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Abstract— This paper proposes a method for high-quality
omnidirectional 3D reconstruction of augmented Manhattan
worlds from catadioptric stereo video sequences. In contrast to
existing works we do not rely on constructing virtual perspective
views, but instead propose to optimize depth jointly in a unified
omnidirectional space. Furthermore, we show that plane-based
prior models can be applied even though planes in 3D do
not project to planes in the omnidirectional domain. Towards
this goal, we propose an omnidirectional slanted-plane Markov
random field model which relies on plane hypotheses extracted
using a novel voting scheme for 3D planes in omnidirectional
space. To quantitatively evaluate our method we introduce a
dataset which we have captured using our autonomous driving
platform AnnieWAY which we equipped with two horizontally
aligned catadioptric cameras and a Velodyne HDL-64E laser
scanner for precise ground truth depth measurements. As
evidenced by our experiments, the proposed method clearly
benefits from the unified view and significantly outperforms
existing stereo matching techniques both quantitatively and
qualitatively. Furthermore, our method is able to reduce noise
and the obtained depth maps can be represented very compactly
by a small number of image segments and plane parameters.

I. INTRODUCTION

3D perception is an important prerequisite for many tasks

in robotics. For instance, consider self-driving vehicles [1]

which need to accurately sense their environment in order

to plan the next maneuver. Clearly, a 360◦ field of view is

desirable. During the DARPA Urban Challenge [2] laser-

based solutions have been popularized for that purpose.

However, they provide only very sparse point clouds or are

extremely expensive like the Velodyne HDL-64E. Further-

more, they suffer from rolling shutter effects and a separate

video sensor is required to provide color information for

each laser point. Instead, in this paper we advocate the

use of catadioptric cameras [3], [4] for 3D reconstruction.

Combining a traditional (perspective) camera with a mirror

coated surface, they are cheap to produce and provide a 360◦

view of the scene which, in contrast to fisheye cameras can

be parameterized by the specific choice of the mirror shape.

Our setup is illustrated in Fig. 1(a).

We tackle the problem of reconstructing the static parts

of 3D scenes which follow the augmented manhattan world

assumption [5], i.e., scenes which can be described by ver-

tical and horizontal planes in 3D. Note that this assumption

does not require vertical planes to be orthogonal with respect

to each other as in [6], [7], but only with respect to the
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(a) Stereo Camera Setup (b) 3D Reconstruction

Fig. 1. Omnidirectional 3D Reconstruction. Figure (a) illustrates
our catadioptric stereo camera setup. Figure (b) shows the result of the
omnidirectional 3D reconstruction obtained by our method.

horizontal planes. As illustrated in Fig. 1(b), many urban

scenes closely follow this assumption and also indoor scenes

are often composed of mainly horizontal or vertical surfaces

[8], [9]. In this work, we show that incorporating such prior

knowledge into the model can greatly benefit 3D reconstruc-

tion, in particular when dealing with omnidirectional images

that often suffer from blur and low contrast.

While planarity priors for stereo matching have been pro-

posed in the context of traditional perspective cameras [10],

[11], 3D planes do not project to planes in omnidirectional

space, thereby preventing the use of classical prior models.

We tackle this problem by proposing a slanted surface

Markov random field (MRF) model based on superpixels

in a virtual omnidirectional view. We start by spherically

rectifying adjacent camera views and obtain initial depth

estimates by matching each pair of views. Next, we aggregate

all depth measurements in one common omnidirectional

space and propose a Hough voting scheme which yields the

set of dominant 3D planes in the scene. Subsequently, each

3D plane hypothesis is mapped to a non-linear surface in

the omnidirectional image space, from which we compute

potentials for all superpixels in the image. Plane optimization

is formulated as a discrete labeling problem and carried out

using loopy belief propagation which amounts to finding

the best plane hypothesis for each superpixel under the

assumption that nearby superpixels are likely belonging to

the same surface.

Furthermore, we introduce a novel dataset of 152 diverse

and challenging urban scenes for which we provide om-

nidirectional imagery as well as laser-based ground truth

depth maps. We quantitatively show that our model outper-

forms state-of-the-art stereo matching techniques [12], [10]

which have demonstrated superior performance in related

evaluations such as the KITTI stereo benchmark [13]. We

also show that our results are qualitatively more pleasing as



they are less susceptible to noise and allow for identifying

the dominant planes which can be useful input information

to subsequent higher-level reasoning stages such as scene

understanding [14]. Our code, dataset and ground truth depth

maps are publicly available1.

