
OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding

Eleftherios Kokoris-Kogias†, Philipp Jovanovic†, Linus Gasser†, Nicolas Gailly†, Ewa Syta∗, Bryan Ford†

†École Polytechnique Fédérale de Lausanne, Switzerland, ∗Trinity College, USA

Abstract—Designing a secure permissionless distributed ledger
(blockchain) that performs on par with centralized payment
processors, such as Visa, is a challenging task. Most existing
distributed ledgers are unable to scale-out, i.e., to grow their total
processing capacity with the number of validators; and those that
do, compromise security or decentralization. We present Om-
niLedger, a novel scale-out distributed ledger that preserves long-
term security under permissionless operation. It ensures security
and correctness by using a bias-resistant public-randomness
protocol for choosing large, statistically representative shards
that process transactions, and by introducing an efficient cross-
shard commit protocol that atomically handles transactions af-
fecting multiple shards. OmniLedger also optimizes performance
via parallel intra-shard transaction processing, ledger pruning
via collectively-signed state blocks, and low-latency “trust-but-
verify” validation for low-value transactions. An evaluation of
our experimental prototype shows that OmniLedger’s throughput
scales linearly in the number of active validators, supporting
Visa-level workloads and beyond, while confirming typical trans-
actions in under two seconds.

I. INTRODUCTION

The scalability of distributed ledgers (DLs), in both total

transaction volume and the number of independent partici-

pants involved in processing them, is a major challenge to

their mainstream adoption, especially when weighted against

security and decentralization challenges. Many approaches

exhibit different security and performance trade-offs [10],

[11], [21], [32], [40]. Replacing the Nakamoto consensus [36]

with PBFT [13], for example, can increase throughput while

decreasing transaction commit latency [1], [32]. These ap-

proaches still require all validators or consensus group mem-

bers to redundantly validate and process all transactions,

hence the system’s total transaction processing capacity does

not increase with added participants, and, in fact, gradually

decreases due to increased coordination overheads.

The proven and obvious approach to building “scale-out”

databases, whose capacity scales horizontally with the number

of participants, is by sharding [14], or partitioning the state

into multiple shards that are handled in parallel by different

subsets of participating validators. Sharding could benefit

DLs [15] by reducing the transaction processing load on each

validator and by increasing the system’s total processing ca-

pacity proportionally with the number of participants. Existing

proposals for sharded DLs, however, forfeit permissionless

decentralization [16], introduce new security assumptions,

and/or trade performance for security [34], as illustrated in

Figure 1 and explored in detail in Sections II and IX.

We introduce OmniLedger, the first DL architecture that

provides “scale-out” transaction processing capacity compet-

itive with centralized payment-processing systems, such as

Visa, without compromising security or support for permis-

Ela
st
ic

o
[3

4]

Scale-Out

B
yzC

oin
[32]

Decentralization

RSCoin [16] Security

OmniLedger

Fig. 1: Trade-offs in current DL systems.

sionless decentralization. To achieve this goal, OmniLedger

faces three key correctness and security challenges. First,

OmniLedger must choose statistically representative groups

of validators periodically via permissionless Sybil-attack-

resistant foundations such as proof-of-work [36], [38], [32]

or proof-of-stake [31], [25]. Second, OmniLedger must en-

sure a negligible probability that any shard is compromised

across the (long-term) system lifetime via periodically (re-

)forming shards (subsets of validators to record state and

process transactions), that are both sufficiently large and bias-

resistant. Third, OmniLedger must correctly and atomically

handle cross-shard transactions, or transactions that affect the

ledger state held by two or more distinct shards.

To choose representative validators via proof-of-work, Om-

niLedger builds on ByzCoin [32] and Hybrid Consensus [38],

using a sliding window of recent proof-of-work block miners

as its validator set. To support the more power-efficient al-

ternative of apportioning consensus group membership based

on directly invested stake rather than work, OmniLedger

builds on Ouroboros [31] and Algorand [25], running a public

randomness or cryptographic sortition protocol within a prior

validator group to pick a subsequent validator group from

the current stakeholder distribution defined in the ledger.

To ensure that this sampling of representative validators is

both scalable and strongly bias-resistant, OmniLedger uses

RandHound [44], a protocol that serves this purpose under

standard t-of-n threshold assumptions.

Appropriate use of RandHound provides the basis by which

OmniLedger addresses the second key security challenge of

securely assigning validators to shards, and of periodically

rotating these assignments as the set of validators evolves.

OmniLedger chooses shards large enough, based on the anal-

ysis in Section VI, to ensure a negligible probability that any

shard is ever compromised, even across years of operation.

Finally, to ensure that transactions either commit or abort

atomically even when they affect state distributed across multi-

ple shards (e.g., several cryptocurrency accounts), OmniLedger

introduces Atomix, a two-phase client-driven “lock/unlock”

protocol that ensures that clients can either fully commit a

583

2018 IEEE Symposium on Security and Privacy

© 2018, Eleftherios Kokoris-Kogias. Under license to IEEE.
DOI 10.1109/SP.2018.000-5



transaction across shards, or obtain “rejection proofs” to abort

and unlock state affected by partially completed transactions.

Besides addressing the above key security challenges, Om-

niLedger also introduces several performance and scalability

refinements we found to be instrumental in achieving its

usability goals. OmniLedger’s consensus protocol, ByzCoinX,

enhances the PBFT-based consensus in ByzCoin [32] to pre-

serve performance under Byzantine denial-of-service (DoS)

attacks, by adopting a more robust group communication

pattern. To help new or long-offline miners catch up to the

current ledger state without having to download the entire

history, OmniLedger adapts classic distributed checkpointing

principles [20] to produce consistent, state blocks periodically.

Finally, to minimize transaction latency in common cases

such as low-value payments, OmniLedger supports optional

trust-but-verify validation in which a first small tier of val-

idators processes the transactions quickly and then hands

them over to a second larger, hence slower, tier that re-

verifies the correctness of the first tier transactions and ensures

long-term security. This two-level approach ensures that any

misbehavior within the first tier is detected within minutes,

and can be strongly disincentivized through recourse such as

loss of deposits. Clients can wait for both tiers to process high-

value transactions for maximum security or just wait for the

first tier to process low-value transactions.

To evaluate OmniLedger, we implemented a prototype in

Go on commodity servers (12-core VMs on Deterlab). Our

experimental results show that OmniLedger scales linearly in

the number of validators, yielding a throughput of 6,000 trans-

actions per second with a 10-second consensus latency (for

1800 widely-distributed hosts, of which 12.5% are malicious).

Furthermore, deploying OmniLedger with two-level, trust-but-

verify validation provides a throughput of 2,250 tps with a

four-second first-tier latency under a 25% adversary. Finally,

a Bitcoin validator with a month-long stale view of the state

incurs 40% of the bandwidth, due to state blocks.

In summary, this paper makes the following contributions:

• We introduce the first DL architecture that provides horizon-

tal scaling without compromising either long-term security

or permissionless decentralization.

• We introduce Atomix, a Atomic Commit protocol, to com-

mit transactions atomically across shards.

• We introduce ByzCoinX, a BFT consensus protocol that

increases performance and robustness to DoS attacks.

• We introduce state blocks, that are deployed along Om-

niLedger to minimize storage and update overhead.

• We introduce two-tier trust-but-verify processing to mini-

mize the latency of low-value transactions.

II. BACKGROUND

A. Scalable Byzantine Consensus in ByzCoin

OmniLedger builds on the Byzantine consensus scheme in

ByzCoin [32], because it scales efficiently to thousands of

consensus group members. To make a traditional consensus

algorithm such as PBFT [13] more scalable, ByzCoin uses

collective signing or CoSi [45], a scalable cryptographic primi-

tive that implements multisignatures [42]. ByzCoin distributes

blocks by using multicast trees for performance, but falls back

to a less-scalable star topology for fault tolerance. Although

ByzCoin’s consensus is scalable, its total processing capacity

does not increase with participation i.e., it does not scale-out.

B. Transaction Processing and the UTXO model

Distributed ledgers derive current system state from a

blockchain, or a sequence of totally ordered blocks that con-

tain transactions. OmniLedger adopts the unspent transaction

output (UTXO) model to represent ledger state, due to its

simplicity and parallelizability. In this model, the outputs of

a transaction create new UTXOs (and assign them credits),

and inputs completely “spend” existing UTXOs. During boot-

strapping, new (full) nodes crawl the entire distributed ledger

and build a database of valid UTXOs needed to subsequently

decide whether a new block can be accepted. The UTXO

model was introduced by Bitcoin [36] but has been widely

adopted by other distributed ledger systems.

C. Secure Distributed Randomness Generation

RandHound [44] is a scalable, secure multi-party compu-

tation (MPC) protocol that provides unbiasable, decentralized

randomness in a Byzantine setting. RandHound assumes the

existence of an externally accountable client that wants to

obtain provable randomness from a large group of semi-

trustworthy servers. To produce randomness, RandHound

splits the group of servers into smaller ones and creates a pub-

licly verifiable commit-then-reveal protocol [43] that employs

the pigeonhole principle to prove that the final random number

includes the contribution of at least one honest participant, thus

perfectly randomizing RandHound’s output.

