
1648 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 8, AUGUST 2021

OMNI: A Framework for Integrating Hardware and

Software Optimizations for Sparse CNNs
Yun Liang , Senior Member, IEEE, Liqiang Lu , and Jiaming Xie

Abstract—Convolution neural networks (CNNs) as one of
today’s main flavor of deep learning techniques dominate in
various image recognition tasks. As the model size of modern
CNNs continues to grow, neural network compression tech-
niques have been proposed to prune the redundant neurons
and synapses. However, prior techniques disconnect the software
neural networks compression and hardware acceleration, which
fail to balance multiple design parameters, including sparsity,
performance, hardware area cost, and efficiency. More concretely,
prior unstructured pruning techniques achieve high sparsity at
the expense of extra performance overhead, while prior struc-
tured pruning techniques relying on strict sparse patterns lead to
low sparsity and extra hardware cost. In this article, we propose
OMNI, a framework for accelerating sparse CNNs on hard-
ware accelerators. The innovation of OMNI stems from that
it uses hardware amenable on-chip memory partition patterns
to seamlessly engage the software CNN model compression and
hardware CNN acceleration. To accelerate the compute-intensive
convolution kernel, a promising hardware optimization approach
is memory partition, which divides the original weight kernels
into several groups so that the different hardware processing
elements can simultaneously access the weight. We exploit the
memory partition patterns including block, cyclic, or hybrid
as a means of CNN compression patterns. Our software CNN
model compression balances the sparsity across different groups
and our hardware accelerator employs hardware parallelization
coordinately with the sparse patterns, leading to a desirable com-
promise between sparsity and performance. We further develop
performance models to help the designers to quickly identify the
pattern factors subject to an area constraint. Last, we evaluate
our design on application specific integrated circuit (ASIC) and
field-programmable gate array (FPGA) platform. Experiments
demonstrate that OMNI achieves 3.4×–6.2× speedup for the
modern CNNs, over a comparably ideal dense CNN accelerator.
OMNI shows 114.7× energy efficiency improvement compared
with GPU platform. OMNI is also evaluated on Xilinx ZC706
and ZCU102 FPGA platforms, achieving 41.5 GOP/s and 125.3
GOP/s, respectively.
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I. INTRODUCTION

A
DVANCES in deep neural networks (DNNs) are lead-

ing to a number of emerging applications, such as

image recognition, semantic segmentation, and speech recog-

nition [1]–[3]. The evolution of DNNs has already piqued

interest in hardware acceleration as both DNNs training

and inference demand a tremendous amount of computation.

As a result, hardware accelerators, such as GPUs, field-

programmable gate arrays (FPGAs), and customized applica-

tion specific integrated circuits (ASICs) have been employed

to accelerate DNNs [4]–[25]. However, DNN designers are

still hampered by the growing complexity of DNN models.

The trend of convolution neural networks (CNNs) is toward

deeper and more complex topological structure [26]. The enor-

mous weights in CNNs bring high computation, memory and

storage requirements, and limit the deployment of CNNs.

This has subsequently triggered a wide-spreading research

endeavor on DNN model compression that compresses the

DNNs by pruning the unnecessary synapses and neurons.

Early progress was focused on the unstructured pruning,

which arbitrarily prune the weights at fine granularity of pix-

els [14], [27]–[30]. The unstructured pruning techniques can

achieve very high sparsity (90% on average) [27], which helps

to significantly reduce the on-chip storage requirement for

hardware accelerators. However, the high sparsity does not

necessarily lead to high performance speedup due to extra

encoding and indexing overhead, workload imbalance, poor

data locality, etc. It has been shown that it can even hurt the

performance when the distribution of sparsity is highly skewed

after pruning [14].

Recently, important advances have occurred in structured

pruning [4], [31]–[34], which aim at pruning the networks

following a certain sparsity pattern. These techniques follow

the software-driven design principle. More concretely, it starts

with a strict sparsity pattern obeying certain mathematical

properties and then designs hardware to support the required

mathematical transformation. Therefore, it relinquishes the

existing hardware functions and optimization. Although these

techniques can achieve high regularity and computation effi-

ciency, they can only achieve limited sparsity (typically 50%)

owing to the strict sparsity pattern. Moreover, they require

extra hardware units to support the mathematical transfor-

mation. For example, CirCNN [35] prunes the weights into

block-circulant format. It only achieves 60.5% sparsity for

1OMNI is a knowledgeable and brave hero in a game. In this article, we
use OMNI to represent powerful and efficient design.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-9076-7998
https://orcid.org/0000-0002-3801-6847


LIANG et al.: OMNI: FRAMEWORK FOR INTEGRATING HARDWARE AND SOFTWARE OPTIMIZATIONS FOR SPARSE CNNs 1649

Alexnet. The computation of CirCNN relies on fast Fourier

transformation, which is an expensive arithmetic function and

requires an extra circuit area. Another observation is that these

software-driven structured pruning techniques will likely fall

short for modern CNNs with complex neural network topology

due to the complexity of training. For example, CirCNN [35]

only succeed in small-scale networks, such as LeNet, AlexNet,

and PERMDNN [13] is only applicable to FC layer, without

validation on modern CNNs such as Resnet.

In this article, we focus on CNNs, which is one of today’s

main flavor DNNs. The typical computation of convolution

is a computation-intensive kernel that performs addition and

multiplication by walking through multidimensional tensors

(feature map, weight). To increase the hardware parallelism,

the original convolution structure is often reorganized into

tiles, where each tile corresponds to a hardware processing ele-

ment (PE). Multiple PEs will access the tensors simultaneously

during computation, causing memory bottlenecks. An effec-

tive optimization to avoid excessive memory access conflicts

is memory partitioning, which divides the original on-chip

memories into several banks so that different PEs can access

simultaneously. Memory partition has been supported by

today’s synthesis tools for both FPGAs and ASICs [36]–[38].

Programmers can easily partition the memory into different

patterns, such as block or cyclic patterns using directives or

pragmas [39], [40].

Inspired by the memory partition patterns, we propose

OMNI, a framework for accelerating sparse CNNs on hard-

ware accelerators. OMNI first exploits the memory partition

patterns including block, cyclic, and hybrid as a means of

compressing DNNs. Then, OMNI prunes the weight by main-

taining the same sparsity across different memory partition

groups to avoid the PE workload unbalanced issue. After prun-

ing, OMNI efficiently represents the weights in sparse format

where the weights from different groups are stored continu-

ously. For the hardware design, OMNI designs an architecture

which performs computation directly on the pruned weights.