II. RELATED WORK

While there exists a large body of literature on omnidirec-

tional camera calibration [15], [16], [17], [18], localization

[19], [20] and sparse structure-from-motion / SLAM [21],

[22], [23], surprisingly little research has been carried out

towards dense 3D reconstruction with catadioptric cameras.

In [24], Svoboda and Pajdla investigate the epipolar ge-

ometry of central catadioptric systems. They show that the

epipolar lines correspond to general conics in the omnidi-

rectional image which reduce to radial lines for vertically

aligned catadioptric cameras. As the latter allows for simple

rectification, several methods take advantage of this setup

by either mounting two catadioptric cameras on top of each

other [25] or by using a double mirror design which allows

for stereo matching with a single camera only [26]. Unfortu-

nately, this configuration has a fixed and short baseline and

only allows for accurate reconstructions in the very close

range.

For general camera motion, [27], [28] propose to repro-

ject the omnidirectional image to a panoramic image on

a virtual cylinder. Stereo correspondences are established

by searching along sinosoidal shaped epipolar curves [27],

[29], [30]. Gonzalez and Lacroix [28] overcome this problem

by rectifying the epipolar curves in panoramic images to

straight lines. Similarly, Geyer and Daniilidis [31] present

a conformal rectification method for parabolic images by

mapping from bipolar coordinates to a rectangular grid. In

this paper, we take advantage of spherical rectification [32],

[33], [34] which is more flexible, can handle the existence of

more than one epipole and does not depend on a particular

projection model.

Towards dense 3D reconstruction, Arican and Frossard

[34] obtain disparity maps from two omnidirectional views

by optimizing a pixel-wise energy using graph cuts similar

to the work of Fleck et al. [30]. Lhuiller [35] reconstructs the

scene from three consecutive omnidirectional images which

are projected onto the six faces of a virtual cube in order to

allow for traditional stereo matching techniques. The local

results are fused into a global model by selecting the most

reliable viewpoints for each scene point and merging the 3D

points using their median. This approach has been extended

in [36] towards reconstruction of larger models from video

sequences.

In contrast to the presented works that either consider

3D reconstruction from only two views or fuse depth maps

in a rather ad-hoc manner, here we present a direct ap-

proach to 360◦ depth map optimization based on disparity

estimates from two temporally and two spatially adjacent

omnidirectional views. Note that due to the diverse spatial

1http://www.mrt.kit.edu/software/
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Fig. 2. Rectified Catadioptric Stereo Pair. The horizontal lines depict
points with the same azimuth angle ϕs in the left and right image.

distribution of baselines this setup eliminates depth ’blind

spots’ which occur when reconstructing from two views

only. Furthermore, we show how planarity priors can be

incorporated directly in the omnidirectional domain, leading

to clean low-noise 3D reconstructions. Accommodating the

fact of limited public omnidirectional datasets, we contribute

our data and the corresponding 3D ground truth to the

robotics community.

III. OMNIDIRECTIONAL MULTI-VIEW STEREO

To ease the formulation of the 3D reconstruction problem

we first compute a virtual 360◦ disparity image from four

omnidirectional views captured by a catadioptric stereo pair

at two consecutive time steps. Through combination of

depth information in one unified view we enable efficient

inference and overcome the problem of blind spots near the

epipoles [37] or occluded regions in some of the images.

We calibrate our omnidirectional stereo camera rig using the

method of [18] which optimizes for the best single viewpoint

approximation even in cases where the cameras are slightly

non-central, e.g., due to inaccuracies in the manufacturing

process. Next, we estimate camera motion between two

consecutive frames. We rectify temporal and spatial adjacent

omnidirectional input pairs and combine their disparity maps

in a single unified 360◦ inverse depth image which forms the

basis for the plane-based inference discussed in Sec. IV. We

discuss these steps in the following.

A. Motion Estimation

To estimate motion between two consecutive frames cap-

tured by the catadioptric stereo camera rig, we match sparse

features between all views of both consecutive stereo pairs.