Cryptographic sortition [25] is used to select a subset of

validators, according to some per-validator weight function.

To enable validators to prove that they belong to the selected

subset, they need a public/private key pair, (pki, ski). Sortition

is implemented using a verifiable random function (VRF) [35]

that takes an input x and returns a random hash (ℓ-bit long

string) and a proof π based on ski. The proof π enables anyone

knowing pki to check that the hash corresponds to x.

D. Sybil-Resistant Identities

Unlike permissioned blockchains [16], where the validators

are known, permissionless blockchains need to deal with the

potential of Sybil attacks [19] to remain secure. Bitcoin [36]

suggested the use of Proof-of-Work (PoW), where validators

(aka miners) create a valid block by performing an expensive

computation (iterating through a nonce and trying to brute-

force a hash of a block’s header such that it has a certain

number of leading zeros). Bitcoin-NG [21] uses this PoW

technique to enable a Sybil-resistant generation of identities.

There are certain issues associated with PoW, such as the

waste of electricity [17] and the fact that it causes recentraliza-

tion [29] to mining pools. Other approaches for establishing

Sybil-resistant identities such as Proof-of-Stake (PoS) [31],

584



[25], Proof-of-Burn (PoB) [46] or Proof-of-Personhood [8]

overcome PoW’s problems and are compatible with ByzCoins

identity (key-block) blockchain, and in turn with OmniLedger

E. Prior Sharded Ledgers: Elastico

OmniLedger builds closely on Elastico [34], that previously

explored sharding in permissionless ledgers. In every round,

Elastico uses the least-significant bits of the PoW hash to

distribute miners to different shards. After this setup, every

shard runs PBFT [13] to reach consensus, and a leader shard

verifies all the signatures and creates a global block.

OmniLedger addresses several challenges that Elastico

leaves unsolved. First, Elastico’s relatively small shards (e.g.,

100 validators per shard in experiments) yield a high failure-

probability of 2.76%1 per shard per block under a 25% adver-

sary, which cannot safely be relaxed in a PoW system [23]. For

16 shards, the failure probability is 97% over only 6 epochs.

Second, Elastico’s shard selection is not strongly bias-resistant,

as miners can selectively discard PoWs to bias results [7].

Third, Elastico does not ensure transaction atomicity across

shards, leaving funds in one shard locked forever if another

shard rejects the transaction. Fourth, the validators constantly

switch shards, forcing themselves to store the global state,

which can hinder performance but provides stronger guar-

antees against adaptive adversaries. Finally, the latency of

transaction commitment is comparable to Bitcoin (≈ 10min.),

which is far from OmniLedger’s usability goals.

III. SYSTEM OVERVIEW

This section presents the system, network and threat models,

the design goals, and a roadmap towards OmniLedger that

begins with a strawman design.

A. System Model

We assume that there are n validators who process trans-

actions and ensure the consistency of the system’s state. Each

validator i has a public / private key pair (pki, ski), and we

often identify i by pki. Validators are evenly distributed across

m shards. We assume that the configuration parameters of

a shard j are summarized in a shard-policy file. We denote

by an epoch e the fixed time (e.g., a day) between global

reconfiguration events where a new assignment of validators

to shards is computed. The time during an epoch is counted in

rounds r that do not have to be consistent between different

shards. During each round, each shard processes transactions

collected from clients. We assume that validators can establish

identities through any Sybil-attack-resistant mechanism and

commit them to the identity blockchain; to participate in epoch

e validators have to register in epoch e−1. These identities are

added into an identity blockchain as described in Section II-D.

B. Network Model

For the underlying network, we make the same assumption

as prior work [31], [34], [36]. Specifically, we assume that (a)

the network graph of honest validators is well connected and

that (b) the communication channels between honest validators

are synchronous, i.e., that if an honest validator broadcasts a

1Cumulative binomial distribution (P = 0.25, N = 100, X ≥ 34)

message, then all honest validators receive the message within

a known maximum delay ∆ [39]. However, as ∆ is in the

scale of minutes, we cannot use it within epochs as we target

latencies of seconds. Thus, all protocols inside one epoch

use the partially synchronous model [13] with optimistic,

exponentially increasing time-outs, whereas ∆ is used for slow

operations such as identity creation and shard assignment.

C. Threat Model

We denote the number of Byzantine validators by f and

assume, that n = 4f , i.e., at most 25% 2 of the validators

can be malicious at any given moment, which is similar to

prior DL’s [21], [32], [34]. These malicious nodes can behave

arbitrarily, e.g., they might refuse to participate or collude to

attack the system. The remaining validators are honest and

faithfully follow the protocol. We further assume that the

adversary is mildly adaptive [31], [34] on the order of epochs,

i.e., he can try to corrupt validators, but it takes some time for

such corruption attempts to actually take effect.

We further assume that the adversary is computationally

bounded, that cryptographic primitives are secure, and that

the computational Diffie-Hellman problem is hard.

D. System Goals

OmniLedger has the following primary goals with respect

to decentralization, security, and scalability.

1) Full decentralization. OmniLedger does not have any

single points of failure (such as trusted third parties).

2) Shard robustness. Each shard correctly and continuously

processes transactions assigned to it.

3) Secure transactions. Transactions are committed atomi-

cally or eventually aborted, both within and across shards.

4) Scale-out. The expected throughput of OmniLedger in-

creases linearly in the number of participating validators.

5) Low storage overhead. Validators do not need to store

the full transaction history but only a periodically computed

reference point that summarizes a shard’s state.

6) Low latency. OmniLedger provides low latency for trans-

action confirmations.

E. Design Roadmap

This section introduces SLedger, a strawman DL system that

we use to outline OmniLedger’s design. Below we describe

one epoch of SLedger and show how it transitions from epoch

e− 1 to epoch e.

We start with the secure validator-assignment to shards.

Permitting the validators to choose the shards they want to

validate is insecure, as the adversary could focus all his

validators in one shard. As a result, we need a source of

randomness to ensure that the validators of one shard will

be a sample of the overall system and w.h.p. will have the

same fraction of malicious nodes. SLedger operates a trusted

randomness beacon that broadcasts a random value rnde to

all participants in each epoch e. Validators, who want to

participate in SLedger starting from epoch e, have to first

register to a global identity blockchain. They create their

identities through a Sybil-attack-resistant mechanism in epoch

2The system can handle up to 33%− ǫ with degraded performance

585



Fig. 2: OmniLedger architecture overview: At the beginning of an epoch e, all validators (shard membership is visualized through the
different colors) (1) run RandHound to re-assign randomly a certain threshold of validators to new shards and assign new validators who
registered to the identity blockchain in epoch e − 1. Validators ensure (2) consistency of the shards’ ledgers via ByzCoinX while clients
ensure (3) consistency of their cross-shard transactions via Atomix (here the client spends inputs from shards 1 and 2 and outputs to shard 3).

e−1 and broadcast them, together with the respective proofs,

on the gossip network at most ∆ before epoch e− 1 ends.

Epoch e begins with a leader, elected using randomness

rnde−1, who requests from the already registered and active

validators a (BFT) signature on a block with all identities that

have been provably established so far. If at least 2

3
of these

validators endorse the block, it becomes valid, and the leader

appends it to the identity blockchain. Afterwards, all registered

validators take rnde to determine their assignment to one of

the SLedger’s shards and to bootstrap their internal states from

the shards’ distributed ledgers. Then, they are ready to start

processing transactions using ByzCoin. The random shard-

assignment ensures that the ratio between malicious and honest

validators in any given shard closely matches the ratio across

all validators with high probability.

SLedger already provides a similar functionality to Om-

niLedger, but it has several significant security restrictions.

First, the randomness beacon is a trusted third party. Second,

the system stops processing transactions during the global

reconfiguration at the beginning of each epoch until enough

validators have bootstrapped their internal states and third,

there is no support for cross-shard transactions. SLedger’s

design also falls short in performance. First, due to ByzCoin’s

failure handling mechanism, its performance deteriorates when

validators fail. Second, validators face high storage and boot-

strapping overheads. Finally, SLedger cannot provide real-time

confirmation latencies and high throughput.

To address the security challenges, we introduce Om-

niLedger’s security design in Section IV:

1) In Section IV-A, we remove the trusted randomness beacon

and show how validators can autonomously perform a

secure sharding by using a combination of RandHound and

VRF-based leader election via cryptographic sortition.

2) In Section IV-B, we show how to securely handle the

validator assignment to shards between epochs while main-

taining the ability to continuously process transactions.

3) In Section IV-C, we present Atomix, a novel two-step

atomic commit protocol for atomically processing cross-

shard transactions in a Byzantine setting.

To deal with the performance challenges, we introduce

OmniLedger’s performance and usability design in Section V:

4) In Section V-A, we introduce ByzCoinX, a variant of Byz-

Coin, that utilizes more robust communication patterns to

efficiently process transactions within shards, even if some

of the validators fail, and that resolves dependencies on the

transaction level to achieve better block parallelization.

5) In Section V-C, we introduce state blocks that summarize

the shards’ states in an epoch and that enable ledger pruning

to reduce storage and bootstrapping costs for validators.

