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Abstract. In this work we present a novel system for autonomous mobile robot navigation. With only an omnidi-
rectional camera as sensor, this system is able to build automatically and robustly accurate topologically organised
environment maps of a complex, natural environment. It can localise itself using such a map at each moment, in-
cluding both at startup (kidnapped robot) or using knowledge of former localisations. The topological nature of the
map is similar to the intuitive maps humans use, is memory-efficient and enables fast and simple path planning to-
wards a specified goal. We developed a real-time visual servoing technique to steer the system along the computed
path.

A key technology making this all possible is the novel fast wide baseline feature matching, which yields an efficient
description of the scene, with a focus on man-made environments.
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1. Introduction

1.1. Application

This paper describes a total navigation solution for mo-
bile robots. It enables a mobile robot to efficiently lo-
calise itself and navigate in a large man-made environ-
ment, which can be indoor, outdoor or a combination of
both. For instance, the inside of a house, an entire univer-
sity campus or even a small city lie in the possibilities.

Traditionally, other sensors than cameras are used for
robot navigation, like GPS and laser scanners. Because
GPS (and Galileo also) needs a direct line of sight to
the satellites (Pérer-Fontán et al., 2004), it cannot be

used indoors or in narrow city centre streets, i.e. the
very conditions we foresee in our application. Time-of-
flight laser scanners are widely applicable, but are ex-
pensive and voluminous, even when the scanning field is
restricted to a horizontal plane. The latter only yields a
poor world representation, with the risk of not detecting
essential obstacles such as table tops.

That is why we aim at a vision-only solution to nav-
igation. Vision is, in comparison with these other sen-
sors, much more informative. Moreover, cameras are
quite compact and increasingly cheap. We observe also
that many biological species, in particular migratory
birds, use mainly their visual sensors for navigation. We
chose to use an omnidirectional camera as visual sensor,
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because of its wide field of view and thus rich informa-
tion content of the images acquired with. For the time
being, we added a range sensing device for obstacle de-
tection, but this is to be replaced by an omnidirectional
vision range estimator under development (Millnert et al.,
2006).

Our method works with natural environments. That
means that the environment does not have to be modified
for navigation in any way. Indeed, adding artificial mark-
ers to every room in a house or to an entire city doesn’t
seem feasible nor desirable.

In contrast to classical navigation methods, we chose a
topological representation of the environment, rather than
a metrical one, because of its resemblance to the intuitive
system humans use for navigation, its flexibility, wide
usability, memory-efficiency and ease for map building
and path planning.

The targeted application of this research is the visual
guidance of electric wheelchairs for severely disabled
people. In particular, the target group are people not able
to give detailed steering commands to navigate around in
their homes and local city neighbourhoods. If it is pos-
sible for them to perform complicated navigational tasks
by only giving simple commands, their autonomy can
be greatly enhanced. For most of them such an increase
of mobility and independence from other people is very
welcome.

Our test platform and camera are shown in Fig. 1. The
price of such a robotic wheelchair is a serious issue. With
our method, the only additional hardware required is a
laptop (or an equivalent embedded processor), a webcam,
a mirror and (for the time being) some ultrasound sensors.
Because of the increased independence of the users the
cost of personal helpers is reduced, making the robotic
wheelchair even more economically feasible.

Figure 1. Left: the robotic wheelchair platform. Right: the omnidirec-

tional camera, composed by a colour camera and an hyperbolic mirror.

Figure 2. Overview of the navigation method.

1.2. Method Overview

An overview of the navigation method presented is given
in Fig. 2. The system can be subdivided in three parts:
map building, localisation and locomotion.

The map building stage has to be gone through only
once, to train the system in a new environment. The mo-
bile system is lead through all parts of the environment,
while it takes images at a constant rate (in our set-up
one per second). Later, this large set of omnidirectional
images is automatically analysed and converted into a
topological map of the environment, which is stored in
the system’s memory and will be used when the system
is actually in use.

The next stage is localisation. When the system is pow-
ered up somewhere in the environment, it takes a new im-
age with its camera. This image is rapidly compared with
all the images in the environment map, and an hypothesis
is formed about the present location of the mobile robot.
This hypothesis is refined using Bayes’ rule as soon as
the robot starts to move and new images come in.

The final stage is locomotion. When the present loca-
tion of the robot is known and a goal position is commu-
nicated by the user to the robot, a path can be planned
towards that goal using the map. The planned route is
specified as a sequence of map images, serving as a ref-
erence for what the robot should subsequently see if
on course. This path is executed by means of a visual
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servoing algorithm: each time a visual homing proce-
dure is executed towards the location where the next path
image is taken.

The main contributions of this paper are:

1. A fast wide baseline matching technique, which al-
lows efficient, online comparison of images,

2. A method to construct a topological map, which is
robust to self-similarities in the environment thanks
to the use of Demster-Shafer evidence collection,

3. A visual servoing algorithm which is rubust to occlu-
sions and tracking losses,

4. The integration of all these components in an opera-
tional system.

The remainder of this paper is organised as follows.
The next section gives an overview of the related work.
In Section 3, our core image analysis and matching tech-
nique is explained: fast wide baseline matching. The sec-
tions thereafter describe the different stages of our ap-
proach. Section 4 discusses the map building process,
Section 5 explains the localisation method, Section 6 de-
scribes the path planning, and Section 7 details the visual
servoing algorithm. We end with an overview of experi-
mental results (Section 8) and a conclusion (Section 9).

2. Related Work

2.1. Image Comparison

A good image comparison method is of utmost im-
portance in a vision-based navigation approach. Global
methods compute a measure using all the pixels of the en-
tire image. Although these methods are fast, they cannot
cope with e.g. occlusions and severe viewpoint changes.
On the other hand, techniques that work at a local scale,
extracting and recognising local features, can be made ro-
bust to these effects. The traditional disadvantage of these
local techniques is time complexity. In our approach, we
combine novel global and local approaches resulting in
fast and accurate image comparison.

2.1.1. Global Techniques. Many researchers use global
image comparison techniques. Straightforward global
methods like histogram-based matching, used by Ulrich
and Nourbakhsh (2000) don’t seem distinctive enough
for our application. Stricker et al. (2001) proposed a
method based on the Fourier-Mellin transform to com-
pare images. Unfortunately, the baseline can not be large
which restricts that method to tracking. Another pop-
ular technique is the use of an eigenspace decomposi-
tion of the training images (Jogan and Leonardis, 1999),
which yields a compact database. However, these meth-
ods proved not useful in general situations because they

are not robust enough against occlusions and illumina-
tion changes. That is why Jogan and Leonardis (1999)
and Bischof et al. (2001) developed a PCA-based im-
age comparison that is robust against partial occlusions,
respectively varying illumination.

