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Omnimagnet: An Omnidirectional Electromagnet for
Controlled Dipole-Field Generation

Andrew J. Petruska and Jake J. Abbott

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA

An Omnimagnet is an omnidirectional electromagnet comprising a spherical ferromagnetic core inside of three orthogonal nested
solenoids. It generates a magnetic dipole field with both a variable dipole-moment magnitude and orientation with no moving parts.
The magnetic and physical properties (e.g., dipole moment, weight, resistance, and inductance) of any Omnimagnet are derived.
These general relationships are used to design an optimal Omnimagnet subject to the constraints that it has the same dipole-moment
per applied current in any direction, each solenoid has no quadrupole contribution to the magnetic field, and the spherical core size
maximizes the strength of the resulting dipole field. This optimal design is analyzed using FEA tools and is verified to be dipole-like
in nature. Finally, the optimal design is constructed and its utility is demonstrated by driving a helical capsule-endoscope mockup
through a transparent lumen.

Index Terms— Electromagnets, magnetic dipoles, magnetic manipulation, spherical core.

I. INTRODUCTION

MAGNETIC microscale and mesoscale devices (both
tethered and untethered) can be manipulated with an

externally generated magnetic field, which applies a combina-
tion of force and torque to the device without any mechanical
connection. Although a combination of permanent magnets
and electromagnets can be used to produce the magnetic field
required for a manipulation task, some tasks seem better suited
to either permanent-magnet or electromagnet systems. Because
they have more direct real-time control of the applied magnetic
field, electromagnet systems have been used for multidegree-
of-freedom levitation and position/orientation control [1]–[8].
Permanent magnets, which require no electrical power to
generate a strong field, have been used for pulling and
rolling tasks in which the environment provides some struc-
ture [9]–[12], as well as for quasi-static pointing tasks of
tethered devices, such as magnetic catheters [13]. Because
both attractive and lateral forces can be generated between a
rotating dipole source and a sympathetically rotating magnetic
device, a rotating dipole field could be more effective for
rolling/screwing propulsion than the rotating uniform field
generated by many electromagnet systems [14]. Finally, it is
challenging to scale many laboratory electromagnetic systems
that surround their workspace (e.g., Helmholtz coils) to a
size that would be required for medical applications, whereas
manipulation systems that utilize dipole fields can be located
adjacent to their workspace.

An omnidirectional electromagnet, formed by any set of
collocated electromagnets that have dipole moments span-
ning R

3, combines the real-time control of field strength
associated with traditional electromagnets and the control of
dipole orientation associated with rotating permanent magnets.
In this paper, we describe the Omnimagnet, a subclass of
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Fig. 1. Assembled Omnimagnet forms a cube constructed of three nested
orthogonal solenoids surrounding a spherical core of ferromagnetic material.
Each square-cross section solenoid has a different inner width W , winding
thickness T , length L , and associated current density J .

omnidirectional electromagnets that comprise a ferromagnetic
core surrounded by three orthogonal solenoids. Specifically,
we optimize an Omnimagnet comprising a spherical core and
square-cross section solenoids (Fig. 1), but other design varia-
tions could be considered. An Omnimagnet creates a fully con-
trollable dipole-like magnetic field, contains no moving parts,
and becomes inert when powered down—reducing the safety
concerns associated with permanent-magnet field sources. The
concept of three nested solenoids has been explored as a
method of magnetic localization [15] and inductive power
coupling [16], but never with a spherical core, and never as a
dipole-like magnetic manipulator.

This paper is structured as follows. First, the general design
problem for an Omnimagnet is presented. Next, the mag-
netic fields generated by the three solenoids are described
using a multipole expansion of the magnetostatic equations,
and the contribution of the ferromagnetic core is quantified.
The optimization of a specific Omnimagnet follows, and the
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design is described. The field generated by this design is
then compared with a dipole-field approximation. The inverse
solution for determining the dipole moment, and thus the
currents, required to produce a desired static or rotating field
at a given location is provided. Finally, the capability of the
Omnimagnet for the control of untethered magnetic devices
is then demonstrated by driving a mockup capsule endoscope
through a lumen. This paper expands on our result originally
presented in [17] by providing: a more detailed treatment
of the quadruple minimization, methods for calculating other
relevant mechanical, electrical, and magnetic properties, and
an analysis of how extraneous magnetic fields will affect the
core magnetization.