6) In Section V-D, we show how to enable optimistic real-

time transaction confirmations without sacrificing security

or throughput by utilizing an intra-shard architecture with

trust-but-verify transaction validation.

A high-level overview of the (security) architecture of

OmniLedger is illustrated in Figure 2.

IV. OMNILEDGER: SECURITY DESIGN

A. Sharding via Bias-Resistant Distributed Randomness

To generate a seed for sharding securely without requiring

a trusted randomness beacon [16] or binding the protocol to

PoW [34], we rely on a distributed randomness generation

protocol that is collectively executed by the validators.

We require that the distributed-randomness generation pro-

tocol provide unbiasability, unpredictability, third-party verifi-

ability, and scalability. Multiple proposals exist [7], [28], [44].

The first approach relies on Bitcoin, whereas the other two

share many parts of the design; we focus on RandHound [44]

due to better documentation and open-source implementation.

Because RandHound relies on a leader to orchestrate the

protocol run, we need an appropriate mechanism to select

one of the validators for this role. If we use a deterministic

approach to perform leader election, then an adversary might

be able to enforce up to f out of n failures in the worst case

by refusing to run the protocol, resulting in up to 1

4
n failures

given our threat model. Hence, the selection mechanism must

be unpredictable and unbiasable, which leads to a chicken-and-

egg problem as we use RandHound to generate randomness

with these properties in the first place. To overcome this

586



predicament, we combine RandHound with a VRF-based

leader election algorithm [44], [25].

At the beginning of an epoch e, each validator i computes

a ticket ticketi,e,v = VRFski
(“leader” ‖ confige ‖ v) where

confige is the configuration containing all properly registered

validators of epoch e (as stored in the identity blockchain)

and v is a view counter. Validators then gossip these tickets

with each other for a time ∆, after which they lock in the

lowest-value valid ticket they have seen thus far and accept the

corresponding node as the leader of the RandHound protocol

run. If the elected node fails to start RandHound within another

∆, validators consider the current run as failed and ignore

this validator for the rest of the epoch, even if he returns

later on. In this case, the validators increase the view number

to v + 1 and re-run the lottery. Once the validators have

successfully completed a run of RandHound and the leader

has broadcast rnde together with its correctness proof, each of

the n properly registered validators can first verify and then use

rnde to compute a permutation πe of 1, . . . , n and subdivide

the result into m approximately equally-sized buckets, thereby

determining its assignment of nodes to shards.

Security Arguments: we make the following observations

to informally argue the security of the above approach. Each

participant can produce only a single valid ticket per view v
in a given epoch e, because the VRF-based leader election

starts only after the valid identities have been fixed in the

identity blockchain. Furthermore, as the output of a VRF is

unpredictable as long as the private key ski is kept secret,

the tickets of non-colluding nodes, hence the outcome of

the lottery is also unpredictable. The synchrony bound ∆
guarantees that the ticket of an honest leader is seen by all

other honest validators. If the adversary wins the lottery, he can

decide either to comply and run the RandHound protocol or

to fail, which excludes that particular node from participating

for the rest of the epoch.

After a successful run of RandHound, the adversary is the

first to learn the randomness, hence the sharding assignment,

however his benefit is minimal. The adversary can again either

decide to cooperate and publish the random value or withhold

it in the hope of winning the lottery again and obtaining a

sharding assignment that fits his agenda better. However, the

probability that an adversary wins the lottery a times in a

row is upper bounded by the exponentially decreasing term

(f/n)a. Thus, after only a few re-runs of the lottery, an honest

node wins with high probability and coordinates the sharding.

Finally, we remark that an adversary cannot collect random

values from multiple runs and then choose the one he likes

best as validators accept only the latest random value that

matches their view number v.

In Appendix B, we show how OmniLedger can be extended

to probabilistically detect that the expected ∆ does not hold

and how it can still remain secure with a fall-back protocol.

B. Maintaining Operability During Epoch Transitions

Recall that, in each epoch e, SLedger changes the assign-

ments of all n validators to shards, which results in an idle

phase during which the system cannot process transactions

until enough validators have finished bootstrapping.

To maintain operability during transition phases, Om-

niLedger gradually swaps in new validators to each shard

per epoch. This enables the remaining operators to continue

providing service (in the honest scenario) to clients while

the recently joined validators are bootstrapping. In order to

achieve this continued operation we can swap-out at most 1

3

of the shard’s size (≈ n
m

), however the bigger the batch is,

the higher the risk gets that the number of remaining honest

validators is insufficient to reach consensus and the more stress

the bootstrapping of new validators causes to the network.

To balance the chances of a temporary loss of liveness,

the shard assignment of validators in OmniLedger works as

follows. First, we fix a parameter k < 1

3

n
m

specifying the

swap-out batch, i.e., the number of validators that are swapped

out at a given time. For OmniLedger, we decided to work in

batches of k = log n
m

. Then for each shard j, we derive a

seed H(j ‖ rnde) to compute a permutation πj,e of the shard’s

validators, and we specify the permutation of the batches. We

also compute another seed H(0 ‖ rnde) to permute and scatter

the validators who joined in epoch e and to define the order

in which they will do so (again, in batches of size k). After

defining the random permutations, each batch waits ∆ before

starting to bootstrap in order to spread the load on the network.

Once a validator is ready, he sends an announcement to the

shard’s leader who then swaps the validator in.

Security Arguments: During the transition phase, we

ensure the safety of the BFT consensus in each shard as

there are always at least 2

3

n
m

honest validators willing to

participate in the consensus within each shard. And, as we use

the epoch’s randomness rnde to pick the permutation of the

batches, we keep the shards’ configurations a moving target for

an adaptive adversary. Finally, as long as there are 2

3

n
m

honest

and up-to-date validators, liveness is guaranteed. Whereas if

this quorum is breached during transition (the new batch of

honest validators has not yet updated), the liveness is lost only

temporarily, until the new validators update.

C. Cross-Shard Transactions

To enable value transfer between different shards thereby

achieving shard interoperability, support for secure cross-shard

transactions is crucial in any sharded-ledger system. We expect

that the majority of transactions to be cross-shard in the

traditional model where UTXOs are randomly assigned to

shards for processing [16], [34], see Appendix C.

A simple but inadequate strawman approach to a cross-shard

transaction, is to concurrently send a transaction to several

shards for processing because some shards might commit

the transaction while others might abort. In such a case, the

UTXOs at the shard who accepted the transactions are lost as

there is no straightforward way to roll back a half-committed

transaction, without adding exploitable race conditions.

To address this issue, we propose a novel Byzantine Shard

Atomic Commit (Atomix) protocol for atomically processing

transactions across shards, such that each transaction is either

587



committed or eventually aborted. The purpose is to ensure

consistency of transactions between shards, to prevent double

spending and to prevent unspent funds from being locked

forever. In distributed computing, this problem is known as

atomic commit [47] and atomic commit protocols [27], [30]

are deployed on honest but unreliable processors. Deploying

such protocols in OmniLedger is unnecessarily complex, be-

cause the shards are collectively honest, do not crash infinitely,

and run ByzCoin (that provides BFT consensus). Atomix

improves the strawman approach with a lock-then-unlock

process. We intentionally keep the shards’ logic simple and

make any direct shard-to-shard communication unnecessary by

tasking the client with the responsibility of driving the unlock

process while permitting any other party (e.g., validators

or even other clients) to fill in for the client if a specific

transaction stalls after being submitted for processing.

Atomix uses the UTXO state model, see Section II-B for

an overview, which enables the following simple and efficient

three-step protocol, also depicted in Figure 3.

1) Initialize. A client creates a cross-shard transaction (cross-

TX for short) whose inputs spend UTXOs of some input

shards (ISs) and whose outputs create new UTXOs in some

output shards (OSs). The client gossips the cross-TX and it

eventually reaches all ISs.

2) Lock. All input shards associated with a given cross-TX

proceed as follows. First, to decide whether the inputs can

be spent, each IS leader validates the transaction within his

shard. If the transaction is valid, the leader marks within

the state that the input is spent, logs the transaction in the

shard’s ledger and gossips a proof-of-acceptance, a signed

Merkle proof against the block where the transaction is

included. If the transaction is rejected, the leader creates an

analogous proof-of-rejection, where a special bit indicates

an acceptance or rejection. The client can use each IS ledger

to verify his proofs and that the transaction was indeed

locked. After all ISs have processed the lock request, the

client holds enough proofs to either commit the transaction

or abort it and reclaim any locked funds, but not both.

3) Unlock. Depending on the outcome of the lock phase, the

client is able to either commit or abort his transaction.

a) Unlock to Commit. If all IS leaders issued proofs-

of-acceptance, then the respective transaction can be

committed. The client (or any other entity such as an IS

leader after a time-out) creates and gossips an unlock-to-

commit transaction that consists of the lock transaction

and a proof-of-acceptance for each input UTXO. In turn,

each involved OS validates the transaction and includes

it in the next block of its ledger in order to update the

state and enable the expenditure of the new funds.

b) Unlock to Abort. If, however, even one IS issued a

proof-of-rejection, then the transaction cannot be commit-

ted and has to abort. In order to reclaim the funds locked

in the previous phase, the client (or any other entity)

must request the involved ISs to unlock that particular

transaction by gossiping an unlock-to-abort transaction

Fig. 3: Atomix protocol in OmniLedger.

that includes (at least) one proof-of-rejection for one of

the input UTXOs. Upon receiving a request to unlock,

the ISs’ leaders follow a similar procedure and mark the

original UTXOs as spendable again.