The PE features element-matrix multiplication dataflow, which

can maximize the weight reuse and reduce the decoding

overhead. To take advantages of the CNN compression, the

hardware accelerator must comply with the parallelism where

the weights are partitioned so that the PE can be efficiently

pipelined with low data access latency. Finally, OMNI opti-

mizes the memory layout and develops resource models for

design space exploration.

The advantage of OMNI is that it forgoes the strict

sparsity pattern employed by prior structural pruning

techniques [4], [13], [35]. Instead, ONMI exploits patterns

from existing hardware amenable memory partition tech-

niques. Thanks to the cooperation between hardware memory

partition techniques and sparsity patterns, hardware accel-

erators are able to perform computations concurrently with

high data access throughput. The relaxed pruning method

of OMNI leads to the easy training process and high spar-

sity. OMNI can work with virtually any combination of

memory partition techniques that the existing hardware already

support.

This work makes the following contributions.

Fig. 1. Sparsity, speedup, and efficiency with different pruning methods for
AlexNet.

1) We propose a framework OMNI which uses hardware

amenable memory partition patterns to seamlessly com-

bine software CNN model compression and hardware

CNN acceleration.

2) We leverage several memory partition patterns as means

of CNN compression pattern, which achieves balanced

and high sparsity.

3) We design an efficient sparse hardware architecture for

CNNs. The architecture employs a novel element-matrix

multiplication dataflow. The on-chip memory is parti-

tioned to cooperate with the sparsity pattern, resulting

in high data access throughput.

To demonstrate the performance and energy efficiency, we

evaluate OMNI architecture in ASIC and FPGA platform.

Experiments demonstrate that OMNI achieves 5.8 ×, 6.2×,

3.4×, and 4.2× speedup for the convolutional layers

for Alexnet, VGG16, Resnet, and you only look once

(YOLO), over a comparably ideal dense CNN accelerator.

OMNI achieves more than 114.7× energy efficiency com-

pared with GPUs. OMNI achieves 43.7 GOP/s and 127.1

GOP/s for VGG, 41.5 GOP/s, and 125.3 GOP/s for Tiny-

YOLO on Xilinx ZC706 platform and ZCU102 platform,

respectively.

II. BACKGROUND AND MOTIVATION

A. Background

A typical CNN is a stack of different layers, such as convo-

lution layers, fully connected layers, and pooling layers. The

output of one layer becomes the input of the next layer. Due

to their intensive computation, convolutional layers are always

the computation bottleneck in CNNs [41]. In this article, we

consider the forward procedure in a typical convolutional layer,

which receives M channels of H × W input feature maps

ZM×H×W and outputs N channels of R × C feature maps

YN×R×C as shown in (1). To generate N channels of output

feature map, M channels of input feature maps are convolved

with N × M kernels in size of kx × ky. In the following dis-

cussion, we assume the dense weight is a 4-D tensor F with

the size of N × M × kx × ky:

Yk,i,j =

M
∑

t=1

kx
∑

p=1

ky
∑

q=1

Fk,t,p,q × Zt,i∗S+p,j∗S+q (1)

where S is the stride of the kernel.
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Fig. 2. OMNI framework overview.

B. Motivation

The enormous weights in CNNs is challenging for the

memory system in terms of both storage and memory transfer.

Therefore, a great number of studies have made efforts in

CNNs compression. We classify the existing works into two

categories: 1) unstructured pruning and 2) structured pruning.

In Fig. 1, we analyze the prior techniques from the sparsity

(S), actual hardware speedup (spe.), and efficiency (eff .) per-

spectives using AlexNet as an example [42]. The efficiency is

calculated as

eff. = (1 − S) × spe. (2)

More clearly, the theoretical speedup resulting from pruning is

(1/[1 − S]) compared with handling a dense model. The actual

hardware speedup is always less than the theoretical speedup.

The hardware efficiency indicates how efficiently the hardware

can utilize the pruned sparsity.

Unstructured Pruning: We first evaluate Deep

Compression [27], [43] on CPUs using MKL library. It

achieves high sparsity (87%) but hurts the performance

(spe. = 0.8). SCNN [6] is an ASIC hardware accelerator

design for sparse CNNs using the Deep Compression tech-

nique. It achieves 2.37× speedup, while the implementation

efficiency is less than 30%. The gap between high sparsity and

low efficiency mainly comes from two reasons. First, unstruc-

tured pruning requires extra memory access and computation

to locate the data. For example, in Deep Compression [27],

it needs to access the column index in CSR format first

to locate the input vector. SCNN [6] applies the Cartesian

product dataflow, introducing extra cost for computing the

coordinates. Second, the skewed weight distribution can lead

to load imbalance issue among parallel threads or hardware

units [27].

Structured Pruning: CirCNN [35] uses circulant matrix to

represent sparse weights. Circulant matrix is a square circulant

matrix where each row vector is strictly required to be the cir-

culant reformat of the other row vector. As shown in Fig. 1,

CirCNN can achieve 70% implementation efficiency. However,

the final speedup is only 1.9× due to the low sparsity (60%

for Alexnet). This phenomenon also happens in Cambricon-

S [4]. Cambricon-S prunes the an entire window where the

number of large weights is under a threshold. The speedup

of Cambricon-S is low as it is also bounded by the spar-

sity (75% sparsity for convolutional layers of Alexnet and

VGG). These techniques all adopt a software-driven method-

ology. They enforce the weights to exhibit strict sparsity

patterns but ignore the hardware features, leading to a lim-

ited sparsity. Moreover, utilizing these strict patterns requires

extra hardware area. It requires FFT computation to enable

the block circulant computation in CirCNN [35]. Similarly,

Cambricon-S requires a neuron selector module (NSM)

to process the window-based sparsity pattern with shared

indexes.

In contrast, OMNI is a hardware-driven structured pruning

solution. It uses hardware amenable memory patterns to guide

software model compression. Scalple [14] bears some similar-

ity to us. It proposes a node pruning technique specifically for

GPU architecture. However, It only yields very low sparsity

(23% on average). More importantly, since ASIC and FPGA

accelerator architecture are quite distinct from GPUs the node

pruning technique amenable to GPUs may lead to a suboptimal

performance on accelerators, such as FPGAs and ASICs.