II. DESIGN AND OPTIMIZATION

The general concept of an Omnimagnet is broad, consisting
of three orthogonal nested solenoids surrounding a ferromag-
netic core; however, design choices must be made to realize
and optimize a physical Omnimagnet. First, we chose the
shape of the solenoids to be square-cross sectional sleeves
to result in a dense packing (Fig. 1). Next, we chose the core
to be a sphere because a spherical core has three desirable
properties [18].

1) A sphere does not have a preferential magnetization
direction.

2) When placed in a uniform field (similar to the field in
the center of a solenoid), a sphere produces a pure dipole
field.

3) The average applied magnetic field within a sphere is
equal to the applied magnetic field at the center of the
sphere.

We chose that the dipole-moment generated in each direction,
which consists of the contribution of both an individual
solenoid and the magnetization of the core due to that solenoid,
should be the same when an equal electrical current density
is applied through each solenoid. Other geometric design
choices (e.g., cylindrical solenoids or a cubic core) or dipole-
moment relationships (e.g., scaling the dipole moment of
each solenoid with its heat-transfer capability), could also
be pursued using the general framework for Omnimagnet
design outlined below. Finally, we constrain our design to
use a single wire gauge for all solenoids, which means that
an equal electrical current density is synonymous with an
equal current; current and current density are related by the
cross sectional area of the wire used. Throughout this paper,
I will be used to refer to currents in units {A} and J will
be used to refer to current density in units {A·m−2}. Because
current density is invariant to wire selection, the optimization
for shape is performed using J ; general discussion, how-
ever, will use I , as it is the more natural parameter from
a control perspective. The final design of the Omnimagnet
shown in Fig. 1 requires ten total constraints (the length,
width, and thickness of each solenoid, and the radius of the
core).

The magnetic field generated by the Omnimagnet can
be represented by the field contributed by the magnetized
spherical core superimposed with the field contributed by

the solenoids. Modeling the total field can be performed using
FEA tools with a resolution limited by the number of elements
used. Alternatively, an analytical dipole approximation can be
used to model the field. The dipole approximation provides
a closed-form vector equation that can be used to calculate
the field generated at a point, or inverted to determine the
current necessary to create a particular field. The closer the
Omnimagnet is to generating a pure dipole field, the better
the algorithms based on this approximation will perform
[12], [14], [15], [19], [20]. By correctly choosing the
solenoids’ aspect ratios, the dipole-approximation error can
be minimized as a part of the design optimization.

A. Solenoid Multipole Field Expansion

For positions outside of the Omnimagnet’s minimum-
bounding sphere (i.e., the smallest sphere that the Omnimagnet
can fit within), the solenoids’ fields can be represented by a
multipole expansion of a vector potential [18]

B (p) = ∇ × � (p) (1)

� (p) = μ0

4π

∞∑

n=0

1

‖p‖n+1

∫

Vs

J (r) ‖r‖n Pn
(
p̂ · r̂

)
dV (2)

where μ0 = 4π ×10−7 T·m·A−1 is the magnetic permeability
of free space, p is the vector (with associated unit vector p̂)
from the center of the Omnimagnet to the point of interest in
units {m}, r is the vector (with associated unit vector r̂) from
the center of the Omnimagnet to the point in the solenoid being
integrated, J (r) is the current density vector that points in the
direction of the current flow at location r, Vs represents the
solenoid’s volume, and Pn () are the Legender polynomials.
Since the divergence of a magnetic field through a closed sur-
face must be zero, all of the even terms (those corresponding
to P0, P2, . . .) must be zero, leaving only the odd terms. The
first nonzero term in the multipole expansion (corresponding
to P1) is the dipole field, which can be expressed in a
coordinate-free form

B(p) = μ0

4π ‖p‖3

(
3p̂p̂T − I

)
m (3)

where I is a 3×3 identity matrix and m is the dipole moment
in units {A·m2}. The dipole moment for a current density of
any configuration is [18]

m = 1

2

∫

Vs

r × J(r)dV . (4)

The dipole moment for a square-cross section solenoid, as
shown in Fig. 1 with uniform current density (i.e., the current
density does not vary along the thickness or length of the
solenoid) is

m = J L4

6

(
β3

2 − β3
1

)
l̂ (5)

where J = ‖J‖, L is the axial length of the solenoid (with
associated axial unit vector l̂), and β1 = W/L and β2 =
(W+2T )/L, respectively, describe the inner-width-to-length and
outer-width-to-length aspect ratios.
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The maximum dipole moment that any electromagnet with
a bounding cube of edge length L containing no ferromagnetic
material could generate in one direction can be calculated by
(5) with β1 = 0 and β2 = 1, and is J L4/6. The maximum
theoretical dipole moment that could be expected for any cubic
omnidirectional electromagnet with edge length L containing
no ferromagnetic material is thus 1/3 of the unidirectional case:
J L4/18; this quantity is used throughout this paper to normal-
ize the strength for a nondimensional optimization, although
constructing such an idealized omnidirectional electromagnet
would be very challenging.