We remark that, although the focus of OmniLedger is on

the UTXO model, Atomix can be extended with a locking

mechanism for systems where objects are long-lived and hold

state (e.g., smart contracts [48]), see Appendix D for details.

Security Arguments: We informally argue the previously

stated security properties of Atomix, based on the following

observations. Under our assumptions, shards are honest, do not

fail, eventually receive all messages and reach BFT consensus.

Consequently, (1) all shards always faithfully process valid

transactions; (2) if all input shards issue a proof-of-acceptance,

then every output shard unlocks to commit; (3) if even one

input shard issues a proof-of-rejection, then all input shards

unlocks to abort; and (4) if even one input shard issues a

proof-of-rejection, then no output shard unlocks to commit.

In Atomix, each cross-TX eventually commits or aborts.

Based on (1), each input shard returns exactly one response:

either a proof-of-acceptance or a proof-of-rejection. Conse-

quently, if a client has the required number of proofs (one per

each input UTXO), then the client either only holds proofs-

of-acceptance (allowing the transaction to be committed as (2)

holds) or not (forcing the transaction to abort as (3) and (4)

holds), but not both simultaneously.

In Atomix, no cross-TX can be spent twice. As shown

above, cross-shard transactions are atomic and are assigned

to specific shards who are solely responsible for them. Based

on (1), the assigned shards do not process a transaction twice

and no other shard attempts to unlock to commit.

In Atomix, if a transaction cannot be committed, then the

locked funds can be reclaimed. If a transaction cannot be

committed, then there must exist at least one proof-of-rejection

issued by an input shard, therefore (3) must hold. Once all

input shards unlock to abort, the funds become available again.

We remark that funds are not automatically reclaimed and a

client or other entity must initiate the unlock to abort process.

Although this approach poses the risk that if a client crashes

indefinitely his funds remain locked, it enables a simplified

protocol with minimal logic that requires no direct shard-

588



to-shard communication. A client who crashes indefinitely is

equivalent to a client who loses his private key, which prevents

him from spending the corresponding UTXOs. Furthermore,

any entity in the system, for example a validator in exchange

for a fee, can fill in for the client to create an unlock

transaction, as all necessary information is gossiped.

To ensure better robustness, we can also assign the shard of

the smallest-valued input UTXO to be a coordinator respon-

sible for driving the process of creating unlock transactions.

Because a shard’s leader might be malicious, f +1 validators

of the shard need to send the unlock transaction to guarantee

that all transactions are eventually unlocked.

Size of Unlock Transactions: In Atomix, the unlock

transactions are larger than regular transactions as appropriate

proofs for input UTXOs need to be included. OmniLedger

relies on ByzCoinX (a novel BFT-consensus described in

Section V-A) for processing transactions within each shard.

When the shard’s validators reach an agreement on a block

that contains committed transactions, they produce a collec-

tive signature whose size is independent of the number of

validators. This important feature enables us to keep Atomix

proofs (and consequently the unlock transactions) short, even

though the validity of each transaction is checked against the

signed blocks of all input UTXOs. If ByzCoinX did not use

collective signatures, the size of unlock transactions would

be impractical. For example, for a shard of 100 validators a

collective signature would only be 77 bytes, whereas a regular

signature would be 9KB, almost two order’s of magnitude

larger than the size of a simple transaction (500 bytes).

V. DESIGN REFINEMENTS FOR PERFORMANCE

In this section, we introduce the performance sub-protocols

of OmniLedger. First, we describe a scalable BFT-consensus

called ByzCoinX that is more robust and more parallelizable

than ByzCoin. Then, we introduce state-blocks that enable fast

bootstrapping and decrease storage-costs. Finally, we propose

an optional trust-but-verify validation step to provide real-time

latency for low-risk transactions

A. Fault Tolerance under Byzantine Faults

The original ByzCoin design offers good scalability, par-

tially due to the usage of a tree communication pattern.

Maintaining such communication trees over long time periods

can be difficult, as they are quite susceptible to faults. In the

event of a failure, ByzCoin falls back on a more robust all-to-

all communication pattern, similarly to PBFT. Consequently,

the consensus’s performance deteriorates significantly, which

the adversary can exploit to hinder the system’s performance.

To achieve better fault tolerance in OmniLedger, without

resorting to a PBFT-like all-to-all communication pattern, we

introduce for ByzCoinX a new communication pattern that

trades-off some of ByzCoin’s high scalability for robustness,

by changing the message propagation mechanism within the

consensus group to resemble a two-level tree. During the

setup of OmniLedger in an epoch, the generated randomness

is not only used to assign validators to shards but also to

assign them evenly to groups within a shard. The number

of groups g, from which the maximum group size can be

derived by taking the shard size into account, is specified

in the shard policy file. At the beginning of a ByzCoinX

roundtrip, the protocol leader randomly selects one of the

validators in each group to be the group leader responsible for

managing communication between the protocol leader and the

respective group members. If a group leader does not reply

before a predefined timeout, the protocol leader randomly

chooses another group member to replace the failed leader.

As soon as the protocol leader receives more than 2

3
of the

validators’ acceptances, he proceeds to the next phase of the

protocol. If the protocol leader fails, all validators initiate a

PBFT-like view-change procedure.

B. Parallelizing Block Commitments

We now show how ByzCoinX parallelizes block commit-

ments in the UTXO model by carefully analyzing and handling

dependencies between transactions.

We observe that transactions that do not conflict with each

other can be committed in different blocks and consequently

can be safely processed in parallel. To identify conflicting

transactions, we need to analyze the dependencies that are

possible between transactions. Let txA and txB denote two

transactions. Then, there are two cases that need to be carefully

handled: (1) both txA and txB try to spend the same UTXO

and (2) an UTXO created at the output of txA is spent at

the input of txB (or vice versa). To address (1) and maintain

consistency, only one of the two tx can be committed. To

address (2), txA has to be committed to the ledger before txB ,

i.e., txB has to be in a block that depends (transitively) on the

block containing txA. All transactions that do not exhibit these

two properties can be processed safely in parallel. In particular

we remark that transactions that credit the same address do not

produce a conflict, because they generate different UTXOs

To capture the concurrent processing of blocks, we adopt a

block-based directed acyclic graph (blockDAG) [33] as a data

structure, where every block can have multiple parents. The

ByzCoinX protocol leader enforces that each pending block

includes only non-conflicting transactions and captures UTXO

dependencies by adding the hashes of former blocks (i.e.,

backpointers) upon which a given block’s transactions depend.

To decrease the number of such hashes, we remark that UTXO

dependencies are transitive, enabling us to relax the require-

ment that blocks have to capture all UTXO dependencies

directly. Instead, a given block can simply add backpointers

to a set of blocks, transitively capturing all dependencies.

C. Shard Ledger Pruning

Now we tackle the issues of an ever-growing ledger and the

resulting costly bootstrapping of new validators; this is partic-

ularly urgent for high-throughput DL systems. For example,

whereas Bitcoin’s blockchain grows by ≈ 144MB per day

and has a total size of about 133GB, next-generation systems

with Visa-level throughput (e.g., 4000 tx/sec and 500B/tx) can

easily produce over 150GB per day.

589



To reduce the storage and bootstrapping costs for validators

(whose shard assignments might change periodically), we

introduce state blocks that are similar to stable checkpoints

in PBFT [13] and that summarize the entire state of a shard’s

ledger. To create a state block sbj,e for shard j in epoch e, the

shard’s validators execute the following steps: At the end of

e, the shard’s leader stores the UTXOs in an ordered Merkle

tree and puts the Merkle tree’s root hash in the header of sbj,e.

Afterwards, the validators run consensus on the header of

sbj,e (note that each validator can construct the same ordered

Merkle tree for verification) and, if successful, the leader stores

the approved header in the shard’s ledger making sbj,e the

genesis block of epoch e + 1. Finally, the body of sbj,e−1

(UTXOs) can be discarded safely. We keep the regular blocks

of epoch e, however, until after the end of epoch e+1 for the

purpose of creating transaction proofs.

As OmniLedger’s state is split across multiple shards and

as we store only the state blocks’ headers in a shard’s ledger,

a client cannot prove the existence of a past transaction to

another party by presenting an inclusion proof to the block

where the transaction was committed. We work around this

by moving the responsibility of storing transactions’ proofs-

of-existence to the clients of OmniLedger. During epoch

e+1 clients can generate proofs-of-existence for transactions

validated in epoch e using the normal block of epoch e and the

state block. Such a proof for a given transaction tx contains

the Merkle tree inclusion proof to the regular block B that

committed tx in epoch e and a sequence of block headers from

the state block sbj,e at the end of the epoch to block B. To

reduce the size of these proofs, state blocks can include several

multi-hop backpointers to headers of intermediate (regular)

blocks similarly to skipchains [37].