III. OMNI OVERVIEW

Fig. 2 gives an overview of our proposed framework OMNI,

which consists of a software CNN model compression and an

efficient sparse CNN hardware accelerator.

Memory partition is an effective hardware optimization

technique to avoid excessive memory access conflicts, which
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divides the original on-chip memories into several banks to

increase data access throughput. We devise the weight spar-

sity pattern relying on the memory partition patterns including

block, cyclic, and hybrid as shown in Fig. 2. Given the

original weight tensor, OMNI first partitions it into groups

which are the basic units of pruning. In each group, each ele-

ment is free to be pruned away. The advantages of utilizing

these memory partition patterns are twofold. For one thing,

element-wise pruning performs within each partition group.

This fine-granularity approach enables high weight sparsity.

For another, elements in the same group will be stored together

in the same memory bank and each group has its independent

memory port, which omits data access conflicts when con-

currently accessing different groups. As a result, OMNI leads

to a desirable compromise between sparsity and performance.

In Section IV, we present the details of how memory parti-

tion patterns are applied to weights along with the pruning

process.

From the hardware’s aspect, OMNI proposes an architec-

ture which directly computes results with the weights stored a

sparse format. In our architecture, each PE is responsible for

all the computation belonging to the same partition group. PE

continuously conducts element-matrix multiplication, where

the element (nonzero) is from weight tensor and the matrix is a

subinput tile. This computation dataflow can maximize weight

reuse and reduce the weight decoding overhead. We propose

a sparse format to encode the weights on the hardware. In

this format, we stagger weight elements from different groups.

When the weights are loaded on-chip, elements of the same

group will be reassembled with no extra effort. Furthermore,

we optimize the on-chip memory using memory partition tech-

nique to cooperate with sparsity pattern. In Section V, we intro-

duce the architecture components and memory optimization.

We also employ a design space exploration to explore various

parameters.

IV. SPARSITY PATTERN PRUNING

In this section, we first propose three sparse pat-

terns inspired by hardware memory partition, which divide

the weights into several groups. Then, we present our

pruning method that prunes every group to the same

sparsity.

A. Sparsity Patterns

Memory partition is a common memory optimization tech-

nique, where data elements are partitioned into different

groups. Memory partition allocates the array elements into

multiple banks to reduce the access conflicts in parallel com-

putation [36]–[38]. In our pruning process, we form the

weight sparsity pattern using three memory partition patterns:

1) block; 2) cyclic; and 3) hybrid patterns. For block and

cyclic patterns, consecutive elements, and interleaved elements

are partitioned into the same group, respectively. We can also

obtain a hybrid pattern by combining block and cyclic patterns

for different weight tensor dimensions.

We assume that the weights are initially stored as a 4-D

tensor F with size N×M×kx×ky. Then we use (d1, d2, d3, d4)

Fig. 3. Weight partition along output/input channel with PN = PM = 2.

to represent the indices of 4-D tensor. A partition on F with

partition factor P is to divide F into P groups Gi, 0 < i < P

F =

p
⋃

i=1

Gi (3)

Gi ∩ Gj = ∅ ∀i �= j (4)

1) Block Pattern: It partitions F along the xth dimension

with partition factor P

Gi
blk =

{

Fd1,...,dx,...,d4
| ⌊dx / (Dx / P)⌋ = i

}

. (5)

2) Cyclic Pattern: It partitions F along the xth dimension

with partition factor P

Gi
cyc =

{

Fd1,...,dx,...,d4
| dx mod P = i

}

. (6)

3) Hybrid Pattern: It partitions F using block pattern along

the xth dimension with factor P1 and using cyclic pattern

along the yth dimension with factor P2

G
i,j

hbd =
{

Fd1,...,dx,...,dy,...,d4
| ⌊dx / (Dx / P1)⌋ = i

dy mod P2 = j
}

. (7)

Based on the partition definition above, the first step of our

pruning method is to divide the weights into multiple groups.

We can partition the 4-D weight tensor along any dimension

(input channel, output channel, height, and width). However,

in practice, as the size of a weight kernel is small (from 1 × 1

to 7 × 7, typically 3 × 3), there is little partition space within

the dimension of the weight kernels’ height and width. So we

only consider the partition along weight’s output channel and

input channel dimensions. Hybrid partition is also supported in

our pruning where both output channel and input channel are

partitioned. In this case, the group index is a pair, where each

index can be computed according to the dimension’s partition

method.

Fig. 3 gives a partition example on a weight tensor with

4 × 4 × 3 × 3 size and partition factor PM = PN = 2, where

PN and PM are the partition factors along output and input

channel, respectively. The weights with the same color are

partitioned into the same group. For example, when we con-

duct block partition along output channel, weights in output

channels 0 and 1 are partitioned into group 0. And weights in
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Fig. 4. Architecture overview.

output channels 2 and 3 are partitioned into group 1. For cyclic

partition, output channels 0 and 2 are partitioned into group 0.

While 1 and 3 are in group 1. We can also form hybrid parti-

tion which combines cyclic partition along output channel and

block partition along the input channel. As we conduct parti-

tion along two dimensions simultaneously with PN = PM = 2

in each dimension, we would get P = PN × PM = 4 groups.

Weights of output channels 0, 2 and input channels 0, 1 are

in group 0 while weights of output channels 1, 3 and input

channels 2, 3 are in group 3.

B. Unified Sparsity Pruning

After partitioning the weights into groups, different groups

will be issued to different hardware PEs. This will cause load

imbalance problem if different groups have a different number

of nonzeros. Hence, to obtain a balanced workload among the

groups, we propose unified sparsity pruning.

When pruning the weight tensors, we need to set a thresh-

old, where the elements below the threshold will be set to

0. Instead of sharing the same threshold across all the groups,

we share the same sparsity target in all groups. Thus, different

groups may set their own thresholds to obtain the target spar-

sity. We set the target sparsity of all groups to r. If the pruning

sparsity increases too rapidly, the network would hardly adapt

to the new pruning sparsity, and fails to recover the accuracy.

However, if the pruning sparsity increases too slowly, it will

take more iterations to achieve high sparsity and retrain the

network, which is time-consuming. To compromise the trade-

off, we employ a multistep pruning method which dynamically

adjusts the pruning sparsity as well as its adjustment speed as

follows.