We employ the FAST corner detector [38] in combination

with the BRIEF descriptor [39], which empirically led to

the best results for our images which suffer from blur at the

image boundaries and incidental noise due to small scratches

in the mirror surface. In practice, we obtain around 1300
correspondences in temporal and spatial direction. Using the

extrinsic calibration of the stereo camera rig, we triangulate
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Fig. 3. Spherical rectification. After applying the rectifying rotation a 3D
point x lies on the plane Π with the same azimuth angle ϕs in both (rotated)
spherical coordinate systems. The rotated coordinate system depends on the
relative position of both cameras determined by extrinsic calibration (stereo)
or motion estimation (motion stereo), respectively.

feature points in the previous frame t − 1 and estimate

motion by minimizing the reprojection error with respect

to the observations in the current frame t similar to the

StereoScan system [40] for perspective cameras. Robustness

against outliers is achieved by using RANSAC with 150
iterations. To balance the spatial distribution of feature points

we employ bucketing using 16 cells with a maximum of 12
features per cell.

B. Rectification

To allow for efficient stereo matching, we rectify all

four omnidirectional stereo pairs using spherical rectification

similar to [32], [34]. This is illustrated in Fig. 3. We rotate

an image pair in the spherical domain such that the epipoles

coincide with the coordinate poles (z-axis). The remaining

degree of freedom is chosen to minimize the relative rotation

of the y-axis with respect to the camera coordinate system.

Thus epipolar great circles coincide with the longitudes

and disparity estimation reduces to a onedimensional search

problem with constant azimuth angle ϕs. Fig. 2 depicts the

result of the spherical rectification process. For further details

we refer the reader to the appendix.

C. 360◦ Disparity Image

Given the rectified image pairs, we obtain disparity maps

using semi-global matching [12] which has shown excellent

performance in state-of-the-art perspective stereo bench-

marks such as the KITTI stereo evaluation [13]. In the

spherical domain the angular disparity γ = θs2 − θs1 is

defined as the difference between the angles θs1 and θs2
of the two viewing rays imaging the same 3D world point

xs. The depth ρs of xs is then given as

ρs =
‖t‖ · sin θs2

sin γ
(1)

where ‖t‖ denotes the baseline between the cameras. Due

to the fact, that the images are highly distorted near the

epipoles (leading to increased reconstruction error) as well as

occlusions by the recording platform itself, we extract stereo

depth estimates only from the front- (120◦) and backward

(120◦) parts of the ego-vehicle while motion disparity is

extracted only from the corresponding side (each 120◦).
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Fig. 4. Plane hypotheses. This figure shows the relationship between a
point x described by the spherical parameters ϕ, θ and its depth r, and
the plane parameters dh, dv and α for horizontal and vertical planes in the
coordinate system of the virtual camera.

After triangulating all points in the four spherical image

pairs Isj (θs, ϕs) (with j denoting the image number), we

project them into a new virtual 360◦ image I(ϕ, θ) with the

camera coordinate system located in the center of the four

original views. We choose the center as origin for the virtual

coordinate system to minimize the relative displacement

of all reflected rays. Furthermore, all points are rotated

such that the x-y-plane of the new coordinate system is

parallel to the groundplane. We estimate this transformation

by computing the dominant plane below the camera using

RANSAC plane fitting of the 3D points. Depth values for

overlapping regions are merged by computing the mean value

for each of these pixels. Fig. 5 (left) illustrates the resulting

virtual 360◦ intensity image I(ϕ, θ) and inverse depth image

D(ϕ, θ), where we define inverse depth by D = 1/r with

r =
√

x2 + y2 independent of the z-component of each 3D

point to ease the representation of planes as will be discussed

in Sec. IV. Note that working with inverse depth instead of

depth implicitly accounts for the error characteristics of the

underlying stereo measurements.

IV. SLANTED-PLANE MRF

For efficient inference and to propagate information over

larger distances, we first partition the image into ∼ 1000
superpixels using the StereoSLIC algorithm [10] applied to

the 360◦ inverse depth image D(ϕ, θ) from the previous

section. Next, we extract the set of dominant plane hy-

potheses for each scene and the problem of finding the best

plane per superpixel is cast as a discrete labeling problem.

The estimation of the plane hypotheses and the energy

formulation are presented in the following.