We show in [21] that by varying the aspect ratios of a
rectangular permanent magnet, the dipole-field approximation
error can be minimized. The approach finds the geometry that
sets the next term in the multipole expansion, the quadrupole
term, to zero in the scalar potential of the magnetic field. Using
the same technique, but using the vector potential instead
of a scalar potential, the magnetic field of each solenoid
can be shaped to produce a dipole-like field by removing
the quadrupole contribution to the multipole expansion. The
quadrupole term for a square-cross section solenoid of uniform
current density corresponds to the P3 term in the expansion

Bquad(p) = μ0

4π

1

‖p‖5

((
35

(
m̂Tp̂

)2 − 15

)
p̂p̂T

−
(

15
(

m̂Tp̂
)2 − 3

)
I

)
mquad (6)

where mquad is the quadrupole moment, given by

mquad = 3

40
L2

(
β2

1 + β4
2 + β1β

3
2

β2
1 + β1β2 + β2

2

− 5

3

)
m. (7)

The values of β1 and β2 that set (7) to zero correspond
to geometries with minimal dipole-field approximation error.
Letting β1 = αβ2 and substituting into the polynomial in (7)
and setting to zero gives an alternate equation for zero quadru-
ple moments

3β4
2 (α4 + α3 + α2 + α + 1) − 5β2

2 (α2 + α + 1) = 0. (8)

Inspection of (8) shows there is no quadrupole moment when
β1 = β2 = 0 (no magnet), when β1 = β2 = α = 1 (thin
walled shell), and when β1 = 0, β2 = √

5/3, α = 0 (no inner
hole). As the definition of β1 and β2 requires β1 ≤ β2, the
only physically meaningful solutions to (8) lie in the range
β1 ∈ (0, 1) and β2 ∈ (1,

√
5/3), which correspond to geome-

tries that are shorter than they are wide (L < W + 2T ). A fit
of the roots of (8) can be used to provide an approximation
of the relationship between β1 and β2

β2 ≈ ((5/3)
n/2 − βn

1 )
1/n (0 ≤ β1 ≤ 1)

n = 2 log 2

log (5/3)
≈ 2.714 (9)

which provides solutions to (8) accurate to within 0.17% over
the range β1 ∈ (0, 1).

B. Core Dipole-Field Contribution

Since the core is spherical and placed in the nearly uniform
field inside of the solenoid, it is assumed that it will magnetize

uniformly and contribute a pure dipole field (it was verified
numerically post facto that the root-mean-squared deviation in
the magnetization was less than 7% of the mean).

The dipole moment of a low coercivity, low remanence, and
high permeability (χ � 1) spherical core, when magnetized
in its linear region (i.e., below magnetic saturation), is

mc = MVc =
(

χ

1 + 1
3χ

B
μ0

)(
4π

3
R3

c

)
≈ 4π R3

c

μ0
Bc (10)

where Rc is the radius of the core, M is the magnetization
in units {A·m−1}, the overbar represents a quantity averaged
over the core volume Vc, and Bc is the applied magnetic field
at the center of the core, which is a linear combination of
the field due to each solenoid. The applied field from each
square-cross section solenoid with uniform current density J ,
length L, and axis l̂, calculated by the Biot–Savart law, is

Bc = 2L Jμ0

π

β2∫

β1

atan

(
1√

1 + 2ζ 2

)
dζ l̂. (11)

By combining the dipole moments due to the magnetized
core and each of the solenoids, the total dipole moment of the
Omnimagnet m = mx + my + mz is thus

m =
∑

i∈{x,y,z}
Ji

(
8Li R3

c

βi,2∫

βi,1

atan

(
1√

1 + 2ζ 2

)
dζ

+ L4
i

6

(
β3

i,2 − β3
i,1

))
l̂i

= M

⎡

⎣
Jx Aw,x

Jy Aw,y

Jz Aw,z

⎤

⎦ = MI (12)

where the indices x , y, and z correspond to the inner, middle,
and outer solenoids, respectively, and without loss of gener-
ality, Aw is the conductor (e.g., wire) area used to wind the
solenoid, and M is a linear transformation that maps the three
applied currents in the array I to the dipole moment m. Since
the matrix M is only a function of the solenoids’ geometries,
the optimization problem can be split into four steps: 1) choose
the maximum current densities Imax in each direction based on
thermal or amplifier constraints; 2) determine the geometric β
factors to equalize the components of MImax; 3) optimize the
overall size to a set of physical and operational constraints
(e.g., field strength, field gradient, weight, and electrical time
constant); and 4) finally, tailor the wire gage for manufactura-
bility or amplifier voltage/current limitations.