2.1.2. Local Techniques. A solution to be able to cope
with partial occlusions is comparing local regions in the
images. The big question is how to detect these local
features, also known as visual landmarks.

A simple solution to do this is by adding artificial
markers to strategically chosen places in the world. To
make these features easily detectable with a normal
camera, they are given special (individual) photomet-
ric appearances (for instance coloured patterns (Okuma
et al., 2000), LEDs (Aliaga, 2001) or even 2D barcodes
(Rekimoto et al., 2000)). Using such artificial markers is
perfectly possible for some applications, but often diffi-
cult. Navigation through an entire city or inside some-
one’s house are examples of cases where pasting these
markers all over the place is hardly feasible and in no
case desirable.

That is why, in this project we use natural landmarks,
extracted from the scene itself, without modifications.
Moreover, the extraction of these landmarks must be au-
tomatic and robust against changes in viewpoint and illu-
mination to ensure the detection of these landmarks under
as many circumstances as possible.

Many researchers proposed algorithms for natural
landmark detection. Mostly, local regions are defined
around interest points in the images. The characterisation
of these local regions with descriptor vectors enables the
regions to be compared across images. Differences be-
tween approaches lie in the way in which interest points,
local image regions, and descriptor vectors are extracted.
An early example is the work of Schmid et al. (1997),
where geometric invariance was still under image rota-
tions only. Scaling was handled by using circular regions
of several sizes. Lowe (1999) extended these ideas to
real scale-invariance. More general affine invariance has
been achieved in the work of Tuytelaars et al. (1999),
Tuytelaars and Van Gool (2000), Matas et al. (2002), and
Mikolajczyk and Schmid (2002).

Although these methods are capable to find high qual-
ity correspondences, most of them are too slow to use in a
real-time mobile robot algorithm. That is why we propose
a much faster alternative, as explained in Section 3.

2.2. Map Structure

Many researchers proposed different ways to represent
the environment perceived by vision sensors. We can or-
der all possible map organisations by metrical detail: from
dense 3D over sparse 3D to topological maps. We believe
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that the outer topological end of this spectrum offers the
top opportunities.

2.2.1. Dense 3D Maps. One approach is building dense
3D models out of the incoming visual data (Pollefeys
et al., 2004; Nistér et al., 2004). Such approach has some
disadvantages. It is computationally and memory de-
manding, and can not cope with planar and ill-textured
parts of the environment such as walls. Nevertheless,
these structures are omnipresent in our application, and
collisions need to be avoided.

2.2.2. Sparse 3D Maps. One way to reduce the compu-
tational burden is to make abstraction of the visual data.
Instead of modelling a dense 3D model containing bil-
lions of voxels, a sparse 3D model is built containing only
special features, i.e. visual landmarks.

Examples of researchers solving the navigation prob-
lem with sparse 3D maps of natural landmarks are Se
et al. (2001) and Davison (2003). They position natural
features in a metrical frame, which is as big as the en-
tire mapped environment. Although less than the dense
3D variant, these methods are still computationally de-
manding for large environments since their complexity
is quadratic in the number of features in the model. Also,
for larger models the metric error accumulates, so that
feature positions are drifting away.

2.2.3. Topological maps. As a matter of fact, the need
for explicit 3D maps in navigation is questionable. One
step further in the abstraction of environment informa-
tion is the introduction of topological maps. The psy-
chological experiments of van Veen et al. (1998) show
that people rely more on a topological map than a met-
rical one for their navigation. In these topological maps,
locally places are described as a configuration of natural
landmarks. These places form the nodes of the graph-like
map, and are interconnected by traversable paths. Other
researchers (Vale and Isabel Ribeiro, 2003; Ulrich and
Nourbakhsh, 2000; Košecká and Yang, 2004) also chose
for topological maps, mainly because they scale better to
real-world applications than metrical, deterministic rep-
resentations, given the complexity of unstructured envi-
ronments. Other advantages are the ease of path planning
in such a map and the absence of drift.

2.3. Topological Map Building

Vale and Isabel Ribeiro (2003) developed a clustering-
based method for automatic building of a topological en-
vironment map out of a set of images. Unfortunately, his
method is only suited for image comparison techniques
which are a metric function (which doesn’t hold for the
similarity measure we use), and does not give correct

results if self-similarities are present in the environment,
i.e. places that are different but look similar.

Very popular are various probabilistic approaches of
the topological map building problem. Ranganathan et al.
(2005) for instance use Bayesian inference to find the
topological structure that explains best a set of panoramic
observations, while Shatkay and Kaelbling (1997) fit hid-
den Markov models to the data. If the state transition
model of this HMM is extended with robot action data, the
latter can be modeled using a partially observable Markov
decision process or POMDP, as in Koenig and Simmons
(1996) and Tapus and Siegwart (2005). Zivkovic et al.
(2005) solve the map building problem using graph cuts.

In contrast to these global topology fitting approaches,
an alternative way is detecting loop closings. During a
ride through the environment, sensor data is recorded.
Because it is known that the driven path is traversable,
an initial topological representation consists of one long
edge between start and end node. Now, extra links are
created where a certain place is revisited, i.e. an equiva-
lent sensor reading occurs twice in the sequence. This is
called a loop closing. A correct topological map results
if all loop closing links are added.

Also in loop closing, probabilistic methods are intro-
duced to cope with the uncertainty of link hypotheses and
avoid links at self-similarities. Chen and Wang (2005),
for instance, use Bayesian inference. Beevers and Huang
(2005) recently introduced Dempster-Shafer probability
theory into loop closing, which has the advantage that
ignorance can be modelled and no prior knowledge is
needed. Their approach is promising, but limited to sim-
ple sensors and environments. In this paper, we present a
new framework for loop closing using rich visual sensors
in natural complex environments, which is also based on
Dempster-Shafer.

2.4. Visual Servoing

As explained in Section 6, the execution of a path using
such a topological environment map boils down to a series
of visual servoing operations between places defined by
images.

Cartwright and Collett (1987) proposed the so-called
bearing-only ‘snapshot’ model, inspired by the visual
homing behaviour of insects such as bees and ants. Their
proposed algorithm consists of the construction of a home
vector, computed as the average of landmark displace-
ment vectors. Franz et al. (1998) analysed the computa-
tional foundations of this method and derived its error
and convergence properties. They conclude that every
visual homing method based solely on bearing angles
of landmarks like this one, inevitably depends on basic
assumptions such as equal landmark distances, isotropic
landmark distribution or the availability of an external
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compass reference. Unfortunately, because none of these
assumptions generally hold in our targeted application
we propose an alternative approach.