A. Plane Hypotheses

Based on the fact that our coordinate system is parallel

to the groundplane (x-y), we are able to describe vertical

planes using two variables (angle α and distance dv) and

horizontal planes with a single variable only (distance dh)

as illustrated in Fig. 4. Since the depth r is independent from

the z-component, the relationship between a 3D point x and

the distance of a plane passing through x is given by

dh(r, θ) =
r

tan θ
(2)

dv(r, ϕ, α) = r · cos (ϕ− α) (3)



where the variables denote angles and distances as defined in

Fig. 4. This suggests a simple hough voting scheme: We ac-

cumulate the votes of all pixels in the virtual omnidirectional

image in a 1-dimensional horizontal plane accumulator array

H(dh) and in a 2-dimensional vertical plane accumulator

array H(dv, α) as illustrated in Fig. 5 (middle). To make the

votes more discriminative, we disambiguate pixels belonging

to horizontal and vertical surfaces by casting each vote with

an additional weight which corresponds to the likelihood

of a pixel belonging to a horizontal (or vertical) surface.

This likelihood is modeled by logistic regression using the

vertical inverse depth gradients as input. We estimate the

parameters of the sigmoid function using a held out training

set for which all horizontal and vertical surfaces have been

manually labeled. The maxima of the voting accumulators

H(dh) and H(dv, α) are computed using an efficient non-

maxima suppression implementation [41] which we have

modified to handle cyclic image panoramas.

B. Energy Formulation

Given the plane hypotheses from the previous section, we

formulate the problem of assigning each superpixel to one

of the planes as a discrete energy minimization problem.

More formally, let S = {s1, . . . , sM} denote the variables of

interest, each corresponding to one of the superpixels, where

s takes a discrete plane index s ∈ {1, . . . , N} as value. Here,

M denotes the total number of superpixels in the image and

N is the number of plane hypotheses. We define the energy

function to be minimized as

Ψ(S) =
∑

s∈S

[ψu1
(s) + ψu2

(s)] +
∑

(s1,s2)∈NS

ψp(s1, s2) (4)

with unary terms ψu and pairwise terms ψp where NS de-

notes the set of neighboring superpixels, i.e., all superpixels

that share a common boundary.

The first unary term models the inverse depth fidelity

ψu1
(s) = wu1

a(s)
∑

p∈Ps

[

ρu(D̂(p, s)−D(p))
]

(5)

with weight parameter wu1
. Here, D̂(p, s) is the inverse

depth at pixel p = (ϕ, θ)T predicted from the plane with

index s, D(p) is the inverse depth estimate at pixel p
(see Sec. III-C) and ρu(x) = min(|x|, τu) is a robust l1
penalty function with truncation parameter τu. Furthermore,

Ps denotes the set of all pixels with valid inverse depth

hypothesis D(p) which are covered by superpixel s and

a(s) ∈ [0, 1] is a function that predicts the accuracy of

the inverse depth map D averaged over superpixel s from

training data. The latter has been introduced as we found the

reliability of SGM to correlate strongly with image blur and

hence also image location when dealing with omnidirectional

images. In practice, we take a(s) as the average ratio of

correctly predicted depth values computed from a held-out

training set.

The second unary term models the prior probability for

surfaces to be horizontal or vertical and is given by

ψu2
(s) = wu2

×

{

2 ph(s)− 1 if s ∈ H
1− 2 ph(s) otherwise

(6)

where H is the set of horizontal planes and

ph(s) =
1

|Ps|

∑

p∈Ps

p′h(p) ∈ [0, 1] (7)

is the prior probability of superpixel s being horizontal. Here,

p′h(p) is simply the probability of pixel p being horizontal

which we compute from our held-out training set augmented

with manually labeled polygons of vertical and horizontal

surfaces. Note how (6) assigns a positive score to plane

hypotheses that agree with the expected plane type and

negative scores otherwise.

Our pairwise model encourages neighboring superpixels

to agree at their boundaries

ψp(s1, s2) = wp

∑

p∈Bs1,s2

ρp(D̂(p, s1)− D̂(p, s2)) (8)

where wp is a smoothness parameter and Bs1,s2 is the set of

boundary pixels that are shared between s1 and s2. Similar

to the depth fidelity term, we take ρu(x) = min(|x|, τp) as

the robust l1 penalty with truncation parameter τp.

