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Abstract. Fast-paced dynamic environments like robot soccer require
highly responsive and dynamic locomotion. We present an implementa-
tion of an omnidirectional ZMP-based walk engine for the Nao robot.
Using a simple inverted pendulum model, a preview controller generates
dynamically balanced center of mass trajectories. To enable path plan-
ning, we introduce a system of global and egocentric coordinate frames
to define step placement. These coordinate frames allow translation of
the CoM trajectory, given by the preview controller, into leg actions.
Walk direction can be changed quickly to suit a dynamic environment
by adjusting the future step pattern.

1 Introduction

Robust locomotion is crucial to effective soccer play. Successful soccer players
must be able to move to the ball quickly, change direction smoothly, and with-
stand physical interference from opponents. While concepts like omnidirectional
walking, Zero Moment Point (ZMP) and constructs like preview control have
been explored extensively in the biped walking literature [1,5,4], these discus-
sions often gloss over the realities of implementation. Particularly, these results
are often based on simulated experiments, or do not provide the detailed work-
ings of the walk engine. In addition, a system for omnidirectional walking using
ZMP and preview control has yet to be presented. This article presents a suc-
cessful implementation of an omnidirectional walk engine on the Nao robot used
in the Standard Platform league.

Iy x

Fig. 1. A sample omnidirectional footstep pattern generated from a constant motion
vector (x, y, θ) that in this case, has both a forward and rotational component
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1.1 Overview

Omnidirectional walking is crucial in soccer, since a soccer player is constantly
changing her objective in a quickly changing environment. Other methods, such
as the capability to walk in preset directions which ships with the Nao robot, are
not adequate for playing soccer because they do not allow fine-grained control
over the direction of motion. The preset trajectories can walk straight, to the
side, or turn but cannot combine the three.

Our walk is omnidirectional because we have the capability to place footsteps
in any position and orientation: given a desired direction of motion, each suc-
cessive step is placed along this direction (Figure 1). Given a pattern of steps,
a preview controller can use the ZMP balance criterion (discussed in sections
3 and 4) to generate a motion of the center of mass which maintains dynamic
balance during the execution of the footsteps [5]. Finally, using the locations of
the footsteps and the center of mass trajectory, the motions of the legs can be
calculated using inverse kinematics.

ZMP-based approaches to walking that consider the full dynamics of the robot
traditionally rely on pre-calculated trajectories and are thus ill-suited for dy-
namic environments such as robot soccer. Alternatively, dynamically balanced
walking patterns can be created at runtime using a simplified model and a pre-
view controller. The preview controller generates valid Center of Mass (CoM)
trajectories by examining future foot steps, so motion velocity cannot be changed
instantaneously. A certain degree of previewing is absolutely necessary for walk-
ing, since it is impossible to change walking vectors instantaneously without
falling over. The duration of the preview controller’s look ahead determines ex-
plicitly which future steps can be safely replaced or updated when the motion
vector changes. This allows a quick response to changes in the environment
without compromising the robustness of the walk.

What follows is a discussion of each of the components of the walk engine,
starting with an overview of step placement, followed by a description of the
implementation of a preview controller using the ZMP balance metric, finishing
with a discussion of our inverse kinematics system. A schematic overview of the
system is shown in Figure 2.

2 Omnidirectional Step Placement

The implementation of an omnidirectional walking system is non-trivial. Trans-
lating a series of steps to joint angles requires many layers of abstraction in order
to build a well designed system. The central parts of this abstraction are the four
homogeneous coordinate frames which we define to allow each part of the system
to be expressed in the simplest possible terms (See Table 1, Figure 3 and the
following sections for details). The coordinate frames allow step planning, step
execution and leg control to be expressed in their natural frame of reference.
This ensures that the system stays manageable because each component only
acts on a limited amount of information anchored to its appropriate coordinate
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Fig. 2. An overview of the motion architecture. A switchboard manages many modules
seeking to provide motion functionality. The walk provider provides the robot with
walking capability, while the scripted provider enables execution of scripted motions.
The four main components of the walk provider correspond with the four coordinate
frames discussed in section 2.

frame. Since each coordinate frame corresponds directly to one of the compo-
nents of the implementation (see Figure 2), we list the corresponding part of
the architecture in brackets in the section headings for the relevant coordinate
frame below.