Finally, if we naively implement the creation of state blocks,

it stalls the epoch’s start, hence the transaction processing until

sbj,e has been appended to the ledger. To avoid this downtime,

the consistent validators of the shard in epoch e + 1 include

an empty state-block at the beginning of the epoch as a place-

holder; and once sbj,e is ready they commit it as a regular

block, pointing back to the place-holder and sbj,e−1.

D. Optional Trust-but-Verify Validation

There exists an inherent trade-off between the number of

shards (and consequently the size of a shard), throughput

and latency, as illustrated in Figure 4. A higher number of

smaller shards results in a better performance but provides less

resiliency against a more powerful attacker (25%). Because

the design of OmniLedger favors security over scalability, we

pessimistically assume an adversary who controls 25% of the

validators and, accordingly, choose large shards at the cost

of higher latency but guarantee the finality of transactions.

This assumption, however, might not appropriately reflect

the priorities of clients with frequent, latency-sensitive but

low-value transactions (e.g., checking out at a grocery store,

buying gas or paying for coffee) and who would like to have

transactions processed as quickly as possible.

Fig. 4: Trust-but-Verify Validation Architecture

In response to the clients’ needs, we augment the intra-

shard architecture (see Figure 4) by following a “trust but

verify” model, where optimistic validators process transac-

tions quickly, providing a provisional but unlikely-to-change

commitment and core validators subsequently verify again

the transactions to provide finality and ensure verifiability.

Optimistic validators follow the usual procedures for deciding

which transactions are committed in which order; but they

form much smaller groups, even as small as one validator

per group. Consequently, they produce smaller blocks with

real-time latencies but are potentially less secure as the ad-

versary needs to control a (proportionally) smaller number of

validators to subvert their operation. As a result, some bad

transactions might be committed, but ultimately core validators

verify all provisional commitments, detecting any inconsisten-

cies and their culprits, which makes it possible to punish rogue

validators and to compensate the defrauded customers for the

damages. The trust-but-verify approach strikes a balance for

processing small transactions in real-time, as validators are

unlikely to misbehave for small amounts of money.

At the beginning of an epoch e, all validators assign

themselves to shards by using the per-epoch randomness, and

then bootstrap their states from the respective shard’s last state

block. Then, OmniLedger assigns each validator randomly to

one of multiple optimistic processing groups or a single core

processing group. The shard-policy file specifies the number

of optimistic and core validators, as well as the number of

optimistic groups. Finally, in order to guarantee that any mis-

behavior will be contained inside the shard, it can also define

the maximum amount of optimistic validated transactions to

be equal to the stake or revenue of the validators.

Transactions are first processed by an optimistic group that

produces optimistically validated blocks. These blocks serve

as input for re-validation by core validators who run concur-

rently and combine inputs from multiple optimistic processing

groups, thus maximizing the system’s throughput (Figure 4).

Valid transactions are included in a finalized block that is

added to the shard’s ledger and are finally included in the

state block. However, when core validators detect an inconsis-

tency, then the respective optimistically validated transaction

is excluded and the validators who signed the invalid block

are identified and held accountable, e.g., by withholding any

rewards or by excluding them from the system. We remark that

the exact details of such punishments depend on the incentive

590



scheme that are out of scope of this paper. Given a minimal

incentive to misbehave and the quantifiable confidence in

the security of optimistic validation (Figure 5), clients can

choose, depending on their needs, to take advantage of real-

time processing with an optimistic assurance of finality or to

wait to have their transaction finalized.

VI. SECURITY ANALYSIS

Our contributions are mainly pragmatic rather than theoreti-

cal and in this section we provide an informal security analysis

supplementing the arguments in Sections IV and V.

A. Randomness Creation

RandHound assumes an honest leader who is responsible

for coordinating the protocol run and for making the produced

randomness available to others. In OmniLedger, however, we

cannot always guarantee that an honest leader will be selected.

Although a dishonest leader cannot affect the unbiasability of

the random output, he can choose to withhold the randomness

if it is not to his liking, thus forcing the protocol to restart.

We economically disincentivize such behavior and bound the

bias by the randomized leader-election process.

The leader-election process is unpredictable as the adversary

is bound by the usual cryptographic hardness assumptions and

is unaware of (a) the private keys of the honest validators and

(b) the input string x to the VRF function. Also, OmniLedger’s

membership is unpredictable at the moment of private key

selection and private keys are bound to identities. As a result,

the adversary has at most m = 1/4 chance per round to

control the elected leader as he controls at most 25% of all

nodes. Each time an adversary-controlled leader is elected

and runs RandHound the adversary can choose to accept the

random output, and the sharding assignment produced by it,

or to forfeit it and try again in hopes of a more favorable

yet still random assignment. Consequently, the probability that

an adversary controls n consecutive leaders is upper-bounded

by P [X ≥ n] = 1

4n
< 10−λ. For λ = 6, the adversary

will control at most 10 consecutive RandHound runs. This

is an upper bound, as we do not include the exclusion of the

previous leader from the consecutive elections.

B. Shard-Size Security

We previously made the assumption that each shard is

collectively honest. This assumption holds as long as each

shard has less than c = ⌊n
3
⌋ malicious validators, because

ByzCoinX requires n = 3f + 1 to provide BFT consensus.

The security of OmniLedger’s validator assignment mech-

anism is modeled as a random sampling problem with two

possible outcomes (honest or malicious). Assuming an infinite

pool of potential validators, we can use the binomial distribu-

tion (Eq. 1). We can assume random sampling due to Rand-

Hound’s unpredictability property that guarantees that each

selection is completely random; this leads to the adversarial

power of at most m = 0.25.

P
[

X ≤ ⌊
n

3
⌋
]

=

n
∑

k=0

(

n

k

)

mk (1−m)n−k
(1)

Fig. 5: Left: Shard size required for 10−6 system failure prob-

ability under different adversarial models. Right: Security of

an optimistic validation group for 12.5% and 25% adversaries.

To calculate the failure rate of one shard, i.e., the proba-

bility that a shard is controlled by an adversary, we use the

cumulative distributions over the shard size n, where X is the

random variable that represents the number of times we pick a

malicious node. Figure 5 (right) illustrates the proposed shard

size, based on the power of the adversary. In a similar fashion

we calculate the confidence a client can have that an optimistic

validation group is honest (left).

C. Epoch Security

In the last section, we modeled the security of a single

shard as a random selection process that does, however, not

correspond to the system’s failure probability within on epoch.

Instead, the total failure rate can be approximated by the union

bound over the failure rates of individual shards.

We argue that, given an adequately large shard size, the

epoch-failure probability is negligible. We can calculate an

upper bound on the total-failure probability by permitting the

adversary to run RandHound multiple times and select the

output he prefers. This is a stronger assumption than what

RandHound permits, as the adversary cannot go back to a

previously computed output if he chose to re-run RandHound.

An upper bound of the epoch failure event XE is given by

P [XE ] ≤

l
∑

k=0

1

4k
· n · P [XS ] (2)

where l is the number of consecutive views the adversary

controls, n is the number of shards and P [XS ] is the failure

probability of one shard as calculated in Section VI-B. For

l → ∞, we get P [XE ] ≤ 4

3
·n ·P [XS ]. More concretely, the

failure probability, given a 12.5%-adversary and 16 shards, is

4 · 10−5 or one failure in 68.5 years for one-day epochs

D. Group Communication

We now show that OmniLedger’s group-communication

pattern has a high probability of convergence under faults. We

assume that there are N nodes that are split in
√
N groups of√

N nodes each.

1) Setting the Time-Outs: In order to ensure that the shard

leader will have enough time to find honest group leaders,

we need to setup the view-change time-outs accordingly.

OmniLedger achieves this by having two time-outs. The first

591



timeout T1 is used by the shard leader to retry the request

to non-responsive group members. The second timeout T2 is

used by the group members to identify a potential failure of a

shard leader and to initiate a view-change [13]. To ensure that

the shard leader has enough time to retry his requests, we have

a fixed ratio of T1 = 0.1T2 . However, if the T2 is triggered,

then in the new view T2 doubles (as is typical [13]) in order to

contemplate for increase in the network’s asynchrony, hence

T1 should double to respect the ratio.

2) Reaching Consensus: We calculate the probability for

a group size N = 600 where
√
N = 25: Given a popu-

lation of 600 nodes and a sampling size of 25, we use the

hypergeometric distribution for our calculation which yields

a probability of 99.93% that a given group will have less

than 25 − 10 = 15 malicious nodes. A union bound over

25 groups yields a probability of 98.25% that no group will

have more than 15 malicious nodes. In the worst case, where

there are exactly 1

3
malicious nodes in total, we need all of the

honest validators to reply. For a group that contains exactly 15

malicious nodes, the shard’s leader will find an honest group

leader (for ByzCoinX) after 10 tries with a probability of

1 − ((15/24)10) = 98.6%. As a result, the total probability

of failure is 1− 0.986 ∗ 0.9825 = 0.031.