Step 1: Set the initial pruning sparsity r and pruning

sparsity adjustment speed v, minimum adjustment

speed vmin and stage iteration iters.

Step 2: Prune the groups with pruning sparsity r, then

retrain the network. Adjust the pruning sparsity

r = r + v.

Step 3: Add the iteration counter by 1. If the counter is a

multiple of iters, then we switch to the next stage

by decaying the pruning sparsity adjustment speed

v = v/2. If v < vmin, then v = vmin.

Step 4: Goto step 2.

V. ACCELERATOR ARCHITECTURE

In this section, we introduce the sparse CNN accelerator

architecture. First, we present the architecture overview. Then,

we introduce a sparse format that can efficiently store the

pruned weights meanwhile enable high data parallelism. Then

we show the computation dataflow, PE design, and other hard-

ware modules. Finally, we present the memory optimization

which cooperates with the sparsity patterns.

A. Architecture Overview

Fig. 4 depicts the architecture overview of OMNI. The

dataflow of the architecture employs multiple element-matrix

multiplication operations using PE array, where the element

refers to the sparse weight and the matrix refers to an input

tile from the input feature maps. The architecture is composed

of five modules: 1) weight decoder (WD); 2) tile selector (TS);

3) PE; 4) accumulator module (AM); and 5) post-processing

module (PPM).

The entire computation dataflow consists of five steps.

Step 1: The compressed weights from weight buffer are

decoded by the WD and then sent to PE array. The WD contin-

uously reads multiple compressed weights in the sparse format

and computes the indices which will be sent to other modules

as shown in Fig. 4.

Step 2: The TS is used to select tiles for the computation.

Specifically, given a region of input pixels, the TS selects the

necessary input pixels according to the weight indices from

the WD.

Step 3: Each PE performs element-matrix multiplication,

all these multiplications are performed in parallel. And there
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(b)(a)

(c) (d)

Fig. 5. Proposed sparse format. (a) Sparse 4-D weight tensor. (b) Block
partition with factor = 2 in input channel dimension. (c) Cyclic partition with
factor = 4 in output channel dimension. (d) Hybrid partition with factor = 2
in both channel dimensions.

TABLE I
SPARSE FORMAT AND DATA TYPE: (a) IS AN EXAMPLE OF BLOCK

SPARSITY PATTERN; (b) IS AN EXAMPLE OF CYCLIC SPARSITY PATTERN;
AND (c) IS AN EXAMPLE OF HYBRID SPARSITY PATTERN

are multiple PEs processing the sparse weights from different

channels concurrently.

Step 4: The AM receives the output channel index from the

WD, then accumulates the results from PEs to the associated

output buffer.

Step 5: The PPM is responsible for other common opera-

tions in CNNs, such as rectified linear unit (ReLU) and pooling

functions.

B. Sparse Format

OMNI prunes the weights in block, cyclic, and hybrid pat-

terns. We use (idxkx, idxky, idxin, idxout) to represent the index

of the 4-D weight. Specifically, idxkx and idxky are the spatial

indices. idxin and idxout are the indices in the input chan-

nel dimension and output channel dimension, respectively. We

propose a sparse format to help the hardware to compute the

results of the weights from different groups in parallel. Table I

shows the format for different sparse patterns. First, we use

a pair (Qu, Re) to represent the quotient and remainder of

dividing the index idx by the partition factor P, where

idx = Qu × P + Re. (8)

For example, the output channel is partitioned with the fac-

tor 4, then the output channel index 7 can be represented by

the pair (Quout, Reout) = (1, 3). In our format, we store the

weights from different groups continuously. We use the 5-tuple

format to encode each associated sparse format as shown in

Table I. To be more specific, Table I(a) shows the sparse for-

mat of the block pattern with respect to the dimension of the

Fig. 6. OMNI computation dataflow.

input channel. The weights are stored in ascending order of

Qu as shown in Fig. 5(b). As for the cyclic pattern, we store

the weights in ascending order of Re as shown in Fig. 5(c).

Furthermore, our sparse format also supports a hybrid pattern.

Table I(c) is an example of a hybrid pattern where input and

output channels are in block and cyclic patterns, respectively.

In this case, the weights are sorted by the pair (Re;Qu) or

(Qu;Re). As shown in Fig. 5(d), the weights are sorted first

by output channel dimension (Reout) then by input channel

dimension (Quin).

Fig. 5(b) shows an example of block sparse pattern in

input channel dimension with partition factor 2. The element

c is encoded as <0, 0, 0, 1, c> whose original input chan-

nel index is 3. Fig. 5(c) shows an example of cyclic pattern

where the partition factor is 4. The element d is encoded

as <1, 0, 1, 1, d>. Similarly, the output channel index is 7.

Fig. 5(d) shows an example of hybrid pattern, where the input

channel is block pattern and output channel is cyclic pattern.

C. Dataflow and PE design

Computation Dataflow: The PE operations in prior sparse

CNN implementation [6], [13], [16] are based on vector-matrix

and vector–vector matrix multiplications. However, these oper-

ations need to regather the sparse weights into a new vector

or matrix, resulting in the overhead of matching the index

between the vector and the matrix. OMNI solves this problem

by featuring an element-matrix multiplication dataflow for the

PE operation. The advantage of this operation is that it can

maximize the weight reuse so that the decoding overhead

can be effectively reduced. Besides, OMNI parallelizes the

operation in channel dimension, which can eliminate the data

dependency problem. In this dataflow, the element refers to

the sparse weight, and the matrix refers to an input tile from

the TS. To generate a PH × PW output tile, each weight will

multiply with a PH × PW region in the input tile from the

input feature map. The selection of this region is determined

by the position of the weight. For example, the red weight in

Fig. 6 locates in the position (2, 2), which means the weight

corresponds to the bottom-right tile. Finally, the results of the

same output channel need to be accumulated together.

PE Design: Weight reuse is a crucial factor in the sparse

CNN implementation because each weight needs to be
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decoded before being sent to the PE. Increasing weight reuse

can effectively reduce the decoding overhead. To simplify the

discussion, we assume S = 1 in 1. The total number of opera-

tions in one convolutional layer is H×W×N×M×kx×ky and

the total number of weights is N×M×kx×ky, which means the

weight reuse arises from the parallelization in spatial dimen-

sion of output feature maps. Therefore, we parallelize the

computation in both row dimension and column dimension

of feature maps. That is, computing PH × PW output pixels

in parallel. Besides, to avoid redundant computation, we con-

strain that the output tile size is within the minimum feature

map size in the network.