To translate between each coordinate frame, we maintain some transformation
matrices which can be applied to move motion trajectories from one coordinate
frame to the next (See Appendix A for details). Although matrix multiplication
can incur a heavy computational load, they reduce human error and improve
maintainability by reducing the complexity of the system. In addition, the ma-
trices are small (3x3), and many are updated only once every walking step – only
one matrix must be updated each time step. One alternative to our approach
would be to specify the entire walking motion of each leg as a locus relative
to the body’s CoM. This removes the need for many matrix translations, but
the process of integrating the controller is no longer well defined. Additionally,
under such a model, omnidirectional walking is very complex. The small over-
head potentially incurred by the coordinate transformations is worth avoiding
the complexity needed to design the system another way.

2.1 Steps in the S Frame [StepGenerator]

During the walking process, irrelevant steps are discarded and new steps must
be planned in the future (as required by the preview controller). Each successive
step is generated from the currently desired walk vector in the S frame as shown
in Figure 4. The S frame is always offset by HO towards the CoM from the F
frame (See Table 1). Defining steps in this manner allows step planning without
needing to consider any history of steps. After each step, the S frame moves to
the inside of the next support step, so it is easy to chain multiple steps together.
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Fig. 3. The various coordinate frames are shown in single support mode while the right
leg is supporting and the left leg is swinging from its source to its destination. The
support foot is always anchored at F. The previous F coordinate frame is F’, and the
next one will be F* once the swinging leg arrives at its destination and becomes the
next supporting foot. The I coordinate frame is located at the initial starting position
of the robot, and does not depend on the footsteps shown above.

Table 1. The four coordinate frames necessary for specifying step placement and leg
movements of the robot. HO is the 50 mm horizontal offset between the CoM and the
hip joint. Some of the frames move with the robot and must be updated at various
intervals.

Coordinate Frame Anchor Updated

C (Center of Mass) CoM Every motion time step

F (Foot) Support Foot When switching from single to double support

S (Step) F ±HO When switching from single to double support

I (Initial) World Never

2.2 CoM Trajectories in the I Frame [Controller]

Using the steps defined in the S frame, the preview controller can calculate the
optimal CoM posture which will keep the robot balanced. Since the controller
operates in the I coordinate frame, we maintain a transformation matrix from
the current S frame to the I frame that gets updated each time a new future
step is created.1 A more detailed discussion of the controller is in section 4.1.

1 The controller runs in a static coordinate frame because if the coordinate frame of
the controller were to move with the robot (like the F frame, for example), each of
the previewed ZMP values would need to get translated as well, which is expensive.
Instead the cost is only that of updating a matrix once per step. The only danger
is overflowing the float type, but this will only happen after 500m of walking in a
single direction, which is not possible on a soccer field.
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Fig. 4. An additional step being added using a motion vector (x̂, ŷ, θ̂)

2.3 Leg Trajectories in the F Frame [WalkingLeg]

Trajectories for each leg can be expressed simply in the F frame. Since the F
coordinate frame is anchored to the support foot, it provides a consistent frame
of reference to define the motion of both legs regardless of how many steps have
already been taken. In the F frame the support foot’s position always remains at
the origin by definition. For the other (swinging) leg, the motion is interpolated
between the swinging source and the swinging destination (See Figure 3.) We
use a cycloid function to generate a smooth stepping motion which has zero
velocity when the foot begins to lift and when it arrives at the destination
(inspired by the walk Aldebaran Robotics ships with the robots [7]). In order to
eventually specify the motion of the legs in the C frame, we maintain a second
transformation matrix from I to F, which is updated at the beginning of each
new walking cycle.

2.4 Leg Trajectories in the C Frame [Inverse Kinematics]

Once the leg trajectories are known in the F coordinate frame, they are translated
into the C coordinate frame with another transformation matrix. Since the CoM
is always moving, this matrix is recalculated each time step from the I to F
transformation matrix and the current position and rotation of the CoM in
the F frame. The position is easily obtainable from the controller - the current
rotation is stored as the robot rotates the support foot relative to the CoM.
Targets for the legs can be translated from the C frame into joints using inverse
kinematics and the body height zh (see sections 3 and 4.3).

2.5 Turning

Planning the turning motion on the Nao robot is more complex than on a stan-
dard humanoid because each hip does not have 3 linearly independent actuators
[7]. Each hip has a pitch (Y-axis) and roll (X-axis) actuator, but both hips share
in common a transverse yaw-pitch (ZY-axis) actuator. Without this extra joint,
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turning is impossible, since the legs are unable to rotate around the Z axis with
respect to the body.