C. Dipole-Moment Equalization

The optimal geometry for the Omnimagnet corresponds
to the geometric ratios that maximize the dipole-moment
generated in each direction, have the same ratio of dipole
moment to maximum current density in each direction, and
have no quadruple moment. This is a constrained optimization
problem, and can be nondimensionalized by dividing all of
the lengths by Lmax (the edge length of a minimum-bounding
cube) and the moments by mref = JmaxL4

max/18 (the maximum
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Fig. 2. Optimal geometry for a no-quadrupole Omnimagnet. The dipole
moments have been normalized by J L4

max/18 and have a maximum at a
core-diameter-to-outer-Omnimagnet-dimension ratio 2Rc/Lmax = 0.60. The
table provides the geometric ratios that describe the shape of the three nested
solenoids that correspond to this optimal configuration. All length parameters
are normalized by the outer Omnimagnet cubic length Lmax.

no-ferromagnetic-material dipole moment introduced earlier).
The constraints can be simplified because, from (7), the length
of each solenoid must be shorter than its outer width. Thus,
the objective is to maximize the dipole moment magnitude
‖m‖, which is subjected to the following.

1) Equation (7) equals zero (i.e., the configuration has no
quadrupole moment).

2) ‖mx‖/mref = ‖my‖/mref = ‖mz‖/mref (i.e., omnidi-
rectionality).

3) Wx = 2Rc (i.e., the core diameter is the same as the
inner solenoid’s inner width).

4) Wy = Wx + 2Tx (i.e., the inner solenoid’s outer width
is the same size as the middle solenoid’s inner width).

5) Wz = Wy + 2Ty (i.e., the middle solenoid’s outer width
is the same size as the outer solenoid’s inner width).

This optimization is performed using Rc as the free para-
meter (Fig. 2). There is a maximum that occurs when the
core diameter is 60% of Lmax. Although the magnitude of
the dipole moment in each direction is the same for the
same applied current, the percentages of the dipole-moment
attributed to the core or the windings are different for each
solenoid; the percentage of the dipole moment from the
core/windings is 41/59, 28/72, and 21/79 for the inner, middle,
and outer solenoids, respectively. The optimized configuration
has dipole-moment magnitudes that are 93% of what could be
theoretically expected with no ferromagnetic material and no
voids (an unrealizable geometry), and 22% greater than the
realizable geometry of three nested solenoids with no ferro-
magnetic core (but with significantly less power consumption
and more heat-transfer surface area). The optimal design’s
dipole moment is

m = 61.86 × 10−3 L4
z J

= 51.45 × 10−3 L4
maxJ. (13)

Solutions to the right of the maximum in Fig. 2 correspond
to geometries with more inert (i.e., noncurrent-energized)
material and will produce less heat and require less power than
the corresponding geometry to the left of the optimal point.
The flatness of the maximum indicates that variations about
the optimal point will not substantially affect the performance

Fig. 3. Assembled Omnimagnet used in the testing described in this
paper. The core used is 100 mm, which is 57% of Lmax = 176 mm. The
deviations from Fig. 2 are due to reoptimizing with 1 mm airgaps between
the components for assembly.

of the resulting Omnimagnet. Fortunately, the solenoids are
shorter than they are wide, which allows paths for conductors
and coolant to reach the middle and inner solenoids, making
the implementation of this design feasible.

D. Prototype

An Omnimagnet was constructed using a 100 mm diameter
spherical Nickel-Iron (ASTM A753-08-K94840) core. The
core material was chosen because it has a high magnetic
permeability, a low magnetic remanence, and a low magnetic
coercivity (i.e., it magnetizes easily but does not remain
magnetized when the magnetizing field is removed). The
solenoids were constructed using 16 AWG square self-bonding
copper wire from MWS Wire Industries, Inc. The optimization
was repeated including a 1 mm spacing between each of
the components for assembly. The slightly modified optimiza-
tion did not change the shape of the coils substantially but
shifted the optimal core size to 57% of the edge length of
the minimum-bounding cube, which is Lmax = 176 mm.
The additional empty space also reduced the overall strength
of the design from 93% to 87% of mref. Because of the
quantization in lengths and widths inherent with any wind-
ing, the constructed Omnimagnet has slight variations in the
dipole-moment strengths of each solenoid and has success-
fully minimized, but not eliminated, the quadrupole term
(mquad ≈ 0.04m). The prototype constructed is shown in
Fig. 3, with the table providing its dimensions; the dipole-
moment per conductor-current is calculated to be 25.1,
25.8, and 26.3