In the convolution operation, the data dependencies between

weights and pixels are quite complicated with respect

to the spatial dimension. A complex data dependency will

lower the data access efficiency when the PE is pipelined.

However, the channel dimensions do not exhibit any depen-

dency. Therefore, we initiate the PE array with the weight

in each PE from different channels. Fig. 4 (PE array) shows

different PE architectures which is determined by the weight

sparsity pattern. There are PN × PM homogeneous PEs work-

ing in parallel. Different partition patterns lead to different

topology of the interconnection between PEs. For the groups

that are partitioned from the input channel dimension, the

results from PEs are accumulated together via an adder tree.

If the groups are partitioned from the output channel dimen-

sion, the results are stored independently which shows a lower

PE latency compared with partitioning in the input channel

dimension. However, partitioning in the output channel leads

to more fanouts of the PE which can increase the requirement

for multiplexers. Moreover, the partition factor determines the

pipeline length of the PE. A large partition factor can result in

a short pipeline length which may fail to overlap the latency

of different modules.

D. Other Hardware Modules

Weight Decoder: The WD is a dedicated component for

decoding weights stored in our sparse format. Each time, the

WD reads continuous weights from weight buffer and then

calculates the input channel and output channel indices accord-

ing to (8). Once all indices are obtained, the WD sends all

information to other modules as Fig. 4 shows. One destina-

tion is the TS which uses positions of each weight element

to determine the input tile region. The other destination is the

AM which uses the output channel index to locate where the

results are accumulated to.

Tile Selector: The TS module first receives the decoded

indices of weights from the WD. Then the TS selects PM

input tiles with size PH × PW from input buffer according to

the indices. Clearly, the TS module is a static look-up table.

Given a kernel size kx × ky and an input tile PH′ × PW ′ , the

TS will generate all possible PH × PW regions and store them

separately in the look-up table. Therefore, we can directly

get the necessary input pixels in the look-up table which has

been prefetched as long as the input tile is determined. The

advantage of the static look-up table is to replace runtime

index matching with a simple array indexing operation result-

ing in a low decoding latency. This also helps to save the

Fig. 7. Pseudo code of memory partition on buffers.

logic resources significantly since the runtime index matching

requires much more multiplexers. Besides, the TS can han-

dle different kernel size and kernel sliding stride as shown in

Fig. 4 (TS). The input tiles are broadcast to the PE array to

perform element-matrix multiplication.

Accumulator Module: The AM is used to accumulate the

partial results generated by PEs to the final output. Each time,

the PE array generates PN output tiles with size PH × PW .

These tiles belong to distinct output channels. AM receives the

output channel index to locate the positions of the output tiles

in the output buffer. As shown in Fig. 4 (AM), a multiplexer is

inserted for each output buffer bank. According to the output

channel index, the multiplexer will select the corresponding

address that the result needs to be accumulated to.

Post-Processing Module: After all weights are computed,

AM stops updating the output buffer. Then PPM reads output

pixels from the output buffer and performs post-processing.

There are three types of operations, as illustrated in Fig. 4

(PPM): 1) pooling operation which outputs the maximum val-

ues in subregions of input feature maps; 2) ReLU which sets

any input value less than zero to zero; and 3) batch normal-

ization which normalizes the output results to improve the

stability of artificial neural networks. The pooling module and

the ReLU module are implemented by introducing compari-

son operators to the output buffers. The batch normalization

operation normalizes the pixels in the output feature maps.

E. Memory Optimization

In OMNI architecture, we store the input and output buffers

as a 3-D array, as shown in Fig. 4, which include dimension

row, column, and channels. The weights are stored as a vector

in the sparse format. Fig. 7 gives a pseudo code example,

where input feature map buffer (in_buf ), output feature map

buffer (out_buf ), and weight buffer (weight_buf ) use different

partition strategies.

OMNI prunes the weights with partition patterns in chan-

nel dimension. To leverage on the sparse pattern, the input

buffer, and output buffer need to be partitioned with the same

pattern. Specifically, the original 4-D weight tensor shares the

same dimension with the output buffer which is output chan-

nel dimension. Each time the PE array will send the results

of different output channels to the AM. In order to accumu-

late the results to the output buffer simultaneously, the output

buffer needs to be partitioned with the same pattern as the
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weights. Similarly, the input buffer also needs to be parti-

tioned in the channel dimension if the weights show a partition

pattern in input channel dimension. These partition patterns

are easily implemented using modern High-Level Synthesis

tools [39], [40]. Fig. 7 shows an example of memory parti-

tion technique in Xilinx HLS tool [39], where we only need

a partition pragma after the buffer statement.

In addition, we also partition the on-chip buffers in the spa-

tial dimension to increase the data access throughput between

hardware modules. As mentioned in Section V-B, the weights

are compressed into a vector where the weights from different

groups are continuous. Therefore, we apply cyclic partition to

the vector so that the weights from different groups can be

assigned to the PE array simultaneously. Besides, to lower the

latency of the TS module, we apply cyclic partition to the input

buffer with the factor PH′ horizontally and PW ′ vertically as

shown in Fig. 4. We also partition the output buffer with the

factor PH horizontally and PW vertically as shown in Fig. 4.

F. Design Space Exploration

In this section, we develop an analytic model that can

predict resource utilization. The purpose of our model is to

generate the optimal partition factors to maximize the through-

put under a specific area constraint. Then the software part

of OMNI will prune the weights with these partition factors

into target pattern. Here, we focus on three resources that

are multipliers, multiplexers, and banks. There are PN × PM

PEs with each PE performs PH × PW multiplications in

parallel, therefore the number of multipliers in the PE is

PH ×PW ×PN ×PM . Besides, each weight requires a multiplier

to compute the address in the WD module (WDM). In total,

the number of multipliers can be computed as follows:

# of MUL = PH × PW × PN × PM + PN × PM. (9)

In OMNI accelerator, the on-chip memory is partitioned into

multiple dual-port banks. The bank for input and output buffer

is a 64×16 bit SRAM. And the weight buffer is a 512×64 bit

SRAM. According to our memory design in Section V-E, the

weight buffer is partitioned into PN ×PM banks. And the input

buffer is partitioned into PH′ ×PW ′ ×PM banks, and the output

buffer is partitioned into PH × PW × PN banks. Considering

the double buffer design, the total number of banks is

# of BANK = PM × PN

+ 2 × PH′ × PW ′ × PM

+ 2 × PH × PW × PN . (10)

In the AM and TS module, multiplexers are required to

locate the address of input or output buffers according to the

index from the WD. And the scale of multiplexer depends on

the number of input signals (PM , PN). We apply 2-to-1 multi-

plexer as the basic unit to construct the multiplexer with more

input wires. We assume the resource of the multiplexer with

PM and PN input signals is β(PM) and β(PN), respectively.