To achieve turning, we manually control the hip-yaw actuator to rotate the
swinging leg open with respect to the support foot during one step, and then
close it again on the next step. By alternating these types of steps, we can induce
a good turning motion during a sequence of steps (see Figure 4). Using inverse
kinematics, we are able to compensate for the Y-axis hip rotation introduced by
employing the yaw-pitch actuator (see Section 4.3).

3 Modeling the Dynamics of the Robot

Given a series of steps, our goal is to specify a trajectory for the CoM which will
allow the robot to remain upright and balanced. A good criterion for determining
whether a robot will fall is the Zero Moment Point, which is widely used in biped
walking [10,5,4]. To simplify the calculation of the ZMP, we follow [5] to simplify
the dynamics of the robot by modeling it as an inverted pendulum with the entire
mass of the robot concentrated at the CoM.

3.1 The Zero Moment Point

The Zero Moment Point (ZMP), is the point on the support polygon of the
robot where the moments acting on the robot are balanced by an opposing
moment from the ground [10]. When this point exists (i.e. it is inside the support
polygon), then the robot will not rotate about the edges of the foot and will
remain upright. Given a pattern of steps, we are thus interested in defining the
motion of the robot such that the ZMP always remains near the center of the
robot’s supporting foot during single support. In double support, when both feet
are in contact with the ground, our aim is to quickly pass the ZMP to the other
foot.

3.2 Cart Table/Inverted Pendulum Model

Calculating the ZMP of the robot using its full dynamics is computationally
intensive and not suitable for online computation. Instead, we simplify the model
of the robot as an inverted pendulum [5].

This model allows the ZMP in one dimension to be calculated easily from the
position and acceleration of the center of mass of the robot:

p = x − zh

g
ẍ (1)

Where x is the position of the CoM, ẍ is its acceleration, zh is the constant
height of the CoM from the ground, and g is 9.81, the magnitude of gravity.

This simplification has obvious drawbacks, since it does not account for the
complete dynamics of the robot. However, these simplifications can be dealt with
in the controller by incorporating sensor feedback, as in [4] – see Section 5.
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4 Controlling the Dynamics of the Robot

In the previous section, we discussed how to model the robot in order to use the
ZMP as a balance metric. Though this model allows us to discover if a certain
movement will maintain the robot’s dynamic balance, it will not allow us to
calculate motions which are inherently balanced. In fact, what we need is an
inverse to the ZMP equation above, which is not symbolically obtainable [5]. To
calculate the inverse numerically, we can use a preview controller which is able
to generate motions which result in a specified ZMP trajectory.

4.1 Preview Control

Kajita proposes to solve the inverse by casting the problem as a servo control
problem using preview control [5]. A preview controller acts on a ZMP reference
function pref (k), which defines the location of the desired ZMP at time kΔt,
where Δt is the duration of a motion time step. pref (k) is determined by ensuring
the ZMP remains over the support foot during a series of steps (see section 4.2).
The state of the robot is modeled in one dimension using its position, velocity
and ZMP as [x, ẋ, p]t. The controller works to converge p, from the state vector,
with pref given by the reference function. Given proper preview values, two
controllers can work in parallel to generate the states needed to follow the 2-
dimensional reference ZMP necessary for walking. This is effectively an inverse
to the ZMP equation, (1). One controller in the lateral direction is shown in
Figure 5.

The preview control state update is given by

x(k + 1) =Ax(k) + bu(k) (2)
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Where the optimal system control is given as:

u(k) =
N∑

j=1

Gd(j)pref (k + j) (3)

Where N is the number of previewed time steps. A is the state matrix, Gd(j)
is the preview gain function, and b is a constant vector. The optimal values for
these are defined in [5,4,6,9]. The process for numerically obtaining them relies
on an off-line numerical computing environment such as Matlab or Scilab. We
believe the following additional references would be useful in this pursuit [9,2].

4.2 Computing ZMP Reference from Steps

A crucial part of the preview controller is previewing the reference ZMP in the
future. In order to generate the reference ZMP, we turn each desired step into a
sequence of reference ZMP values. As mentioned in section 3.1, when the robot is
in single support, we desire the ZMP to rest in the center of the foot - when the
robot is in double support, we want to quickly pass the ZMP to the next foot,
before beginning to lift the new swinging leg. Though [4] uses a Bézier curve
to have a smooth reference ZMP passing between support feet during double
support, we have found that a simple linear interpolation from one foot to the
next is sufficient, since the controller naturally smoothes the state transitions.
The preview values are initially expressed in the S frame since they are generated
from steps, but are then translated into the I frame for use in the controller. To
facilitate this, we maintain another transformation matrix which is updated each
time a future step is generated.