We remark that this failure does not constitute a compromise

of security of OmniLedger. Rather, it represents the probability

of a failure for the shard leader who is in charge of coordinat-

ing the shard’s operation. If a shard leader indeed fails, then

a new shard leader will be elected having 97% probability of

successfully reaching consensus.

VII. IMPLEMENTATION

We implemented OmniLedger and its subprotocols for

sharding, consensus, and processing of cross-shard transac-

tions in Go [26]. For sharding, we combined RandHound’s

code, available on GitHub, with our implementation of a VRF-

based leader-election mechanism by using a VRF construction

similar to the one of Franklin and Zhang [22]. Similarly, to

implement ByzCoinX, we extended ByzCoin’s code, available

on GitHub as well, by the parallel block commitment mecha-

nism as introduced in Section V-B. We also implemented the

Atomix protocol, see Section IV-C, on top of the shards and a

client that dispatches and verifies cross-shard transactions.

VIII. EVALUATION

In this section, we experimentally evaluate our prototype im-

plementation of OmniLedger. The primary questions we want

to evaluate concern the overall performance of OmniLedger

and whether it truly scales out (Section VIII-B), the cost of

epoch transitions (Section VIII-C), the client-perceived latency

when committing cross-shard transactions (Section VIII-D),

and the performance differences between ByzCoinX and Byz-

Coin with respect to throughput and latency (Section VIII-E).

A. Experimental Setup

We ran all our experiments on DeterLab [18] using 60
physical machines, each equipped with an Intel E5-2420 v2

Fig. 6: OmniLedger throughput for 1800 hosts, varying shard

sizes s, and adversarial power f/n.

TABLE I: OmniLedger transaction confirmation latency in

seconds for different configurations with respect to the shard

size s, adversarial power f/n, and validation types.

[s, f/n] [4, 1%] [25, 5%] [70, 12.5%] [600, 25%]

Regular val. 1.38 5.99 8.04 14.52

1st lvl. val. 1.38 1.38 1.38 4.48
2nd lvl. val. 1.38 55.89 41.84 62.96

CPU, 24GB of RAM, and a 10Gbps network link. To simulate

a realistic, globally distributed deployment, we restricted the

bandwidth of all connections between nodes to 20Mbps and

impose a latency of 100ms on all communication links. The

basis for our experiments was a data set consisting of the first

10, 000 blocks of the Bitcoin blockchain.

B. OmniLedger Performance

In this experiment, we evaluate the performance of Om-

niLedger in terms of throughput and latency in different

situations: we distinguish the cases where we have a fixed

shard size and varying adversarial power (in particular 1%,

5%, 12.5%, and 25%) or the other way round. We also

distinguish between configurations with regular or trust-but-

verify validations where we use 1MB blocks in the former

case and 500KB for optimistically validated blocks and 16MB

for final blocks in the latter case. In order to provide enough

transactions for the final blocks, for each shard, there are

32 optimistic validation groups concurrently running; they all

feed to one core shard, enabling low latency for low-risk

transactions (Table I) and high throughput of the total system.

Figure 6 shows OmniLedger’s throughput for 1800 hosts in

different configurations and, for comparison, includes the aver-

age throughput of Visa at ≈ 4000 tx/sec. Additionally, Table I

shows the confirmation latency in the above configuration.

We observe that OmniLedger’s throughput with trust-but-

verify validation is almost an order of magnitude higher than

with regular validation, at the cost of a higher latency for high-

risk transactions that require both validation steps. For low-risk

transactions, OmniLedger provides an optimistic confirmation

in a few seconds after the first validation step, with less than

592



TABLE II: OmniLedger scale-out throughput in transactions

per second (tps) for a adversarial power of f/n = 12.5% shard

size of s = 70, and a varying number of shards m.

m 1 2 4 8 16

tps 439 869 1674 3240 5850

Fig. 7: Epoch transition latency.

10% probability that the confirmation was vulnerable to a

double-spending attack due to a higher-than-average number

of malicious validators. For high-risk transactions, the latency

to guarantee finality is still less than one minute.

Table II shows the scale-out throughput of OmniLedger with

a 12.5% adversary, a shard size of 70, and a number of shards

m between 1 and 16. As we can see, the throughput increases

almost linearly in the number of shards.

In Figure 6, with a 12.5% adversary and a total number of

1800 hosts, we distributed the latter across 25 shards for which

we measured a throughput of 13, 000 tps corresponding to 3
times the level of Visa. If we want to maintain OmniLedger’s

security against a 25% adversary and still achieve the same

average throughput of Visa, i.e., 4000 tps, then we estimate that

we need to increase the number of hosts to about 4200 (which

is less than the number of Bitcoin full nodes [4]) and split them

into 7 shards. Unfortunately, our experimental platform could

not handle such a high load, therefore, we mention here only

an estimated value.

C. Epoch-Transition Costs

In this experiment, we evaluate the costs for transitioning

from an epoch e−1 to epoch e. Recall, that at the end of epoch

e − 1 the new membership configuration is first collectively

signed, then used for the VRF-based leader-election. Once

the leader is elected, he runs RandHound with a group-size

of 16 hosts (which is secure for a 25% adversary [44]) and

broadcasts it to all validators, who then verify the result and

connect to their peers. We assume that validators already know

the state of the shard they will be validating. It is important to

mention that this process is not on the critical path, but occurs

concurrently with the previous epoch. Once the new groups

have been setup, the new shard leaders enforce a view-change.

As we can see in Figure 7, the cost of bootstrapping is

mainly due to RandHound that takes up more than 70% of

Fig. 8: Client-perceived, end-to-end latency for cross-shard

transactions via Atomix.

the total run time. To estimate the worst-case scenario, we

refer to our security analysis in Section VI-A and see that,

even in the case with 1800 hosts, an honest leader is elected

after 10 RandHound runs with high probability, which takes

approximately 3 hours. Given an epoch duration of one day,

this worst-case overhead is acceptable.

D. Client-Perceived End-to-End Latency with Atomix

In this experiment we evaluate in different shard configu-

rations, the client-perceived, end-to-end latency when using

Atomix. As shown in Figure 8, the client-perceived latency is

almost double the value of the consensus latency as there are

already other blocks waiting to be processed in the common

case. Consequently, the inclusion of the transaction in a

block is delayed. This latency increases slightly further when

multiple shards validate a transaction. The overall end-to-end

latency would be even higher if a client had to wait for output

shards to run consensus that, however, is not required.

If the client wants to directly spend the new funds, he

can batch together the proof-of-acceptance and the expenditure

transaction in order to respect the input-after-output constraint.

Overall, the client-perceived end-to-end latency for cross-

shard transactions is not significantly affected when increasing

the number of shards.

E. ByzCoinX Performance

In this experiment, we measure the performance improve-

ments of ByzCoinX over the original ByzCoin. To have a

fair comparison, each data-series corresponds to the total

size of data concurrently in the network, meaning that if

the concurrency level is 2 then there are 2 blocks of 4MB

concurrently, adding to a total of 8MB, whereas a concurrency

level of 4 means 4 blocks of 2MB each.

In Figures 9 and Table III, we see that there is a 20%
performance increase when moving from one big block to

four smaller concurrently running blocks, with a concurrent

35% decrease in the per-block consensus latency. This can

be attributed to the higher resource utilization of the system,

when blocks arrive more frequently for validation. When

the concurrency further increases, we can see a slight drop

593



Fig. 9: ByzCoinX throughput in transactions per second for

different levels of concurrency.

TABLE III: ByzCoinX latency in seconds for different con-

currency levels and data sizes.

Concurrency

Data Size 1 2 4 8

1MB 15.4 13.5 12.6 11.4
8MB 32.2 27.7 26.0 23.2

32MB 61.6 58.0 50.1 50.9

in performance, meaning that the overhead of the parallel

consensus outweighs the parallelization benefits, due to the

constant number of cryptographic operations per block.

Figure 10 illustrates the scalability of ByzCoin’s [32] tree

and fall-back flat topology, versus ByzCoinX’s more fault-

tolerant (group-based) topology and its performance when

failures occur. As expected the tree topology scales better, but

only after the consensus is run among more than 600 nodes,

which assumes an adversary stronger than usual (see Figure 5).

For a group size below 600, ByzCoinX’s communication

pattern actually performs better than ByzCoin’s. This is due

to ByzCoinX’s communication pattern that can be seen as a

shallow tree where the roundtrip from root to leaves is faster

than in the tree of ByzCoin. Hence, ByzCoin has a fixed

branching factor and an increasing depth, whereas ByzCoinX

has a fixed depth and an increasing branching factor. The effect

of these two choices leads to better latencies for a few hundred

nodes for fixed depth. The importance of the group topology,

however, is that it is more fault tolerant because when failures

occur the performance is not seriously affected. This is not true

for ByzCoin; it switches to a flat topology in case of failure

that does not scale after a few hundred nodes, due to the huge

branching factor. This experiment was run with 1MB blocks,

the non-visible data point is at 300 seconds.

F. Bandwidth Costs for State Block Bootstrapping

In this experiment, we evaluate the improvements that state

blocks offer to new validators during bootstrapping. Recall,

that during an epoch transition, a new validator first crawls

the identity blockchain, after which he needs to download only

the latest state block instead of replaying the full blockchain

Fig. 10: ByzCoinX communication pattern latency.