In total, the resource for multiplexers is

# of MUX = 2 × PH′ × PW ′ × β(PM)

+ 2 × PH × PW × β(PN) (11)

VI. EXPERIMENT

A. Experimental Setup

Benchmarks: We evaluate OMNI with four state-of-the-art

networks, including Alexnet, VGG16, Resnet152, and YOLO.

The main component of Resnet152 is residual model [26]

which consists of five convolutional layers, five batch nor-

malization layers, and two ReLU layers. YOLO is a CNN

model for real-time object detection system [46]. We use Tiny-

YOLO version to evaluate our design. Tiny-YOLO consists

of nine convolutional layers and six max pooling layers. We

implement our pruning technique using Caffe framework [47].

Platforms: For ASIC accelerator, we first use the Catapult

HLS tool [48] to generate RTL code from C/C++-based CNN

designs. In the following, the Synopsys Design Compiler [49]

is used to perform the placement and routing with Synopsys

IC compiler under the SMIC 65-nm technology. The synthe-

sized frequency is 400 MHz. In addition to ASIC, we also

prototype OMNI on two FPGA platforms which are Xilinx

ZC706 and ZCU102. The Xilinx ZC706 platform consists of

a Kintex-7 FPGA and dual ARM Cortex-A9 processors. The

external memory is 1 GB DDR3. Our FPGA implementation

is operated at 166 MHz frequency on this platform. Xilinx

ZCU102 consists of an UltraScale FPGA, quad ARM Cortex-

A53 processors, 500 MB DDR3. Our FPGA implementations

is operated at 200 MHz frequency on this platform. To measure

the runtime power, we plugged a power meter in the FPGA

platform. We use Xilinx Vivado HLS (v2017.4) and Xilinx

SDSoC (v2017.4) for implementation. We also compare the

performance and energy efficiency of our design with Titan

GPU platform.

In the following, we first examine the accuracy loss under

different partition strategies. We then present the performance

comparison in Section VI-C. In Section VI-D, we discuss the

detailed energy, area characteristics, and scalability. We further

test the sensitivity to different sparsity in Section VI-E. We

also implement OMNI on a FPGA platform in Section VI-F

and compare with GPU platform in Section VI-G.

B. Pruning Result

We compare our pruning method with an unstructured prun-

ing technique Deep Compression [27] and a state-of-the-art

structured pruning technique Cambricon-S [4]. In summary,

OMNI is able to prune over 90%, 88%, 75%, and 80% con-

volution parameters for AlexNet, VGG16, Resnet152, and

Tiny-YOLO, respectively. We conduct pruning using various

partition patterns and factors as shown in Table II.

As Deep Compression and Cambricon-S focus on pruning

the FC layers, they cannot achieve high sparsity for convo-

lutional layers. In AlexNet and VGG16, Deep Compression

prunes about 70% convolution parameters, and Cambricon-S

is only able to prune less than 65% parameters. Our pattern-

aware pruning method prunes more than 90% convolution

parameters in AlexNet and 88% in VGG16. In Resnet152,

the achieved sparsity is significantly reduced compared with

AlexNet and VGG16. Deep Compression and Cambricon-S

only prunes about 45% convolution parameters out. But our

pruning method achieves higher sparsity around 75% since our
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TABLE II
PRUNING RESULT. E DENOTES THE TOP-1 ERROR RATE (IN PERCENTAGE) FOR ALEXNET, VGG16, AND RESNET152, WHILE FOR TINY-YOLO, E

DENOTES THE VALUE OF 1 − mAP. S DENOTES THE SPARSITY OF ALL CONVOLUTION LAYERS IN THE CORRESPONDING NETWORK. blockin_ch4
DENOTES THE BLOCK PATTERN PRUNING ALONG INPUT CHANNEL WITH FOUR GROUPS (PM = 4), AND cyclicout_ch16 DENOTES THE CYCLIC PATTERN

PRUNING ALONG INPUT CHANNEL WITH 16 GROUPS. hybrid 4 × 4 DENOTES HYBRID PATTERN PRUNING (BLOCK ALONG INPUT CHANNEL, CYCLIC

ALONG OUTPUT CHANNEL) WITH 16 GROUPS (PN = PM = 4). ALL THE ALEXNET, VGG16, AND RESNET152 ARE TRAINED ON THE IMAGENET

DATASET [44]. TINY-YOLO IS TRAINED ON PASCAL VOC 2007 AND 2012 DATASET [45]

(a) (b)

(d)(c)

Fig. 8. Speedup with different partitions on modern CNNs. (a) Speedup with different partitions on AlexNet. (b) Speedup with different partitions on VGG.
(c) Speedup with different partitions on Resnet152. (d) Speedup with different partitions on Tiny-YOLO.

sparsity pattern is less strict in mathematical formalization.

This phenomenon is due to the fact that Resnet has batch

normalization layer and residual connection, which greatly

reduces over-fitting [4], [28]. Besides, Resnet152 has more

complex network typologies and deeper structure. We also

apply our pruning method to Tiny-YOLO and achieve sparsity

above 80%.

We also compare the accuracy results of our pruning method

with Deep Compression and Cambricon-S. As shown in

Table II, compared with original dense networks our pattern-

aware pruning achieves negligible accuracy loss (e.g., less than

0.1% for AlexNet with block pattern in output channel dimen-

sion, 0.22% for VGG16 with hybrid pattern) or even slight

accuracy gain (e.g., 0.4% for VGG16 with block pattern in

input channel dimension, 0.3% for Resnet152 in hybrid pat-

tern) as shown in Table II. The achieved accuracies of Deep

Compression, Cambricon-S, and OMNI are quite close as well

(e.g., no more than 0.1% difference in AlexNet). Pattern-aware

pruning on Tiny-YOLO also achieves no accuracy loss in all

the three settings. From Table II, we observe that different

sparse patterns and partition factors achieve consistent high

sparsity and accuracy.