If both image dimensions are taken into account, not
limiting the available information to the bearing angle,
the most obvious choice is working via epipolar geom-
etry estimation (e.g. Tuytelaars et al., 1999; Basri et al.,
1998). Unfortunately, for perspective cameras this prob-
lem is in many cases ill conditioned, although Svoboda
et al. (1998) proved that motion estimation with omni-
directional images is much better conditioned. That is
why we chose a method based on omnidirectional epipo-
lar geometry. Other work in this field is the research of
Mariottini et al. (2005), who split the homing procedure
in a rotation phase and a translation phase, but this ap-
proach can not be used in our application because of the
non-smooth robot motion it produces.

3. Fast Wide Baseline Matching

The novel technique we use for image comparison is fast
wide baseline matching. This key technique enables ex-
traction of natural landmarks and image comparison for
our map building, localisation and visual servoing algo-
rithms.

We use a combination of two different kinds of
wide baseline features, namely a rotation reduced and
colour enhanced form of Lowe’s SIFT features (Lowe,
1999), and the invariant column segments we developed
(Goedemé et al., 2004). These techniques extract local
regions in each image, and describe these regions with a
vector of measures which are invariant to image deforma-
tions and illumination changes. Across different images,
similar regions can be found by comparing these descrip-
tors. This makes it possible to find correspondences be-
tween images taken from very different positions, or un-
der different lighting conditions. The crux of the matter
is that the extraction of these regions can be done before-
hand on each image separately, rather than during the
matching. Database images can be processed off-line, so
that the images themselves do not have to be available at
the time of matching with another image.

3.1. Camera Motion Constraint

The camera we use is a catadioptric system, consisting of
an upward looking camera with a hyperboloidal mirror
mounted above it. The result is a field of view of 360◦

in horizontal direction and more than 180◦ in vertical
direction. The disadvantage is that these images contain
severe distortions, as seen for instance in Fig. 5.

We presume the robot to move on one horizontal plane.
The optical axis of the camera is oriented vertically. In
other words, allowed movements consist of translations

Figure 3. Illustration of the allowed movements of the camera.

in the plane and rotation around a vertical axis, see also
Fig. 3.

3.2. Rotation Reduced and Colour Enhanced SIFT

David Lowe presented the Scale Invariant Feature Trans-
form (Lowe, 1999), which finds interest points around
local extrema in a scale-space of difference-of-Gaussian
(DoG) images. The latter tend to correspond to blobs
which contrast with their background. A dominant gra-
dient orientation and scale factor define an image patch
around each interest point so that a local image descriptor
can be computed as a histogram of normalised gradient
orientations. SIFT features are invariant to rotation and
scaling, and robust to other transformations.

A reduced form of these SIFT features for use on
mobile robots is proposed by Ledwich and Williams
(2004). They used the fact that rotational invariance is
not needed for a camera with a motion constraint as
in Fig. 3. Elimination of the rotational normalisation
and rotational part of the descriptor yields a somewhat
less complex feature extraction and more robust feature
matching performance.

Because the original SIFT algorithm works on
greyscale images, some mismatches occur at similar ob-
jects in different colours. That is why we propose an
outlier filtering stage using a colour descriptor of the fea-
ture patch based on global colour moments, introduced
by Mindru et al. (1999), which is invariant to illumination
changes (scale factor and offset in each band). We chose
three colour descriptors: CRB , CRG and CG B , with

CP Q =
∫

P Q d�
∫

d�∫
P d�

∫
Q d�

, (1)

where P, Q ∈ {R, G, B}, i.e. the red, green, and blue
colour bands, centralised around their means. After
matching, the correspondences with Euclidean distance
between the colour description vectors above a fixed
threshold are discarded.



224 Goedemé et al.

We tested these algorithms on the image pair in Fig. 5.
With the original SIFT algorithm, the first 13 matches are
correct. Using our rotation reduced and colour enhanced
algorithm, we see that up to 25 correct matches are found
without including erroneous ones.

3.3. Invariant Column Segments

In addition to the rotation reduced and color enhanced
SIFT features, we developed wide baseline features
which are specially suited for mobile robot navigation.
There we exploited the special camera motion (Section
3.1) and the fact that man-made environments contain
many vertical structures. Examples are walls, doors, and
furniture. These don’t have to be planar, so cylindrical
elements like pillars do comply too. Vertical lines in the
world always project to radial lines in the omnidirectional
image for the constrained camera motions.

Here, these new wide baseline features are described
for the use on omnidirectional images. More details and
how they can be used on perspective camera images are
described in Goedemé et al. (2004).

The extraction process of the wide baseline features
starts as illustrated in Fig. 4. We stress that every step is
invariant to changes in viewpoint and illumination. Along
every line through the centre of the image (left), we look
for points having a local maximum gradient value (cen-
tre). Every consecutive pair of gradient maxima along the
line defines the begin and end of a new invariant column
segment (right).

We characterise the extracted column segments with
a descriptor that holds information about colour and in-
tensity properties of the segment. This 10-element vector
includes:

− Three colour invariants. To include colour informa-
tion in the descriptor vector, we compute the colour
invariants, based on generalised colour moments
Eq. (1), over the column segment. To include infor-
mation about the close neighbourhood of the segment,
the line segment is expanded on both sides with a

Figure 4. Illustration of the invariant column segment extraction al-

gorithm: (left) part of the original image, the white cross identifies the

projection centre, (centre) local maxima of the gradient for one radius,

(right) one pair of maxima defines a column segment.

constant fraction of the segment length (in our exper-
iments 0.2). Figure 4 (right) shows this.

− Seven intensity invariants. To characterise the inten-
sity profile along the column segment, the best fea-
tures to use are those obtained through the Karhunen-
Lòeve transform (PCA). But because all the data is
not known beforehand this is not practical. As is well
known (Jain, 1989), the Fourier coefficients can some-
times offer a close approximation of the KL coeffi-
cients. In our method, because it is computationally
less intensive and gives real output values, we choose
to use the seven first coefficients of the discrete cosine
transform (DCT), instead of Fourier. The DCT com-
putations in our algorithm are executed fast using the
8-point 1D method described in Loeffler et al. (1989).

In many cases there are horizontally constant elements
in the scene. This leads to many very resembling column
segments next to each other. To avoid matching over and
over again very similar line segments, we first do a clus-
tering of the line segments in each image. As a clus-
tering measure we use the Mahalanobis distance of the
descriptor vectors, extended with the horizontal distance
between the line segments. In each cluster a prototype
segment is chosen for use in the matching procedure.

3.4. Matching

These two kinds of local wide baseline features are
very suited to quickly find correspondences between two
widely separated images. A correspondence pair is estab-
lished if for a feature the other one is the closest to it in
the feature space, and vice versa. Also, this match must
be at least a fixed ratio better than the second best match.
To be able to cope with different ranges of the elements of
the descriptor vectors, distances are computed using the
Mahalanobis measure (where we assume the elements to
be independent):

di j =
√√√√∑

k

(xik − x jk)2

σ 2
k

(2)

To speed up the matching, a Kd-tree of the reference
image data is built. We used the on-line available package
ANN (Approximate Nearest Neighbour) by Arya et al.
(1998), for this.