4.3 Kinematics

The final component of controlling the robot is translating leg trajectories from
the C frame into joint angles which can be sent to the actuators. This process is
called inverse kinematics, but is often used implicitly in the literature with little
or no explanation. The method we use is iterative. That is, an initial solution is
improved by perturbing the joint angles until the error between the goal (x, y, z)
of the end-effector and its current position, which is calculated through forward
kinematics, is minimized. The initial solution is the current joint angles of the
robot. This is convenient because the net change between subsequent goals of
the end-effector during walking is very small.

Let J be the joint space and R
3 be the 3D space. Then we can define for-

ward kinematics as a function f : J → R
3 which takes a set of joint angles

θ = (a1, a2, . . . , a6) to the position of the end-effector in space (x, y, z). This
function would normally be defined using a set of linear transformations defined
by the modified Denavit Hartenberg convention [8]. We used Mathematica to
symbolically perform the matrix algebra for forward kinematics for a generic set
of joint angles. Evaluating the resultant expression at a θ is significantly faster
than performing the matrix algebra that would otherwise be necessary.
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In order to minimize the number of iterations in the algorithm, we follow
the path of largest decrease in the error. First we define a vector e = t − s
where t is the target and s is the current position of the end-effector. e is
then the desired direction in R

3. What we need is the desired direction in J . A
Jacobian matrix, denoted by M , helps us accomplish this change of variables.
Each partial derivative in M is evaluated at the current iteration’s θ. x, y and
z are the components of the output of f and can be viewed as functions of θ as
well. These partial derivatives were computed symbolically using Mathematica.
Only their evaluation is performed online. We then have an expression ready for
the calculation of Δθ which is the desired amount of perturbation in each joint
value.

Δθ = (M tM + λ2I)−1J te (4)

λ is a dampening factor which increases the number of iterations required for
the algorithm to converge but increases numeric stability. Δθ is clipped because
it only provides a direction, not a magnitude. Thus, the final part of the al-
gorithm is deciding how long it should follow this direction in this iteration.
Our implementation of this algorithm uses λ = 0.4 and maxΔθ = 0.5 radians.
These were chosen through trial and error be selecting for quick convergence.
The latter is used as a maximum for each component of Δθ. We can perform
tens of thousands of calls to inverse kinematics in a second, so it does not present
a significant efficiency bottleneck. For balanced walking, we also impose a sec-
ond condition that the foot remain parallel to the ground. We accomplish this
by splitting the leg chain into two end-effectors: the ankle and the heel, each
with its separate goal. The algorithm achieves high levels of both accuracy and
precision. A more detailed presentation of this approach is presented here [3].

As discussed in Section 2.5 dealing with the peculiar kinematics of the Nao
robot is necessary to achieve turning motion. Since the addition of the yaw-pitch
actuator as a variable to the inverse kinematics algorithm greatly increases the
number of possible joint combinations for any given (x, y, z) end effector target,
we hold the yaw-pitch joint constant during the iterations. This allows explicitly
setting that actuator as required by the turning algorithm, but also results in
more regular movements of the legs, since the algorithm keeps the thigh and
shin generally aligned to the ground.

4.4 From Theory to Practice

A crucial part of our implementation was bridging the gap from theory to prac-
tice. Imperfections such as asymmetry in the robot’s joints can cause us to fall.
To compensate for this we introduced some adjustments in addition to the core
parameters of the walking engine. The most important adjustment we made was
inspired by the walk Aldebaran ships with the robots. The actuators struggle
to give enough power to the hip joints in order to lift the swinging leg from
the ground. To compensate for this, we gradually add a sinusoidal offset to each
individual hip-roll (hip lateral swing) joint during the swinging phase. Since
the offset is distinct for each hip, this provides considerable help in offsetting
asymmetries in the robots, which may have slightly stronger left or right legs.
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In addition, extreme values of this adjustment can be used to lift the feet
from the ground. By lifting from the hips, the robot does not build up downward
momentum with its feet as it steps down, and thus experiences a much smoother
gait.

