −5, which implies closed loop time
constants τ j ≈ 1

5 = 0.2.
For a proportional + integral controller, it is reasonable

to let the reset time (= integral time) be, say, 10 times
larger than the closed loop time constants of a P controller.
Thus, the PI controller

Tc (s) = T ∗
c +Kp

1+Tints
Tints

· e(s) (6)

e(s) = Tref (s)−T (s) (7)

with Kp = 5.7 and Tint = 2 may be an acceptable choice.24

Nominal input T ∗
c is not needed with integral action, but

is useful to avoid an initial “kick” in the control action.
Tref is the reference temperature. If we let Tint → ∞, the
controller becomes a P controller.

In the time domain, we can express the PI controller as

Tc −T ∗
c = Kpe+ T̃c (8)

dT̃c

dt
=

Kp

Tint
e. (9)

To handle constraints for Tc ∈ [4,96]◦C, if Tc =Kpe+T ∗
c +

T̃c breaks this constraint, we set Tc equal to the constraint
and dT̃c

dt = 0 to avoid controller wind-up. The controller is
implemented in Modelica, but controller parameters and
constraints in Tc are set from Julia using OMJulia.

4.3 Proportional + Integral Control
Figure 6 shows the use of a PI controller to keep reactor
temperature T close to a reference Tref. The PI controller
tuned for the org model, is also applied to the is model.

The result indicates that the controller easily handles
the model difference between the two models. Figure 7
shows the applied control input Tc as well as the integral
state T̄c in the controller for the two model cases.

Figure 7 clearly shows a problem for the controller: the
cooling water can not take on negative temperatures Tc

24The integral time is denoted Tint in order to make a distinction be-
tween integral time and influent temperature, Ti.

Figure 6. Output T as controlled with PI controller tuned for
org model, and applied to org and is model.

Figure 7. PI control signal Tc and integrator state T̄c for org
and is models.

[◦C]. We therefore add the constraint that Tc ∈ [4,96] ◦C,
which together with anti-windup leads to the results in
Figures 8 and 9 for output T and controller Tc, respec-
tively.

5 Discussion and Conclusions
This paper presents OMJulia, a first effort to interface a
relatively complete Modelica tool, OpenModelica, to Ju-
lia, giving access to an open source set-up for modeling
and analysis, including control synthesis, easily installable
from a unified package manager.

Figure 8. Output T as controlled with PI controller tuned for
org model, and applied to org and is model: control input Tc
is constrained to [4,96] ◦C and anti-windup is applied.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

708 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157699

Figure 9. PI control signal Tc and integrator state T̄c for org
and is models: control input Tc is constrained to [4,96] ◦C and
anti-windup is applied.

Some design choices of the Julia API are briefly de-
scribed, and the syntax and possibilities of OMJulia are
then detailed. The use of the API is illustrated with a sim-
ple example of a water tank model, then some possibili-
ties for control analysis of a chemical reactor are detailed.
The API has also been tested on more complex models not
shown here.

The key contribution of the OMJulia package is not
within Modelica as a language, but rather to increase the
usefulness of Modelica into new fields such as control en-
gineering. Future work will include a package OMMatlab,
updating the syntax of OMPython, and possibly extension
of the API to the optimization and symbolic sensitivity
analysis routines in OpenModelica. Another possibility is
to consider a translator from OpenModelica to Julia (de-
sign choice 3).

References
Marcus Baur, Martin Otter, and Bernhard Thiele. Modelica Li-

braries for Linear Control Systems. In Proceedings, the 7th
International Modelica Conference, Como, Italy, 2009.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B.
Sha. Julia: A Fresh Approach to Numerical Computing.
SIAM Review, 49(1):65–98, 2017. doi:10.1137/14100067.

K. E. Brenan, S. L. Campbell, and Linda R. Petzold. Numerical
Solution of Initial-Value Problems in Differential-Algebraic
Equations. North-Holland, New York, 1989.