Figure 5 shows the matching results on a pair of omni-
directional images. As seen in these examples, the SIFT
features and the column segments are complementary,
which pleads for the combined use of the two. The com-
puting time required to extract features in two 320 × 240
images and find correspondences between them is about
800 ms for the enhanced SIFT features and only 300 ms
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Figure 5. Top: a pair of omnidirectional images. Bottom: correspond-

ing column segments (radial lines, matches indicated with dotted line)

and SIFT features (circles with tail, matches with continuous line). The

images are rotated for optimal visibility of the matches.

for the vertical column segments (on a 800 MHz laptop).
Typically 30 to 50 correspondences are found.

For the description of a feature only the descriptors are
used in the end, and not the underlying pixel data. As a
result, the memory requirements for storing the reference
images of entire environments can be kept limited.

4. Map Building

The navigation approach proposed is able to automat-
ically construct a topological world representation out

of a sequence of training images. During a training tour
through the entire environment, omnidirectional images
are taken at regular time intervals. The order of the train-
ing images is known. Section 4.1 describes the map struc-
ture targeted. In Section 4.2, the image comparison tech-
nique based on fast wide baseline features is described
which is used by the actual map building algorithm, pre-
sented in Section 4.4. The mathematical formalism used
in this algorithm, Dempster-Shafer probability theory, is
briefly introduced in Section 4.3.

4.1. Topological Maps

To be of use in the following parts of the navigation
method, the topological map must describe all ‘places’
in the environment and the possible connections between
these places. The topology of the world, being the maze
of streets in a city or the structure of a house, must be
reflected in the world model. The question remains what
exactly is meant with such a place and how to delimit it.
In a building, a place can be defined as a separate room.
But that is not such a good definition either. What to do
with long corridors, and outdoors with city streets?

That is why we define a place with regard to the needs
of the localisation and locomotion algorithms. To be able
to get a sufficiently detailed localisation output, the sam-
pling of places must be dense enough. For the locomotion
algorithm, which performs visual homing between two
places at a time, the distance between these places must
be not too big to ensure errorless motion. On the other
hand, a compact topological map with fewer places re-
quires less memory and enables faster localisation and
path planning.

We discuss the image comparison method used in the
map building algorithm before deciding on this place def-
inition, as this comparison will lie at its basis.

4.2. Image Comparison Measure

The main goal of this section is to determine for each arbi-
trary pair of images a certain similarity measure, which
tells how visually similar the two images are. Our im-
age comparison approach consists of two levels, a global
and a local comparison of the images. We first compare
two images with a coarse but fast global technique. After
that, a relatively slower comparison with more precision
based on local features only has to be carried out on the
survivors of the first stage.

4.2.1. Global Colour Similarity Measure. To achieve
a fast global image similarity measure between two im-
ages, we compute the same moments we used for the local
features (Eq. (1)) over the entire image. These moments
are invariant to illumination changes, i.e. offset and scal-
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ing in each colour band. The Euclidean distance between
two sets of these image colour descriptors gives a visual
dissimilarity measure between two images.

With this dissimilarity measure, we can clearly see for
instance the difference of images taken in different rooms.
Because images taken in the same room but at different
positions have approximately the same colour scheme, a
second dissimilarity measure based on local features is
needed to distinguish them.

4.2.2. Local Measure Based on Matches. First, we
search for feature matches between the two images, us-
ing the techniques described in Section 3. The dissim-
ilarity measure is taken to be inversely proportional to
the number of matches, relative to the average number of
features found in the images. Also the difference in rel-
ative configuration of the matches is taken into account.
Therefore, we first compute a global angular alignment
of the images by computing the average angle difference
of the matches. The dissimilarity measure Dm is now also
made proportional to the average angle difference of the
features after this global alignment:

Dm = 1

N
· n1 + n2

2
·
∑ |θi |

N
(3)

= (n1 + n2)
∑ |θi |

2N 2
, (4)

where N corresponds to the number of matches found, ni

the number of extracted features in image i , θi the angle
difference for one match after global alignment.

4.2.3. Combined Dissimilarity Measure. We combine
these two measures: only those pairs of images who have
a colour dissimilarity under a predefined threshold are
candidates for computing a matching dissimilarity.

This combined visual distance between two images is
related to the physical distance between the correspond-
ing viewpoints, but is certainly not a linear measure for
it. As a matter of fact, the disparity and appearance dif-
ference of features is also related to the distance of the
corresponding natural landmark to the cameras. There-
fore, in large spaces (halls, market squares), a certain
visual distance will be corresponding to a much larger
physical distance, compared to the same visual distance
between two images in a small space.

With this visual distance, the place definition problem
in Section 4.1 can be addressed on the basis of a con-
stant visual distance between places instead of a constant
physical distance.

4.3. Introduction to Dempster-Shafer Theory

The proposed topological map building algorithm re-
lies on Dempster-Shafer theory (Dempster, 1967; Shafer,

1976) to collect evidence for each loop closing hypoth-
esis. Therefore, a brief overview of the central concepts
of Dempster-Shafer theory is presented in this section.

Dempster-Shafer theory offers an alternative to tra-
ditional probabilistic theory for the mathematical repre-
sentation of uncertainty. The significant innovation of this
framework is that it makes a distinction between multiple
types of uncertainty. Unlike traditional probability theory,
Dempster-Shafer defines two types of uncertainty:

− Aleatory Uncertainty—the type of uncertainty which
results from the fact that a system can behave in ran-
dom ways (a.k.a. stochastic or objective uncertainty)

− Epistemic Uncertainty—the type of uncertainty
which results from the lack of knowledge about a
system (a.k.a. subjective uncertainty or ignorance)

This makes it a powerful technique to combine several
sources of evidence to try to prove a certain hypothesis,
where each of these sources can have a different amount
of knowledge (ignorance) about the hypothesis. That is
why Dempster-Shafer is typically used for sensor fusion.

For a certain problem, the set of mutually exclusive
possibilities, called the frame of discernment, is denoted
by �. For instance, for a single hypothesis H about an
event this becomes � = {H, ¬H}. For this set, tra-
ditional probability theory will define two probabilities
P(H ) and P(¬H ), with P(H )+ P(¬H ) = 1. Dempster-
Shafer’s analogous quantities are called basic probability
assignments or masses, which are defined on the power
set of �: 2� = {A | A ⊆ �}. The mass m : 2� → [0, 1]
is a function meeting the following conditions:

m(∅) = 0
∑
A∈2�

m(A) = 1. (5)

For a single hypothesis H , the power set becomes 2� =
{∅, {H}, {¬H}, {H, ¬H}}. A certain sensor or other in-
formation source can assign masses to each of the ele-
ments of 2�. Because some sensors do not have knowl-
edge about the event (e.g. it is out of the sensor’s field-
of-view), they can assign a certain fraction of their total
mass to m({H, ¬H}). This mass, called the ignorance,
can be interpreted as the probability mass assigned to
the outcome ‘H OR ¬H ’, i.e. when the sensor does
not know about the event, or is—to a certain degree—
uncertain about the outcome. This means also that using
this technique no prior probability function is needed, no
knowledge can be expressed as total ignorance.