Another offset we introduced helped balance the robot by moving the reference
ZMP laterally away from the inside of the foot, inducing a greater hip swing.
This helps to compensate for the simplicity of the inverted pendulum model.

The final breakthrough we had was to dramatically reduce the duration of
the steps, as well as to reduce the portion of the step spent in double support.
By doing this, the robot was able to balance better and move faster because the
magnitude of the hip swing was reduced.

5 Results

Using our system of coordinate frames coupled with preview control, we are
currently able to achieve maximum forward walking speeds of 10.5 cm/s, which is
comparable to the maximum walk speed of the Aldebaran walk engine. However,
at such speeds, the robot is not very stable. In practice, we prefer a gait which
has a maximum speed of 7 cm/s, with a step frequency of 1Hz, which is much
less prone to falling, even during large changes in the motion vector.

We have also been able to extend the preview controller with an observer as
described in [4]. However, estimating the sensor ZMP from the accelerometers
while minimizing the lag time is non-trivial. In practice, using an observer in-
formed by lagging, noisy sensor values adds instability to the walk even while
visibly controlling larger disturbances. This trade-off makes the closed loop con-
troller perform mostly on par with the open loop one. Further refinement of
sensor based state estimation is being actively researched.

Videos of our implementation can be found on our team’s blog2.
The code implementation of our system, written in C++ using Boost, is pub-

licly accessible under the LGPL using using git3. However, as of this writing,
no stable release candidate has yet been designated.

6 Conclusion

Since humanoid robots are best suited to coexist with humans, there is an in-
creasing emphasis on humanoid robots. In RoboCup, this reflects the desire to
compete on even terms with humans. A critical part of that competition will rely
on developing motion engines which are at least as quick and agile as humans
are. Among the necessary advances are developing motion systems capable of
executing omnidirectional motion in real time. This paper provides an imple-
mentation of omnidirectional walking which will serve to help those who are
arriving in this field for the first time. Furthermore, it attempts to fill in some
2 http://robocup.bowdoin.edu/blog
3 http://github.com/northern-bites/nao-man.git

http://robocup.bowdoin.edu/blog
http://github.com/northern-bites/nao-man.git
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of the gaps which have been left open by other papers in the field (particularly
in the implementation, and testing on real robots). The elegant nature of the
preview control comes with some draw backs due to its computational simplicity,
however, they can theoretically be overcome using the observer.
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A Translating between Coordinate Frames

The four key coordinate frames used to generate walking motions are discussed
in section 2. The matrices to do the transformations are given below

Tif (n) = Fn × Fn−1 × · · · × F2 × F1

Fi =

⎡

⎣
0 0 0
0 0 ±HO

0 0 1

⎤

⎦

⎡

⎣
cos(−θ) − sin(−θ) 0
sin(−θ) cos(−θ) 0

0 0 1

⎤

⎦

⎡

⎣
0 0 −sx

0 0 −sy

0 0 1

⎤

⎦

⎡

⎣
xf (nΔS + t)
xf (nΔS + t)

1

⎤

⎦ = Tif (n)

⎡

⎣
xi(nΔS + t)
yi(nΔS + t)

1

⎤

⎦

Tfc(nΔS + t) =

⎡

⎣
cos (φ(nΔS + t)) − sin (φ(nΔS + t)) 0
sin (φ(nΔS + t)) cos (φ(nΔS + t)) 0

0 0 1

⎤

⎦

⎡

⎣
0 0 −xf (nΔS + t)
0 0 −yf(nΔS + t)
0 0 1

⎤

⎦

⎡

⎣
destxc

destyc

1

⎤

⎦ = Tfc

⎡

⎣
destxf

destyf

1

⎤

⎦

(A-1)

Where Tif (n) is the transformation matrix between coordinate frames I and F
after n steps. HO is the horizontal offset between the CoM and the hip joint,
and Fi is the matrix to translate from the F(i-1) coordinate frame to the next
F(i) coordinate frame given the ith step (sx, sy, θ). (xi(nΔS + t), yi(nΔS + t))
is the position of the CoM in the I coordinate frame at time t after the nth step
was started (ΔS is the duration of a step). φ(nΔS + t) is the rotation of the
center of mass at time t between the C frame and the F frame. Tfc is the trans-
formation matrix between the F and C coordinate frames, and destxc, destyc is
the destination of a heel in the c coordinate frame.
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