C. Learning and Inference

For inferring S we make use of min-sum loopy belief

propagation to approximately minimize the energy specified

in (4). The parameters of our model are estimated from a

separate training set consisting of 80 images. As (4) depends

nonlinearly on τu and τp, traditional CRF learning algorithms

[42] are not feasible and we resort to Bayesian optimization

[43] for estimating the parameters, yielding wu1
= 1.2,

wu2
= 1.0, wp = 1.0, τu = 0.05 and τp = 0.08.

V. EVALUATION

We evaluate our approach using stereo sequences cap-

tured with our autonomous driving platform AnnieWAY. We

equipped the vehicle with two horizontally aligned hyper-

catadioptric cameras on top of the roof of the vehicle, a high-

precision GPS/IMU system that delivers groundtruth motion

and a Velodyne laser scanner that provides 360◦ laser scans

with a vertical resolution of 64 laser beams.

A. Ground truth

We use the Velodyne laser scanner as reference sensor

for our quantitative evaluation. As we focus on static scenes

only, we are able to accumulate the laser point clouds

(+/- 5 frames) using ICP point-to-plane fitting which yields

relatively dense ground truth depth maps (see Fig. 6(a)

(top) for an illustration). The calibration between the cata-

dioptric camera and the Velodyne laser scanner is obtained

by minimizing the reprojection error in the image from

manually selected correspondences. To evaluate the quality

of depth information depending on surface inclination, we

also labeled all horizontal and vertical planes and obtain the



360
◦

5m

10m

15m
α

dv

0
◦

0m

Fig. 5. Plane Hypotheses. This figure shows the virtual omnidirectional intensity image (left top) and the corresponding false color depth map from
SGBM (left bottom), the Hough space for vertical planes (middle) and the intensity and inverse depth image with three randomly selected planes (right)
corresponding to the colored maxima in the Hough space. Note how the cyan maximum describes a plane that is closer to the camera center (smaller dv)
than the planes corresponding to the green and purple maxima. This can also be verified by looking at the plane visualizations on the right.

plane parameters using the Hough transformation presented

in Sec. IV-A with the ground truth depth maps as input

(in contrast to the estimated ones used in our method). Our

dataset comprises 80 training and 72 test scenes in total.

B. Quantitative Results

We evaluate the proposed method against state-of-the-art

stereo vision algorithms. Our baselines include simple Block

Matching (BM), Semi-Global Matching (SGBM) [12] (in

both cases we made use of the OpenCV implementations), as

well as the more recently developed StereoSLIC algorithm

[10]. To investigate the importance of the proposed plane-

based prior, we also implement a winner takes all (WTA)

plane selection strategy, which selects the best plane inde-

pendently for each superpixel. Note that this corresponds to

minimizing (4) while ignoring pairwise potentials ψp(s1, s2)
and the horizontal prior ψu2

(s).
We compute the inverse depth error e = |Dgt −Dest| for

every pixel for which groundtruth is available. To guarantee

a fair comparison, we fill in missing values in the resulting

inverse depth images using background interpolation [12],

[13]. We report the mean number of bad pixels and the

mean end-point error averaged over the full test set. A pixel

which has an inverse depth error e larger than 0.05 1/m is

regarded as a bad pixel. Tab. I shows the mean percentage

of bad pixels and the mean end-point error for all algorithms

averaged over all 72 test images. The first row depicts the

errors for all pixels where depth ground truth is available,

while the other rows consider planar regions only. For WTA

we vary the threshold of our non-maxima suppression stage

between 50 and 500 (WTA 50 / WTA 500 in Tab. I), yielding

about 5 to 150 planes on average. For our method, we set

this threshold to a constant value of 150.

Our experiments show that the proposed method signifi-

cantly outperforms the baselines. The difference is especially

pronounced for horizontal planes, but our method also de-

creases the number of bad pixels for vertical planes with

respect to all baseline methods.

C. Qualitative Results

Fig. 6 and 7 depict the inverse depth images for the

analyzed algorithms (b-f) and the inverse depth groundtruth

obtained from the Velodyne laser scanner (a). Colors repre-

sent distance, where green is close and blue denotes distant

points. Alongside, we show the 3D reconstructions obtained

when reprojecting all pixels of the corresponding inverse

depth maps back into 3D (b-f). Note how our algorithm is

able to produce much cleaner depth images and smoother

3D reconstructions. A random selection of challenging 3D

scenes reconstructed using our method is given in Fig. 8.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method for high-quality om-

nidirectional 3D reconstruction from a single virtual inverse

depth image. We showed how efficient inference with plane-

based prior models is possible and leads to clean and easy

to interpret depth maps that outperform state-of-the art depth

estimation techniques in terms of 3D reconstruction error. In

the future, we plan to investigate possible extensions towards

integrating depth information from more than four views to

allow for example for urban reconstructions at larger scales.