Hilding Elmqvist, Toivo Henningsson, and Martin Otter. Inno-
vations for Future Modelica. In Proceedings of the 12th Inter-
national Modelica Conference, Prague, Czech Republic, May
2017. doi:10.3384/ecp17132693. May 15-17, 2017, Prague,
Czech Republic.

FMI Consortium. Functional Mock-up Interface
for Model Exchange, version 2.0, 2018. URL
https://fmi-standard.org/.

Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach.
Wiley-IEEE Press, Piscataway, NJ, second edition, 2015.
ISBN 978-1-118-85912-4.

Peter Fritzson, Adrian Pop, Adeel Asghar, Bernhard Bach-
mann, Willi Braun, Robert Braun, Lena Buffoni, Francesco
Casella, Rodrigo Castro, Alejandro Danós, Rüdiger Franke,
Mahder Gebremedhin, Bernt Lie, Alachew Mengist, Kan-
nan Moudgalya, Lennart Ochel, Arunkumar Palanisamy,
Wladimir Schamai, Martin Sjölund, Bernhard Thiele, Volker
Waurich, and Per Östlund. The OpenModelica Integrated
Modeling, Simulation and Optimization Environment. In
Proceedings of the 1st American Modelica Conference, Cam-
bridge, MA, USA, October 2018. LIU Electronic Press,
www.ep.liu.se. October, 8-10, 2018.

Anand Kalaiarasi Ganeson. Design and Implementation of a
User Friendly OpenModelica - Python interface. Master’s
thesis, Linköping University, 2012.

Anand Kalaiarasi Ganeson, Peter Fritzson, Olena Rogovchenko,
Adeel Asghar, Martin Sjölund, and Andreas Pfeiffer. An
OpenModelica Python Interface and its Use in PySimulator.
In Proceedings of the 9th International Modelica Conference,
September 2012. doi:10.3384/ecp12076537. September 3-5
2012.

Pieter Hintjens. ZeroMQ. Messaging for Many Applications.
O’Reilly Media, March 2013.

JuliaLang. The Julia Programming Language, 2018. URL
https://julialang.org/.

Mohammad Khalili and Bernt Lie. Comparison of Linear Con-
trollers for Nonlinear, Open-loop Unstable Reactor. In Pro-
ceedings, SIMS 2018, Oslo Metropolitan University, Septem-
ber 2018. SIMS, Linköping University Press.

Bernt Lie, Sudeep Bajracharya, Alachew Mengist, Lena Buf-
foni, Arunkumar Palanisamy, Martin Sjölund, Adeel Asghar,
Adrian Pop, and Peter Fritzson. API for Accessing Open-
Modelica Models from Python. In Proceedings of EuroSim
2016, Oulu, Finland, 2016, September 2016.

Modelica Association. The Modelica Standard Library, v.
3.2.2, 2016. URL https://github.com/modelica/
ModelicaStandardLibrary/.

Modelica Association. Modelica R⃝ — a Unified Object Ori-
ented Language for System Modeling Language Specifica-
tion, version 3.4, 2017. URL https://modelica.org/
documents/ModelicaSpec34.pdf.

Christopher Rackauckas and Qing Nie. DifferentialEquations.jl
— A Performant and Feature-Rich Ecosystem for Solving
Differential Equations in Julia. Journal of Open Research
Software, 5(15), 2017. DOI: http://doi.org/10.5334/jors.151.

Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, and
III Doyle, Frank J. Process Dynamics and Control. John Wi-
ley & Sons, Hoboken, NJ, third edition edition, 2011. ISBN
978-0-470-12867-1. ISBN 978-0-470-12867-1.

Sveinung M. Sund, Marianne Plouvier, and Bernt Lie. Compar-
ison of Simulation Tools for Dynamic Models. In Proceed-
ings, SIMS 2018, Oslo Metropolitan University, September
2018. SIMS, Linköping University Press.

	OMJulia: An OpenModelica API for Julia-Modelica Interaction