Fig. 11: Bootstrap bandwidth consumption with state blocks.

to create the UTXO state. For this experiment, we recon-

structed Bitcoin’s blockchain [5], [41] and created a parallel

OmniLedger blockchain with weekly state blocks.

Figure 11 depicts the bandwidth overhead of a validator that

did not follow the state for the first 100 days. As we can see,

the state block approach is better if the validator is outdated

for more than 19 days or 2736 Bitcoin blocks.

The benefit might not seem substantial for Bitcoin, but in

OmniLedger, 2736 blocks are created in less than 8 hours,

meaning that for one day-long epochs, the state block approach

is significantly better. If a peak throughput is required and

16MB blocks are deployed, we expect reduced bandwidth

consumption close to two orders of magnitude.

IX. RELATED WORK

The growing interests in scaling blockchains have produced

a number of prominent systems that we compare in Table IV.

ByzCoin [32] is a first step to scalable BFT consensus, but

cannot scale-out. Elastico is the first open scale-out DL,

however, it suffers from performance and security challenges

that we have already discussed in Section II. RSCoin [16]

proposes sharding as a scalable approach for centrally banked

cryptocurrencies. RSCoin relies on a trusted source of random-

ness for sharding and auditing, making its usage problematic

in trustless settings. Furthermore, to validate transactions, each

shard has to coordinate with the client and instead of running

BFT, RSCoin uses a simple two-phase commit, assuming that

safety is preserved if the majority of validators is honest. This

594



TABLE IV: Comparison of Distributed Ledger Systems

System Scale-Out Cross-Shard State Blocks Measured Scalability Estimated Measured
Transaction Atomicity (# of Validators) Time to Fail Latency

RSCoin [16] In Permissioned Partial No 30 N/A 1 sec
Elastico [34] In PoW No No 1600 1 hour 800 sec
ByzCoin [32] No N/A No 1008 19 years 40 sec

Bitcoin-NG [21] No N/A No 1000 N/A 600 sec
PBFT [9], [11] No N/A No 16 N/A 1 sec
Nakamoto [36] No N/A No 4000 N/A 600 sec

OmniLedger Yes Yes Yes 2400 68.5 years 1.5 sec

approach, however, does not protect from double spending

attempts by a malicious client colluding with a validator.

In short, prior solutions [16], [32], [34] achieve only two

out of the three desired properties; decentralization, long-term

security, and scale-out, as illustrated in Figure 1. OmniLedger

overcomes this issue by scaling out, as far as throughput

is concerned, and by maintaining consistency to the level

required for safety, without imposing a total order.

Bitcoin-NG scales Bitcoin without changing the consensus

algorithm by observing that the PoW process does not have to

be the same as the transaction validation process; this results

in two separate timelines: one slow for PoW and one fast

for transaction validation. Although Bitcoin-NG significantly

increases the throughput of Bitcoin, it is still susceptible to

the same attacks as Bitcoin [24], [3].

Other efforts to scale blockchains include: Tendermint [9], a

protocol similar to PBFT for shard-level consensus that does

not scale due to its similarities to PBFT, and the Lightning

Network [40], an off-chain payment protocol for Bitcoin

(also compatible to OmniLedger); it limits the amount of

information committed to the blockchain.

Chainspace [2], enhances RSCoin with a more general

smart-contract capability. Chainspace also recognizes the need

for cross-shard atomic commit but devises a rather complicated

algorithm because it chooses to have the shards run the

protocol without the use of a client, which increases the

cross-shard communication. Our approach is synergistic to

Chainspace, as we focus on an open scalable UTXO style

DL, whereas Chainspace focuses on sharded smart-contracts

and small-scale shards that can be deployed only under weak

adversaries. However, combining OmniLedger and Chainspace

has great potential to create an open, scalable smart-contract

platform that provides scalability and security under strong

adversaries.

X. LIMITATION AND FUTURE WORK

OmniLedger is still a proof of concept and has limita-

tions that we want to address in future work. First, even

if the epoch bootstrap does not interfere with the normal

operation, its cost (in the order of minutes) is significant.

We leave to future work the use of advanced cryptography,

such as BLS [6] for performance improvements. Additionally,

the actual throughput is dependent on the workload (see

Appendix C). If all transactions touch all the shards before

committing, then the system is better off with only one shard.

We leave to future work the exploration of alternative ways

of sharding, e.g.using locality measures. Furthermore, we rely

on the fact that honest validators will detect that transactions

are unfairly censored and change the leader in the case of

censorship. But, further anti-censorship guarantees are needed.

We provide a protocol sketch in Appendix A and leave to

future work its implementation and further combination with

secret sharing techniques for providing stronger guarantees.

Another shortcoming of OmniLedger is that it does not for-

mally reason around incentives of participants and focus on

the usual honest or malicious devide, which can be proven

unrealistic in anonymous open cryptocurrencies. Finally, the

system is not suitable for highly adaptive adversaries, as the

bootstrap time of an epoch is substantial and scales only

moderately, thus leading to the need for day-long epochs.

XI. CONCLUSION

OmniLedger is the first DL that securely scales-out to offer

a Visa-level throughput and a latency of seconds while pre-

serving full decentralization and protecting against a Byzantine

adversary. OmniLedger achieves this through a novel approach

consisting of three steps. First, OmniLedger is designed with

concurrency in mind; both the full system (through sharding)

and each shard separately (through ByzCoinX) validate trans-

actions in parallel, maximizing the resource utilization while

preserving safety. Second, OmniLedger enables any user to

transact safely with any other user, regardless of the shard they

use, by deploying Atomix, an algorithm for cross-shard trans-

actions as well as real-time validation with the introduction

of a trust-but-verify approach. Finally, OmniLedger enables

validators to securely and efficiently switch between shards,

without being bound to a single anti-Sybil attack method and

without stalling between reconfiguration events.

We implemented and evaluated OmniLedger and each of

its sub-components. ByzCoinX improves ByzCoin both in

performance, with 20% more throughput and 35% less latency,

and in robustness against failures. Atomix offers a secure

processing of cross-shard transactions and its overhead is min-

imal compared to intra-shard consensus. Finally, we evaluated

the OmniLedger prototype thoroughly and showed that it can

indeed achieve Visa-level throughput.

REFERENCES

[1] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman.
Solidus: An Incentive-compatible Cryptocurrency Based on Permission-
less Byzantine Consensus. CoRR, abs/1612.02916, 2016.

595



[2] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis.
Chainspace: A Sharded Smart Contracts Platform. arXiv preprint

arXiv:1708.03778, 2017.

[3] M. Apostolaki, A. Zohar, and L. Vanbever. Hijacking Bitcoin: Large-
scale Network Attacks on Cryptocurrencies. 38th IEEE Symposium on

Security and Privacy, May 2017.

[4] Bitnodes. Bitcoin Network Snapshot, April 2017.

[5] Blockchain.info. Blockchain Size, Feb. 2017.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. In International Conference on the Theory and Application of

Cryptology and Information Security, pages 514–532. Springer, 2001.

[7] J. Bonneau, J. Clark, and S. Goldfeder. On Bitcoin as a public
randomness source. IACR eprint archive, Oct. 2015.

[8] M. Borge, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
and B. Ford. Proof-of-Personhood: Redemocratizing Permissionless
Cryptocurrencies. In 1st IEEE Security and Privacy On The Blockchain,
Apr. 2017.

[9] E. Buchman. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains, 2016.

[10] V. Buterin, J. Coleman, and M. Wampler-Doty. Notes on Scalable
Blockchain Protocols (verson 0.3), 2015.

[11] C. Cachin. Architecture of the Hyperledger blockchain fabric. In
Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

[12] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantino-
ple: Practical asynchronous Byzantine agreement using cryptography. In
19th ACM Symposium on Principles of Distributed Computing (PODC),
July 2000.

[13] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In 3rd

USENIX Symposium on Operating Systems Design and Implementation

(OSDI), Feb. 1999.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst., 31(3):8:1–8:22, Aug. 2013.

[15] K. Croman, C. Decke, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer, D. S. an, and R. Wattenhofer. On
Scaling Decentralized Blockchains (A Position Paper). In 3rd Workshop

on Bitcoin and Blockchain Research, 2016.

[16] G. Danezis and S. Meiklejohn. Centrally Banked Cryptocurrencies. 23rd

Annual Network & Distributed System Security Symposium (NDSS), Feb.
2016.

[17] S. Deetman. Bitcoin Could Consume as Much Electricity as Denmark
by 2020, May 2016.

[18] DeterLab Network Security Testbed, September 2012.

[19] J. R. Douceur. The Sybil Attack. In 1st International Workshop on

Peer-to-Peer Systems (IPTPS), Mar. 2002.

[20] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The Performance of
Consistent Checkpointing. In 11th Symposium on Reliable Distributed

Systems, pages 39–47. IEEE, 1992.

[21] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-
NG: A Scalable Blockchain Protocol. In 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 16), Santa Clara,
CA, Mar. 2016. USENIX Association.