C. Performance Comparison

In this section, we show the speedup of OMNI by com-

paring to the ideal dense CNN accelerator which shares the

same resources as OMNI. We first present the effect of differ-

ent weight sparsity patterns and partition factors in Fig. 8. We

vary the partition factor from 4 to 16. In Fig. 8, H-a×b means

the input channel is partitioned with factor a and output chan-

nel is partitioned with b. We find that OMNI shows a stable

speedup as the parallelism increases from 4 to 16, this benefit

comes from two aspects: 1) the sparsity of different partitions

is almost the same and 2) our pruning technique balances the

workload for the hardware. In Fig. 8, we find that the prun-

ing method applying output channel partition always offers the
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TABLE III
OMNI AREA AND POWER BREAKDOWN

highest speedup. Because these networks have a small num-

ber of input channels in the first few layers, which is less than

parallelism degree in the PE array. Besides, parallelizing input

channel dimension requires an adder in the PE which increases

the PE process latency.

On average, OMNI outperforms the baseline across convo-

lutional layers of Alexnet, VGG16, Resnet152, and YOLO,

achieving up to 5.8×, 6.2×, 3.4×, and 4.2× speedup,

respectively. In our design, we effectively eliminate the useless

multiplications in CNN models meanwhile keep a balanced

workload for each PE. Though Alexnet achieves higher spar-

sity, the speedup on VGG shows a better result than on

Alexnet. This difference is caused by the layer diversity in

the Alexnet, since Alexnet involves different kernel size (e.g.,

11 × 11, 5 × 5, 3 × 3). In addition, the sparsity on Alexnet

is high, which can increase the proportion of the initial time

on the circuit. VGG16 network and tiny-YOLO show sim-

ilar sparsity because their network typologies are close to

each other and they share the same kernel size. The speedup

on Resnet is relatively small, which mainly comes from two

aspects. First, the feature map size in the CNN layers might not

divide PH and PW evenly, leading to redundant computations

in the boundary of feature maps. Second, in our architecture,

we apply pipeline technique in PEs. When the workload is

small after pruning, the latency of PEs can be bounded by

the length of pipeline. For example, Resnets consist of many

convolutional layers with 1 × 1 kernels of which workloads

are relatively small.

D. Energy and Area Characteristics

Energy and Area Breakdown: We first select the parti-

tion factors as PH = PW = 4 and PN = 4, resulting in

a relatively small scale OMNI. Table III shows the OMNI

area and power breakdown with the configuration. The total

area is 0.595 mm2 of which the hardware modules occupies

72% area. The total power is 487.05 mW and the memory

access consumes 86.8% energy. This is because, in sparse

CNNs, the computation decreases dramatically, requiring a

high communication-to-computation ratio.

Hardware Overhead: In Table IV, we compare the extra

hardware resource utilization for processing structured sparsity

pattern in weights between OMNI and previous accelera-

tors [4], [13], [35]. To make a fair comparison, we estimate the

proportion of the extra hardware area in a single PE. The infer-

ence process of CirCNN [35] consists of three steps which are

input transformation of the frequency domain, complex multi-

plication, and inverse transformation to the time domain. The

transformation operation is an extra operation to support the

TABLE IV
SOFTWARE-ORIENTED PRUNING METHODS REQUIRE ADDITIONAL

HARDWARE SUPPORT. THE TARGET CNN MODEL IS VGG
WHICH IS SUPPORTED BY ALL FOUR ACCELERATORS. THE

IMAGE RESOLUTION IS 224 × 224 × 3

Fig. 9. Power characteristics with different configuration parameters.

circulant weight pattern. We implement the FFT-based convo-

lution operation with the same technology as OMNI and find

that the area of transformation module accounts for 68% area

of the whole PE. In PERMDNN [13], the weights are pruned

with block-permuted diagonal matrix. To locate a weight, it

needs to get the block position and the permutation order. We

also implement the key operation of PERMDNN which is a

matrix-vector multiplication operation and find that this oper-

ation accounts for 27% area. In Cambricon-S [4], the weights

are gathered into dense blocks. We calculate the proportion of

NSM and WDM in the PE circuit.1 For OMNI accelerator, the

extra operation is (8) which is to compute channel coordinate.

The area of WDM is 0.074 mm2 which only accounts for 17%

of the whole combinational logic.

Scalability: OMNI accelerator can be scaled across a wide

range with parameter {PH, PW , PM, PN}. PH and PW deter-

mine the number of multipliers in the PE and the local buffer

size of the TS module. PM ×PN is the PE number. PM and PN

also represent the number of input signals of the multiplexer in

the TS module and the AM module, respectively. In our eval-

uation, we increase PH × PW from 4 × 4 to 12 × 12, because

the feature map size is small as the network goes deeper. And

we set the upper bound of P = PM × PN to 16 so that the

network can be pruned without accuracy loss.

Power: Fig. 9 compares the power consumption of different

configurations. In this figure, the power usage is nearly pro-

portional to PW × PH when the P is fixed. This is because

the power usage of combinational logic mainly comes from

the on-chip multipliers, and the memory access power mainly

depends on the input/output tile buffer size and the number

of ports on input/output RAMs which are equal to PH × PW .

1The data has been reported in this article [4].
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TABLE V
PERFORMANCE COMPARISON ON VARIOUS PLATFORMS. -D MEANS DENSE CNN MODEL. -S MEANS SPARSE CNN MODEL

Fig. 10. Area characteristics with different configuration parameters.

When the PW × PH is fixed, the power is nearly proportional

to P. Fig. 10 shows the area comparison which has a similar

trend like power characteristics.

E. Sensitivity to Sparsity

In this section, we set the sparsity ranging from 60% to

90% at the step of 5% to explore the sensitivity of OMNI to

the weight sparsity. The sparsity is generated randomly with

3 × 3 kernel which is the most common kernel size, we only

expect that each weight group has similar nonzero number.

Fig. 11 depicts the sensitivity to the sparsity of OMNI. In the

figure, we also draw the line of theoretical speed up. We find

that when the sparsity is lower than 80%, OMNI can achieve

almost ideal speedup. When the sparsity continues to increase,

the speedup grows slowly. The reason is that the short pipeline

length leads to the inefficiency of the PE array. Besides, the

off-chip memory bandwidth can also limit the speedup when

the sparsity is high.