APPENDIX

This appendix provides details of the spherical rectification

outlined in Sec. III-B. For clarity we only illustrate the

process for the first (reference) camera. The mapping for

the second camera is obtained in a similar manner.

Let Io(u, v) denote the omnidirectional input image with

pixel coordinates (u, v)T and let Is(θs, ϕs) denote the rec-

tified spherical image which depends on the azimuth angle

ϕs ∈ [0, 2π] and inclination angle θs ∈ [0, π] as illustrated

in Fig. 3. We obtain

ϕs = arctan
yr
xr

θs = arctan

√

x2r + y2r
zr

(9)

where (xr, yr, zr)
T = R · (x, y, z)T , R is a rotation ma-

trix and the ray (x, y, z)T corresponds to pixel (u, v)T in

Io(u, v). The rectifying rotation matrix R is computed such

that the epipoles coincide with the coordinate poles, i.e., all

epipoles lie on the line connecting both camera centers. This

is achieved by letting

R = [r1, r2, e11]

r2 = yo − (eT11y0) e11

r1 = r2 × r3

where yo denotes the y-axis of the original omnidirectional

camera system (before rotation) and e11 is the first epipolar

point as illustrated in Fig. 3. Note that this definition removes



Bad Pixels (%) SGBM BM StereoSLIC WTA 50 WTA 100 WTA 150 WTA 200 WTA 300 WTA 500 Ours

All Pixel 11.89 9.52 8.95 11.62 11.63 11.59 11.62 12.63 14.66 4.04

All Planes 13.41 7.27 9.50 13.22 13.16 12.85 12.28 11.96 11.98 1.24

Horizontal Planes 17.45 6.75 12.24 17.48 17.40 17.04 16.33 15.29 13.28 1.03

Vertical Planes 2.52 5.81 1.85 2.11 2.10 2.20 2.33 6.64 14.10 1.51

Mean Error (1/r) SGBM BM StereoSLIC WTA 50 WTA 100 WTA 150 WTA 200 WTA 300 WTA 500 Ours

All Pixel 0.026 0.022 0.021 0.029 0.029 0.029 0.029 0.030 0.031 0.013

All Planes 0.029 0.022 0.022 0.033 0.033 0.032 0.031 0.030 0.030 0.009

Horizontal Planes 0.034 0.023 0.026 0.038 0.038 0.037 0.036 0.034 0.032 0.010

Vertical Planes 0.008 0.013 0.008 0.008 0.008 0.009 0.009 0.016 0.023 0.008

TABLE I

Quantitative Analysis. THIS TABLE SHOWS THE MEAN PERCENTAGE OF BAD PIXELS AND THE MEAN INVERSE DEPTH ERROR FOR ALL BASELINES

AND THE PROPOSED METHOD AVERAGED OVER ALL 72 TEST IMAGES. THE FIRST ROW DEPICTS THE ERRORS FOR ALL PIXELS WHERE DEPTH GROUND

TRUTH IS AVAILABLE, WHILE THE OTHER ROWS CONSIDER PLANAR REGIONS (OF A SPECIFIC TYPE) ONLY.

(a) Groundtruth / Intensity Image (b) BM (c) SGBM

(d) StereoSLIC (e) WTA (f) Ours

Fig. 6. Inverse Depth Maps and 3D Reconstructions. The figures show the inverse depth images and the resulting 3D reconstruction for the same
scene for the baseline algorithms (BM, SGM, StereoSLIC), for the best WTA result with threshold 150 and our MRF based plane estimation.

the remaining degree of freedom by ensuring that the rotated

y-axis is similar to the original one. The epipoles are

obtained from the essential matrix E = [t]×R which is

specified by the rigid motion [R|t] between both cameras.
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Fig. 8. 3D Reconstruction: This figure shows 3D reconstructions for different urban scenarios obtained when reprojecting the inverse depth maps
produced by our method into 3D. Note that the viewpoint of the rendered 3D point clouds deviates significantly from the viewpoint of the four cameras.