[22] M. K. Franklin and H. Zhang. A Framework for Unique Ring Signatures.
IACR Cryptology ePrint Archive, 2012:577, 2012.

[23] A. Gervais, G. Karame, S. Capkun, and V. Capkun. Is Bitcoin a
decentralized currency? IEEE security & privacy, 12(3):54–60, 2014.

[24] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun. Tampering
with the Delivery of Blocks and Transactions in Bitcoin. In 22nd ACM

SIGSAC Conference on Computer and Communications Security, pages
692–705. ACM, 2015.

[25] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling Byzantine Agreements for Cryptocurrencies. Cryptology ePrint
Archive, Report 2017/454, 2017.

[26] The Go Programming Language, Sept. 2016.

[27] R. Guerraoui. Non-blocking atomic commit in asynchronous distributed
systems with failure detectors. Distributed Computing, 15(1):17–25,
2002.

[28] T. Hanke and D. Williams. Intoducing Random Beascons Using
Threshold Relay Chains, Sept. 2016.

[29] E. G. S. Ittay Eyal. It’s Time For a Hard Bitcoin Fork, June 2014.

[30] I. Keidar and D. Dolev. Increasing the resilience of atomic commit,
at no additional cost. In Proceedings of the fourteenth ACM SIGACT-

SIGMOD-SIGART symposium on Principles of database systems, pages
245–254. ACM, 1995.

[31] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A
Provably Secure Proof-of-Stake Blockchain Protocol. Cryptology ePrint
Archive, Report 2016/889, 2016.

[32] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford. Enhancing Bitcoin Security and Performance with Strong
Consistency via Collective Signing. In Proceedings of the 25th USENIX

Conference on Security Symposium, 2016.

[33] Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block chain
protocols. In International Conference on Financial Cryptography and

Data Security, pages 528–547. Springer, 2015.

[34] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena.
A Secure Sharding Protocol For Open Blockchains. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’16, pages 17–30, New York, NY, USA, 2016. ACM.

[35] S. Micali, S. Vadhan, and M. Rabin. Verifiable Random Functions. In
Proceedings of the 40th Annual Symposium on Foundations of Computer

Science, FOCS ’99, pages 120–130. IEEE Computer Society, 1999.

[36] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[37] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford. CHAINIAC: Proactive Software-
Update Transparency via Collectively Signed Skipchains and Verified
Builds. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1271–1287. USENIX Association, 2017.

[38] R. Pass and E. Shi. Hybrid Consensus: Efficient Consensus in the
Permissionless Model. Cryptology ePrint Archive, Report 2016/917,
2016.

[39] R. Pass, C. Tech, and L. Seeman. Analysis of the Blockchain Protocol
in Asynchronous Networks. Annual International Conference on the

Theory and Applications of Cryptographic Techniques (EUROCRYPT),
2017.

[40] J. Poon and T. Dryja. The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments, Jan. 2016.

[41] Satoshi.info. Unspent Transaction Output Set, Feb. 2017.

[42] C. P. Schnorr. Efficient signature generation by smart cards. Journal of

Cryptology, 4(3):161–174, 1991.

[43] B. Schoenmakers. A simple publicly verifiable secret sharing scheme
and its application to electronic voting. In IACR International Cryptol-

ogy Conference (CRYPTO), pages 784–784, 1999.

[44] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford. Scalable Bias-Resistant Distributed Random-
ness. In 38th IEEE Symposium on Security and Privacy, May 2017.

[45] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford. Keeping Authorities “Honest or Bust”
with Decentralized Witness Cosigning. In 37th IEEE Symposium on

Security and Privacy, May 2016.

[46] B. Wiki. Proof of burn , Sept. 2017.

[47] Wikipedia. Atomic commit, Feb. 2017.

[48] G. Wood. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Ethereum Project Yellow Paper, 2014.

APPENDIX A

CENSORSHIP RESISTANCE PROTOCOL

One issue existing in prior work [32], [34] that OmniLedger

partially addresses is when a malicious shard leader censors

transactions. This attack can be undetectable from the rest

of the shard’s validators. A leader who does not propose a

transaction is acceptable as far as the state is concerned, but

this attack can compromise the fairness of the system or be

used as a coercion tool.

For this reason, we enable the validators to request trans-

actions to be committed, because they think the transactions

are censored. They can either collect those transactions via the

normal gossiping process or receive a request directly from a

client. This protocol can be run periodically (e.g., once every

596



10 blocks). We denote N = 3f+ validators exist where at

most f are dishonest.

Fig. 12: Anti-censorship mechanism OmniLedger

The workflow (Figure 12), starts 1© with each validator

proposing a few (e.g 100) blinded transactions for anti-

censorship, which initiates a consensus round. The leader

should add in the blocks all the proposals, however he can

censor f of the honest proposers. Nevertheless, he is blind

on the f inputs he has to add from the honest validators he

will reach consensus with. Once the round ends, there is a

list 2© of transactions that are eligible for anti-censorship,

which is a subset of the proposed. As the transactions are

blinded, no other validator knows which ones are proposed

before the end of the consensus. Each validators reveals 3© his

chosen transactions, the validators check that the transactions

are valid and run consensus on which ones they expect the

leader to propose. The leader is then obliged to include 4© the

transactions that are consistent with the state, otherwise the

honest validators will cause a view-change [13].

APPENDIX B

BREAKING THE NETWORK MODEL

Although DL protocols that assume a non-static group

of validators have similar synchrony [34], [36] assumptions,

in this section we discuss what can happen if the adversary

manages to break them [3]. In such a case we can detect the

attack and provide a back-up randomness generation mecha-

nism which is not expected to scale but guarantees safety even

in asynchrony.

Given that RandHound guarantees safety without the need

for synchrony an adversary manipulates the network can at

most slow down any validator he does not control, winning

the leadership all the time. However this does not enable the

adversary to manipulate RandHound, it just gives him the

advantage of being able to restart the protocol if he does not

like the random number. This restart will be visible to the

network, and the participants can suspect a bias-attempt, when

multiple consecutive RandHound rounds start to fail.

OmniLedger can provide a “safety valve” mechanism in

order to mitigate this problem. When 5 RandHound views fail

in a row, which under normal circumstances could happen

with less than 1% probability, the validators switch from

RandHound to running a fully asynchronous coin-tossing

protocol [12] that uses Publicly Verifiable Secret Sharing [43],

in order to produce the epoch’s randomness. This protocol

scales poorly (O(n3)), but it will be run when the network is

anyway under attack and liveness is not guaranteed, in which

case safety is more important.

APPENDIX C

PROBABILITY OF CROSS-SHARD TRANSACTIONS

This section explores the limitations cross-shard transac-

tions pose to the performance of the system. When splitting

the state into disjoint parts, the common practice [16], [34]

is to assign UTXOs to shards, based on the first bits of their

hash. For example, one shard manages all UTXOs whose first

bit is 0, and the second shard all UTXOs whose first bit is

1. Then each shard is managed by a group of validators who

keep the state consistent and commit updates.

For an intrashard transaction we want all the inputs and

outputs of the transaction to be assigned at the shame shard.

The probability of assigning a UTXO in a shard is uniformly

random from the randomness guarantees of cryptographic hash

functions. Let m be the total number of shards, n the sum of

input and output UTXOs and k the number of shards that need

to participate in the cross-shard validation of the transaction.

The probability can be calculated as:

P (n, k,m) =



















1, n = 1, k = 1

0, n = 1, k = 1
m−k
m

P (n− 1, k − 1,m)+
k
m
P (n− 1, k,m), n = 1, k > 0

(3)

For a typical transaction with two inputs and one output and

a three-shard setup, the probability of a transaction being

intra-shard is P (3, 1, 3) = 3.7%, rendering the assumption

that transactions touch only one shard [34] problematic. As a

result if all transactions had this format the expected speed-

up from an 1-shard to a 4-shard configuration would be

4 ∗ (0.015 + 0.328
2

+ 0.56
3

+ 0.09
4

) = 1.56 Generalizing this

we should expect that the speed-up will be lower than the

one of experiment VIII, depending on the average amount of

inputs and outputs and the total number of shards.

APPENDIX D

ATOMIX FOR STATE-FULL OBJECTS

The original Atomix protocol in Section IV implements a

state machine as depicted in Figure 13

Fig. 13: State-Machine for state-full objects. Pessimistic lock-

ing is necessary

To enable the use of such an algorithm in smart contracts

we need to account on the fact that a smart-contract object

597



is mutable and can be accessed concurrently for a legitimate

reason. As a result we need to modify the algorithm in two

ways: a) the Unlock transactions should be send to both Input

and Output shards and b) the state machine should have one

more state as the shards need to wait for confirmation before

unlocking. This is necessary because there is the chance that

the (state-full) object will be accessed again and this could

violate the input-after-output dependency if Atomix decides

to abort.

Fig. 14: State-Machine for state-full objects. Pessimistic lock-

ing is necessary

In Figure 14, we can see that an object will Lock for a

specific transaction (T) and will reject any concurrent T’, until

T is committed and the new state S’ is logged, or aborted and

the old state S is open for change again.

598