Sets of masses about the same power set, coming from
different information sources can be combined together
using Dempster’s rule of combination:

m1 ⊕ m2(C) =
∑

A∩B=C m1(A)m2(B)

1 − ∑
A∩B=∅ m1(A)m2(B)

(6)
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This combination rule is useful to combine evidence com-
ing from different sources into one set of masses. Because
these masses can not be interpreted as classical probabil-
ities, no conclusions about the hypothesis can be drawn
from them directly. That is why two additional notions are
defined, support and plausibility. They are computed as:

Spt(A) =
∑
B⊆A

m(B) Pls(A) =
∑

A∩B 	=∅
m(B) (7)

These values define a confidence interval for the real
probability of an outcome: P(A) ∈ [Spt(A), Pls(A)].
Indeed, due to the vagueness implied in having non-zero
ignorance, the exact probability cannot be computed. But,
decisions can be made based on the lower and upper
bounds of this confidence interval.

4.4. Map Building Algorithm

We apply this mathematical theory on the topological
map building problem posed. Out of a series of omnidi-
rectional images, acquired at constant rate during a tour
through the environment. Firstly, these images are clus-
tered into places. Then, loop closing hypotheses are for-
mulated between visually similar places of which evi-
dence is collected using Dempster-Shafer theory. Once
decisions are made about these hypotheses, the correct
topology of the world is known.

This technique makes it possible to cope with self-
similar environments. Places that look alike but are dif-
ferent will more likely get their link hypothesis rejected.

4.4.1. Image Clustering. The dots in the sketch figure
of 6 denote places where images are taken. Because they
were taken at constant time intervals and the robot did not
drive at a constant speed, they are not evenly spread. We
perform agglomerative clustering with complete linkage
based on the combined visual distance (see Section 4.2.3)
on all the images, yielding the ellipse shaped clusters in
Fig. 6. The black line shows the exploration path as driven
by the robot.

4.4.2. Hypothesis Formulation. As can be seen in the
lower part of Fig. 6, not all image groups nicely cover one
distinct place. This is due to self-similarities, or distinct
places in the environment that are different but look alike
and thus yield a small visual distance between them.

For each of the clusters, we can define one or more
subclusters. Images within one cluster which are linked
by exploration path connections are grouped together. For
each of these subclusters a prototype image is chosen as
the medoid1 based on the visual distance, denoted as a
star in the figure.

For each pair of these subclusters within the same clus-
ter, we define a loop closing hypothesis H , which states

Figure 6. Example for the image clustering and hypothesis formu-

lation algorithms. Dots are image positions, black is exploration path,

clusters are visualised with ellipses, prototypes of (sub)clusters with a

star. Hypotheses are denoted by a dotted red line.

that if H = true, the two subclusters describe the same
physical place and must be merged together. We will use
Dempster-Shafer theory to collect evidence about each
of these hypotheses.

4.4.3. Dempster-Shafer Evidence Collection. For each
of the hypotheses defined in the previous step, a decision
must be made if it was correct or wrong. Figure 7 illus-
trates four possibilities for one hypothesis. We observe
that a hypothesis has more chance to be true if there are
more hypotheses in the neighbourhood, like in case a and
b. If no neighbouring hypotheses are present (c, d), no
more evidence can be found and no decision can be made
based on this data.

We conclude that for a certain hypothesis, a neigh-
bouring hypothesis adds evidence to it. It is clear that,
the further away this neighbour is from the hypothesis,
the less certain the given evidence is. We chose to model
this subjective uncertainty by means of the ignorance no-
tion in Dempster-Shafer theory. That is why we define
an ignorance function ξ containing the distance between
two hypotheses Ha and Hb:

ξ (Ha, Hb) =
⎧⎨⎩1 − sin

(
dH (Ha, Hb)π

2dth

)
(dH ≤ dth)

0 (dH > dth)

(8)

where dth is a distance threshold and dH (Ha, Hb) is the
sum of the distances between the two pairs of prototypes
of both hypotheses, measured in number of exploration
images.

To gather aleatory evidence, we look at the visual sim-
ilarity of both subcluster prototypes, normalised by the

Figure 7. Four topological possibilities for one hypothesis.
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standard deviation of the intra-subcluster visual similar-
ities. The visual similarity sV is the inverse of the visual
distance, defined in Eq. (3).

Each neighbouring hypothesis Hb yields the following
set of Dempster-Shafer masses, to be combined with the
masses of the hypothesis Ha itself:

m({∅}) = 0

m({Ha}) = sV (Hb)ξ (Ha, Hb)
(9)

m({¬Ha}) = (1 − sV (Hb))ξ (Ha, Hb)

m({Ha, ¬Ha}) = 1 − ξ (Ha, Hb)

Hypothesis masses are initialised with the visual similar-
ity of its subcluster prototypes and an initial ignorance
value (0.25 in our experiments), which models its influ-
enceability by neighbours.

4.5. Hypothesis Decision

After combination of each hypothesis’s mass set with
the evidence given by neighbouring hypotheses (up to a
maximum distance dth), a decision must be made if this
hypothesis was correct and thus if the subclusters must
be united into one place or not.

Unfortunately, as stated above, only positive evidence
can be collected, because we can not gather more infor-
mation about totally isolated hypotheses (like c and d in
Fig. 7). This is not too bad, because of different reasons.
Firstly, the chance for correct, but isolated hypothesis
(case c) is low in typical cases. Also, adding erroneous
loop closings (c and d) will yield an incorrect topolog-
ical map, whereas leaving them out will keep the map
useful for navigation, but a bit less complete. Of course,
new data about these places can be aqcuired later, during
navigation.

It is important to remind oneself that the computed
Dempster-Shafer masses can not directly be interpreted
as probabilities. That is why we use Eq. (7) to compute
the support and plausibility of each hypothesis after ev-
idence collection. Because these values define a confi-
dence interval for the real probability, a hypothesis can
be accepted if the lower bound (the support) is greater
than a threshold.

After this decision, a final topological map can be
built. Subclusters connected with accepted hypotheses
are merged into one place, and a new medoid is computed
as prototype of it. For hypotheses that are not accepted,
two distinct places should be constructed.