F. Results on FPGAs

In this section, we evaluate OMNI on the Xilinx ZCU102

platform and ZC706 platform using VGG16 and Tiny-YOLO

networks. In OMNI FPGA implementation, we set (PH =

PW = 8, PN = 8) for ZCU102 platform and (PH = PW = 8,

PN = 4) for ZC706 platform. According to Table V, our

implementations achieve 43.7 GOP/s and 127.1 GOP/s for

VGG16 network on ZC706 and ZCU102. The performance of

Tiny-YOLO implementation is 41.5 GOP/s and 125.3 GOP/s

on ZC706 and ZCU102, respectively.

We compare our FPGA implementation with three state-

of-the-art design [50]–[52]. For classification task, the design

Fig. 11. Sensitivity of OMNI to the sparsity.

in [50] target dense CNN model. Compared with [51], we

achieve 2.7× GOP/s speedup. The design in [50] shows a

higher frame-per-second (FPS). This is because DiracDeltaNet

is much smaller than the compressed VGG which only uses

1×1 convolution kernel. And it applies 1–4 fixed point data

type which further reduces the computation size. For object

detection task, we compare our design with DNNDK 3.0 [52],

which is a highly optimized framework for deploying CNN

models on FPGA. DNNDK shows a higher GOP/s result-

ing from targeting dense models, lower precision, and higher

frequency.

G. Comparison With GPU

In this section, we conduct a comparison with the GPU plat-

form using VGG16. To make a fair comparison, we test the

performance of TitanX with the latest cuDNN [53]. Power on

GPU is obtained using NVIDIA profiling tools. Table V shows

the comparison results. We set (PH = PW = 6, PN = 16)

for OMNI-ASIC design and (PH = PW = 8, PN = 8) for

OMNI-FPGA design. On GPUs, due to the indexing over-

head and memory uncoalesing of the sparse version, the dense

version of cuDNN [53] achieves better performance than the

sparse version. As shown, TitanX gives better performance,

but our implementation on FPGA and ASIC achieves 3.14×

and 114.7× energy efficiency improvement.

VII. RELATED WORK

Unstructured Pruning Techniques and Accelerators:

Recently, there are a few works that exploit sparsity in
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CNN accelerator on hardware. The multiplications can be

eliminated when the input feature maps or the weights is

zero. Eyeriss [15] gated computation cycles for zeros in the

input feature maps to save energy and the data is stored in

compress format in DRAM. However, this gating operation

cannot effectively reduce the latency. Besides, Eyeriss did

not consider the sparsity in weights which contains more

zeros. Han et al. [16] proposed EIE CNN accelerator which

operated directly on compressed networks and enables the

large neural network models to fit in on-chip SRAM. EIE

exploits sparsity both in input feature maps and weights but

only focused on the fully connected layer. In EIE design,

multiple rows are computed together. EIE performs the sparse

matrix and sparse vector multiplication operation by scanning

input vector to find its next nonzero value and broadcasting

nonzeros along with its index to all PEs. Parashar et al. [6]

proposed SCNN accelerator with a novel dataflow named

PT-IS-CP (planar-tiled input-stationary Cartesian-product).

The core part of SCNN accelerator is the Cartesian-product

operation in which all nonzeros have to be multiplied with

one another. However, using Cartesian product can lead to

additional operations to compute the corresponding positions

in the feature maps. In SCNN, the input feature maps are

partitioned into several tiles then distributed multiple PEs.

Since different tiles can have different nonzeros, the workload

in PEs can be different. Han et al. proposed ESE accelerator

that enables sparse LSTM on hardware. In ESE accelerator,

the sparse weights is pruned with each row sharing the similar

number of nonzeros, so that the workload of each PE can be

balanced. Zhang et al. [54] presented Cambricon-X acceler-

ator which apply step indexing techniques. In Cambricon-X

design, the nonzeros in the same row is divided into multiple

segments with the same size in subsequent addresses. And

the row that contains nonzeros less than the size will be

aligned to the size. Albericio et al. [5] proposed zero-free

neuron array Format to skip the multiplication for zeros in

the input feature map.

Structured Pruning Techniques and Accelerators: Dense

CNNs are typically over parameterized and exist redundant

connections. Many pruning methods have been proposed

to compress the weights with structured sparsity pattern.

In [31]–[33], the weights are pruned in the granularity

of channels, and an entire channel is removed together

to keep the dense structure of weights. Yu et al. [14]

proposed Scalpel pruning method which consists of SMID-

aware weight pruning for CPUs and node pruning for GPUs.

Deng et al. [13] proposed PERMDNN where the sparse

weights are compressed into multiple permuted diagonal

matrices, and PERMDNN only focused on fully connected

layers. Zhou et al. [4] observed that local weights tended to

gather into clusters. Based on this observation, they proposed

a pruning method to reduce the irregularity of sparse weights

where a window of weights would be set to zeros if it

meets specific criteria. And they also developed an acceler-

ator call Cambricon-S which exploit both input pixel sparsity

and weight sparsity. Cambricon features a NSM to process

the static sparsity with shared indexes and synapse selector

module to process the input pixel sparsity. Ding et al. [35]

proposed CirCNN which represented sparsity using circulant

matrix which can be efficiently implemented in hardware.

VIII. CONCLUSION

In this work, we propose a framework OMNI which inte-

grates the pruning technique with memory partition patterns

for accelerating sparse CNN models. We start with the weight

representation that is inherently supported on hardware which

can be seamlessly integrated with software pruning. In the

pruning process, we partition the weights into several groups

in cyclic or block pattern and enforce that each group has

the same number of nonzeros. As a result, our pruning

method achieves sparsity of 90% in Alexnet, 88% in VGG16,

74% in Resnet152, and 80% in Tiny-YOLO. In hardware

design, we present an efficient architecture where the memory

partition strategy is matched with the partition patterns in

sparse weights. We further develop a resource model to find

the optimal memory partition factors, and the factors will

determine how the weights are partitioned in the pruning.

Experiments show that OMNI achieves 3.4×–6.2× speedup

for the modern CNNs, over a comparably ideal dense CNN

accelerator. OMNI shows 114.7× energy efficiency improve-

ment compared with GPU platform. OMNI is also evaluated

on Xilinx ZC706 and ZCU102 FPGA platforms, achieving

41.5 GOP/s and 125.3 GOP/s, respectively.
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