5. Localisation

When the system has learnt a topological map of an en-
vironment, this map can be used for a variety of naviga-
tional tasks, firstly localisation. For each arbitrary new

position in the known environment, the system can find
out where it is. The output of this localisation algorithm
is a location, which is—opposed to other methods like
GPS—not expressed as a metric coordinate, but as one
of the topological places defined earlier in the formerly
explained map building stage.

The training set doesn’t need to cover every imagin-
able position in the environment, in contrast to Kröse
et al. (2003). A relatively sparse coverage is sufficient to
localise every possible position. That is because the im-
age comparison method we developed is based on wide
baseline techniques and hence can recognise scene items
from substantially different viewpoints.

Actually, two localisation modes exist. When starting
up the system, there is no a priori information on the lo-
cation. Every location is equally probable. This is called
global localisation, alias the kidnapped robot problem.
Traditionally, this is known to be a hard problem in robot
localisation. In contrast, if there is knowledge about a
former localisation not too long ago, the locations in the
proximity of that former location have a higher proba-
bility than others further away. This is called location
updating.

We propose a system that is able to cope with both
localisation modes. A probabilistic approach is taken.
Instead of making a hard decision about the location, a
probability value is given to each location at each time
instant. The Bayesian approach we follow is explained
in the next subsection.

5.1. Bayesian Filtering

Define x ∈ X a place of the topological map. Z is the
collection of all omnidirectional images z, so that z(x)
corresponds to the training observation at place x . At a
certain time instant t , the system acquires a new image
zt . The goal of the localisation algorithm is to reveal the
place xt where this image was taken.

We define the Belief function Bel(x, t) as the prob-
ability of being at place x at time t , given all previous
observations. So,

Bel(x, t) = P(xt | zt , zt−1, . . . , z0), (10)

for all x ∈ X . In the kidnapped robot case, there is no
knowledge about previous observations hence Bel(x, t0)
is initialised equal for all x .

Using Bayes’ rule, we find:

Bel(x, t)= P(zt | xt , zt−1, . . . , z0)P(xt | zt−1, . . . , z0)

P(zt | zt−1, . . . , z0)
.

(11)

Because the denominator of this fraction is not de-
pendent on x , we replace it by the normalising constant



Omnidirectional Vision Based Topological Navigation 229

η. If we know the current location of the system, we
assume that future locations do not depend on past lo-
cations. This property is called the Markov Assumption:
P(zt | xt , zt−1, . . . , z0) = P(zt |xt ). Using it, together
with the probabilistic sum rule, Eq. (11) yields:

Bel(x, t) = η P(zt |xt )
∑

xt−1∈X

[P(xt |xt−1)Bel(x, t − 1)]

(12)

This allows us to calculate the belief recursively based
on two variables: the next state density or motion model
P(xt | xt−1) and the sensor model P(zt | xt ).

5.2. Motion Model

The motion model P(xt | xt−1) explicits the probability
of a transition from one place xt−1 to another xt . Is seems
logical to assume that a transition in the time instant (t −
1) → t between places that are far from each other is
less probable than between places close to each other.
We model this effect with a Gaussian:

P(xt | xt−1) = 1

βx
e−dist(xt−1,xt )/σx

2

. (13)

In this equation, the function dist(x1, x2) corresponds to
a measurement of the distance between the two places.
We approximate it as the minimum number of place tran-
sitions needed to go from x1 to x2 on the topological map,
computed with the Dijkstra algorithm (Dijkstra, 1959).
In Eq. (13), βx is a normalisation constant, and σx

2 is
the variance of the distances, measured on the map data.
Once the topological map is known, the complete mo-
tion model can be computed off-line for usage during
localisation.

5.3. Sensor Model

The entity P(zt | xt ), called the sensor model, is the prob-
ability of acquiring a certain observation zt if the location
xt is known. This is related to the visual dissimilarity of
that observation zt and the training observation z(xt ) at
location xt . The probability of acquiring an image at a
certain place that differs much from the training image
taken at that place has a low probability. We model this
sensor model also by a Gaussian:

P(zt | xt ) = 1

βz
e−diss(zt ,z(xt ))/σz . (14)

This time, the function diss(z1, z2) refers to the visual
dissimilarity explained in Section 4.2.3. σz is the stan-
dard deviation of it, measured on the data (or for large
maps a local subset of the data) and βz is a normalisation
constant.

Unlike the motion model, the sensor model cannot be
computed beforehand. It depends on the newly incoming
query image data. Every location update step the visual
dissimilarities of the query image with many database
images must be computed. This validates our efforts to
make the computation of the visual dissimilarity measure
as fast as possible.

6. Path Planning

With the method of the previous section, at each time
instant the most probable location of the robot can be
found, from which a path to a goal can be determined.
How the user of the system, for instance the wheelchair
patient, gives the instruction to go towards a certain goal
is highly dependent on the situation. For every disabled
person, for instance, an individual interface must be de-
signed adapted to his/her possibilities.

We assume a certain goal is expressed as a certain
place of the topological map, e.g. as a voice command
�Kitchen!�. From the present pose, computed by the
localisation algorithm, a path can be easily found towards
it using Dijkstra’s algorithm (Dijkstra, 1959). This path
is expressed as a series of topological places which are
traversed.

7. Visual Servoing

The algorithm described in this section makes the robot
move along a path, computed by the previous section.
Such a path is given as a sparse set of prototype images
of places. The physical distance between two consecutive
path images is variable (1 to 5 metres in our tests), but
the visual distance is constant, such that there are enough
local feature matches as needed by this algorithm.

It is easy to see that following such a sparse visual path
boils down to a succession of visual homing operations.
First, the robot is driven towards the place where the
first image on the path is taken. When arrived, it is driven
towards the next path image, and so on. Because a smooth
path is desired for the application, the motion must be
continuous without stops at path image positions.

We tackle this problem by estimating locally the spa-
tial structure of the wide baseline features using epipolar
geometry. Hence, at this point we bring in some 3D in-
formation. This may seem at odds with our topological
approach, but the depth maps are very sparse and only
calculated locally so that errors are kept local, don’t suffer
from error build-up, and are efficient to compute.

Figure 8 offers an overview of the proposed method.
Each of the visual homing operations is performed in
two phases, an initialisation phase (Section 7.1) and an
iterated motion (Section 7.2) phase.
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Figure 8. Flowchart of the proposed algorithm for visual servoing

along a path.

7.1. Initialisation Phase

From each position within the reach of the next path im-
age (the target image), a visual homing procedure can be
started. Our approach first establishes wide baseline lo-
cal feature correspondences between the present and the
target image, as described in Section 3. That information
is used to compute the epipolar geometry, which enables
us to construct a local map containing the feature world
positions, and to compute the initial homing vector.

7.1.1. Epipolar Geometry Estimation. Our calibrated
single-viewpoint omnidirectional camera is composed of
a hyperbolic mirror and a perspective camera. As imaging
model, we use the model proposed by Svoboda et al.
(1998) (which is less general, but less complicated than
the one by Geyer and Daniilidis (2003)). This enables the
computation of the epipolar geometry based on 8 point
correspondences. In Svoboda, Svoboda describes a way
to robustly estimate the essential matrix E , when there are
outliers in the correspondence set. The essential matrix
is the equivalent of the fundamental matrix in the case of
known internal camera calibration, F = K −T E K −1.

Svoboda’s so-called generate-and-select algorithm to
estimate E is based on repeatedly solving an overdeter-
mined system built from the correspondences that have
a low ‘outlierness’ and evaluating the quality measure of
the resulting essential matrix. Because our tests with this
method did not yield satisfactory results, we implemented
an alternative method based on the well-known Ran-
dom Sample Consensus (RANSAC (Fischler and Bolles,
1981)) paradigm.

The set-up is sketched in Fig. 9. One visual feature with
world coordinates X is projected via point u on the first
mirror to point p in the image plane of the first camera.
In the second camera, the mirror point is called v and the
image plane point q. For each of the correspondences,

Figure 9. Projection model for a pair of omnidirectional images.

the mirror points u and v can be computed as

u = F(K −1p)K −1p + tC , (15)

with tC = [0, 0, −2e]T and

F(x) = b2(ex1 + a‖x‖)

b2x2
1 − a2x2

2 − a2x2
3

. (16)

In these equations K is the internal calibration matrix
of the camera, and a, b and e are the parameters of the
hyperbolic mirror, with e = √

a2 + b2.
If E is the essential matrix, for all correspondences

vT Eu = 0. This yields for each correspondence pair one
linear equation in the coefficients of E = [ei j ].

For each random sample of 8 correspondences, an E
matrix can be calculated. This is repeatedly done and
for each E matrix candidate the inliers are counted. A
correspondence is regarded an inlier if the second image
point q lies within a predefined distance from the epipolar
ellipse, defined by the first image point q. This epipolar
ellipse B with equation xT Bx = 0 is computed with B =⎡⎢⎣−4t2a2e2 + r 2b4 rsb4 r tb2(−2e2 + b2)

rsb4 −4t2a2e2 + s2b4 stb2(−2e2 + b2)

r tb2(−2e2 + b2) stb2(−2e2 + b2) t2b4

⎤⎥⎦
(17)

and [r, s, t] = Eu = E(F(K −1p)K −1p + tC ). Fortu-
nately, this ellipse becomes a circle when the motion is
in one plane, so that the distance from a point to this shape
is easy to compute.

From the one essential matrix E with the maximal
number of inliers the motion between the cameras can
be computed using the SVD based method proposed by
Hartley (1992). If more than one E-matrix is found with
the same maximum number of inliers, the one is chosen
with the best (i.e. smallest) quality measure qE = σ1−σ2,
where σi is the i th singular value of the matrix E .

Out of this relative camera motion, a first estimate of
the homing vector is derived. During the motion phase
this homing vector is refined.
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Figure 10. A map of the test environment with image positions (• for

a database image and × for a test image) and some of the images.

Figure 11. Topological loop closing: accepted hypotheses are shown

in thick black lines, rejected in dashed thin black lines.

7.1.2. Local Feature Map Estimation. In order to start
up the succession of tracking iterations, an estimate of
the local map must be made. In our approach the local
feature map contains the 3D world positions of the visual
features, centred at the starting position of the visual hom-
ing operation. These 3D positions are easily computed by
triangulation.

We only use two images, the first and the target
image, for this triangulation. This has two reasons.
Firstly, these two have the widest baseline and there-
fore triangulation is best conditioned. Our wide base-
line matches between these two images are also more

Figure 12. The resulting topological map: locations of the place pro-

totypes with interconnections.

plentiful and less influenced by noise than the tracked
features.

7.2. Motion Phase

Then, the robot is put into motion in the direction of
the homing vector and an image sequence is recorded.
We rely on lower-level collision detection, obstacle
avoidance and trajectory planning algorithms to drive
safely (Demeester et al., 2003; Nuttin et al., 2003). In
each new incoming image the visual features are tracked.
Robustness to tracking errors (caused by e.g. occlusions)
is achieved by reprojecting lost features from their 3D
positions back into the image. These tracking results en-
able the calculation of the present location and from that
the homing vector towards which the robot is steered.

When the (relative) distance to the target is small
enough, the entire homing procedure is repeated with
the next image on the sparse visual path as target. If the
path ends, the robot is stopped at a position close to the
position where the last path image was taken. This yields
a smooth trajectory along a sparsely defined visual path.

7.2.1. Feature Tracking. The corresponding features
found between the first image and the target image in
the previous step, also have to be found in the incoming
images during driving. This can be done very reliably
performing every time wide baseline matching with the
first or target image, or both. Although our methods are
relatively fast this is still too time-consuming for a driving
robot.

Because the incoming images are part of a smooth
continuous sequence, a better solution is tracking. In the
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Figure 13. Three belief update cycles in a typical localisation ex-

periment. The black × denotes the location of the new image. Place

prototypes with a higher belief value are visualised as larger black cir-

cles.

image sequence, visual features move only a little from
one image to the next, which enables to find the new
feature position in a small search space.

Figure 14. Results of the initialisation phase. Top row: target, bottom row: start. From left to right, the robot position, omnidirectional image, visual

correspondences and epipolar geometry are shown.

A widely used tracker is the KLT tracker of Kanade
Lucas, Shi and Tomasi (1994). KLT starts by identifying
interest points (corners), which then are tracked in a series
of images. The basic principle of KLT is that the definition
of corners to be tracked is exactly the one that guarantees
optimal tracking. A point is selected if the matrix[

g2
x gx gy

gx gy g2
y

]
, (18)

containing the partial derivatives gx and gy of the image
intensity function over an N × N neighbourhood, has
large eigenvalues. Tracking is then based on a Newton-
Raphson style minimisation procedure using a purely
translational model. This algorithm works surprisingly
fast: we were able to track 100 feature points at 10 frames
per second in 320 × 240 images on a 1 GHz laptop.

Because the well trackable points are not necessar-
ily coinciding with the anchor points of the wide base-
line features to be tracked, the best trackable point in a
small window around such an anchor point is selected.
In the assumption of local planarity we can always find
back the corresponding point in the target image via the
relative reference system offered by the wide baseline
feature.

7.2.2. Recovering Lost Features. The main advantage
of working with this calibrated system is that we can re-
cover features that were lost during tracking. This avoids
the problem of losing all features by the end of the hom-
ing manoeuvre, a weakness of our previous approach
(Goedemé et al., 2005). This feature recovery technique
is inspired by the work of Davison (2003), but is faster
because we do not work with probability ellipses.
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Figure 15. Homing vectors from 1-meter-grid positions and some of

the images.

In the initialisation phase, all features are described by
a local intensity histogram, so that they can be recognised
after being lost during tracking. Each time a feature is
successfully tracked, this histogram is updated.

When tracking, some features are lost due to invisi-
bility because of e.g. occlusion. Because our local map
contains the 3D positions of each feature, and the last
robot position in that map is known, we can reproject the
3D feature in the image. Svoboda shows that the world
point XC (i.e. the point X expressed in the camera refer-
ence frame) is projected on point p in the image:

p = K

2e
(λXC − tC ), (19)

wherein λ is the largest solution of

λ = b2(−e)XC 3 ± a‖XC‖
b2XC

2
3 − a2XC

2
1 − a2XC

2
2

. (20)

Based on the histogram descriptor, all trackable fea-
tures in a window around the reprojected point p are
compared to the original feature. When the histogram
distance is under a fixed threshold, the feature is found
back and tracked further in the next steps.

7.2.3. Motion Computation. When in a new image the
feature positions are computed by tracking or backpro-
jection, the camera position (and thus the robot position)
in the general coordinate system can be found based on
these measurements.

It is shown that the position of a camera can be com-
puted when for three points the 3D positions and the
image coordinates are known. This problem is know as
the three point perspective pose estimation problem. An
overview of the proposed algorithms to solve it is given by
Haralick et al. (1994). We chose the method of Grunert,
and adapted it for our omnidirectional case.

Also in this part of the algorithm we use RANSAC to
obtain a robust estimation of the camera position. Repeat-
edly the inliers belonging to the motion computed on a
three-point sample are counted, and the motion with the
greatest number of inliers is kept.

7.2.4. Robot Motion. In Section 7.1.1, it is explained
how the position and orientation of the target can be ex-
tracted from the computed epipolar geometry. Together
with the present pose results of the last subsection, a
homing vector can easily be computed. This command is
communicated to the locomotion subsystem. When the
homing is towards the last image in a path, also the rel-
ative distance and the target orientation w.r.t. the present
orientation is given, so that the locomotion subsystem
can steer the robot to stop at the desired position. This is
needed for e.g. docking at a table.

8. Experiments

8.1. Test Platform

We have implemented the proposed algorithm, using our
modified electric wheelchair ‘Sharioto’. A picture of it
is shown in the left of Fig. 1. It is a standard elec-
tric wheelchair that has been equipped with an omni-
directional vision sensor (consisting of a Sony firewire
colour camera and a Neovision hyperbolic mirror, right
in Fig. 1). The image processing is performed on a 1
GHz laptop. As additional sensors for obstacle detection,
16 ultrasound sensors and a Lidar are added. A second
laptop with a 840 MHz processor reads these sensors,
receives visual homing vector commands, computes the
necessary manoeuvres, and drives the motors via a CAN-
bus. More information on this platform can also be found
in Nuttin et al. (2001) and Demeester et al. (2003).

8.2. Map Building

The wheelchair was guided around in a large environ-
ment, while taking images. The environment was a large
part of our office floor, containing both indoor and out-
door locations. This experiment yielded a database of 545
colour images with a resolution of 320 × 240 pixels. The
total distance travelled was approximately 450 m. Dur-
ing a second run 123 images were recorded to test the
localisation. A map and some of these images are shown
in Fig. 10.

After place clustering with a fixed place size thresh-
old (in our experiments 0.5), this resulted in a set of 53
clusters. Using the Dempster-Shafer based evidence col-
lection, 6 of 41 link hypotheses were rejected, as shown
in Fig. 11. Figure 12 shows the resulting 59 place proto-
types along with the accepted interconnections.
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Figure 16. Three snapshots during the motion phase: in the beginning (left), half (centre) and at the end (right) of the homing motion. The first row

shows the external camera image with tracked robot position. The second row shows the computed world robot positions [cm]. The third row shows

the colour-coded feature tracks. The bottom row shows the sparse 3D feature map (encircled features are not lost).

Instead of keeping all the images in memory, the
database is now reduced to only the descriptor sets of
each prototype image. In our experiment, the memory
needed for the database was reduced from 275 MB to
1.68 MB.

8.3. Localisation

From this map, the motion model is computed offline as
explained in Section 5.2. Now, for the separate test set,
the accuracy of the localisation algorithm is tested. A

typical experiment is illustrated in Fig. 13.
In total, for 78% of the trials the maximum of the be-

lief function was located at the closest place at the first
iteration, after the second and third belief update this per-
centage raised to 89% and 97%.

8.4. Visual Servoing

8.4.1. Initialisation Phase. During the initialisation
phase of one visual homing step, correspondences be-
tween the present and target image are found and the
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epipolar geometry is computed. This is shown in Fig. 14.
To test the correctness of the initial homing vector, we

took images with the robot positioned at a grid with a cell
size of 1 meter. The resulting homing vectors towards one
of these images (taken at (6, 3)) are shown in Fig. 15. This
proves the fact that even if the images are situated more
than 6 metres apart the algorithm works thanks to the use
of wide baseline correspondences.

8.4.2. Motion Phase. We present a typical experiment
in Fig. 16. During the motion, the top of the camera sys-
tem was tracked in a video sequence from a fixed camera.
This video sequence, along with the homography com-
puted from some images taken with the robot at reference
positions, permits calculation of metrical robot position
ground truth data.

Repeated similar experiments showed an average hom-
ing accuracy of 11 cm, with a standard deviation of 5 cm,
after a homing distance of around 3 m.

8.4.3. Timing Results. The algorithm runs surprisingly
fast on the rather slow hardware we used: the initialisa-
tion for a new target lasts only 958 ms, while afterwards
every 387 ms a new homing vector is computed. For a
wheelchair driving at a cautious speed, it is possible to
keep on driving while initialising a new target. This re-
sulted in a smooth trajectory without stops or sudden
velocity changes.

9. Conclusion

This paper describes and demonstrates a novel approach
for a service robot to navigate autonomously in a large,
natural complex environment. The only sensor is an om-
nidirectional colour camera. As environment represen-
tation, a topological map is chosen. This is more flexi-
ble and less memory demanding than metric 3D maps.
Moreover, it does not show error build-up and enables
fast path planning. As natural landmarks, we use two
kinds of fast wide baseline features which we developed
and adapted for this task. Because these features can be
recognised even if the viewpoint is substantially differ-
ent, a limited number of images suffice to describe a large
environment.

Experiments show that our system is able to build
autonomously a map of a natural environment it drives
through. The localisation ability, with and without knowl-
edge of previous locations, is demonstrated. With this
map, a path towards each desired location can be com-
puted efficiently. Experiments with a robotic wheelchair
show the feasibility of executing such a path as a succes-
sion of visual servoing steps.
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