(
A · m2

)
/A for the inner, middle, and outer

solenoids, respectively, which form the diagonal entries of M.
The field at the surface with 1 A applied is measured to be
5.6, 4.7, and 3.6 mT for the inner, middle, and outer solenoids,
respectively; at 12 cm from the surface the field is 0.6 mT
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Fig. 4. Field shape (top, dotted) and magnitude (top, solid and color contour), and field error relative to the dipole approximation (bottom) are shown. The
distances are normalized by the radius of a minimum-bounding sphere:

(√
3/2

)
Lmax. In the top row, the innermost contour line corresponds to ‖B‖ = 64μ0 ‖m‖,

and each successively larger contour corresponds to a halving in field magnitude, with the outermost contour corresponding to ‖B‖ = 4μ0 ‖m‖.

for each. The inductance for each solenoid in the assembled
Omnimagnet was measured to be 120, 107, and 78 mH for
the inner, middle, and outer solenoids, respectively.

Since each solenoid in the Omnimagnet has a different
geometry, the magnetic field produced by each solenoid
will not have exactly the same shape for positions close
to the Omnimagnet. To understand the subtle differences in
field shape, FEA simulations were performed using Ansoft
Maxwell 14.0. Since the core is magnetized in the linear region
and the solenoids are orthogonal, solenoid–solenoid magnetic
coupling is negligible, so in these simulations only one of the
solenoids is energized at a time. The results of the simulation
(field strength, field shape, and percent error from the point-
dipole approximation) for each solenoid are shown in Fig. 4.
As the outermost solenoid is the largest, it is responsible for
the majority of the field deviations close to the Omnimagnet.
The field in each direction rapidly reduces to a pure dipole field
with distance; the deviations are comparable to non-spherical
permanent magnets [21].

III. EFFECT OF ADJACENT MAGNETIC SOURCES

Because the Omnimagnet contains a spherical ferromagnetic
core, any adjacent magnetic source (e.g., a permanent magnet

used in a magnetic tool) will slightly magnetize the core,
causing the resulting dipole moment of the Omnimagnet to be
perturbed. The effect of the external field on the core is given
by (10) where Bc = Bc,p is given by the value of the external
field that is perturbing the magnetization at the center of the
core. Due to the linearity of the magnetics equations when the
core is unsaturated, the resulting Omnimagnet dipole moment
is the sum of the original desired moment and the perturbed
moment

m = MI + 4π R3
c

μ0
Bc,p . (14)

To account for perturbing field sources, it is necessary to
subtract their effect from the desired dipole moment prior to
calculating the currents required.

IV. PHYSICAL PROPERTIES

The primary design of an Omnimagnet is focused on the
optimization of its magnetic properties. However, any physical
system will have to be designed around other limitations,
such as weight, electrical resistance, electrical inductance, and
heating limits.
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A. Weight

The weight of the Omnimagnet is purely a function of
volume

W = ρcore
4π R3

c

3
+ ρs

∑

i∈{x,y,z}
L3

i (β
2
i,2 − β2

i,1) (15)

where ρcore and ρs are the densities of the core and solenoid
material, respectively, in units (kg·m−3).

B. Resistance and Heating/Cooling Limits

The electrical resistance of each solenoid is a function of
both the volume and the wire size chosen

R = ρwηL3

A2
w

(β2
2 − β2

1 ) (16)

where ρw is the resistivity of the wire in units (
·m), Aw is
the cross-sectional area of the conductor used, and η describes
the packing density of the conductor (1 for square wire and
π/4 for round wire). The resistance of the Omnimagnet system
can be described by the diagonal matrix R, which is formed
by packing each coil’s resistance along the diagonal. With this
definition the power lost to Joule heating becomes

q̇gen = IT
RI. (17)

For the Omnimagnet to be operating at thermal equilib-
rium, the heat generated q̇i,gen must be balanced by the heat
conducted or convected from the coil to the environment via
a fluid (e.g., air, transformer oil). The heat transfer rate is a
function of surface area and temperature difference

q̇i,out = 2hi L2
i

(
β2

i,2 − β2
i,1 + 2(βi,2 + βi,1)

)
�Ti (18)

where h describes the total heat transfer coefficient and
�T is the temperature difference between the coil and the
environment. The equilibrium temperature is reached when
the heat generated by Joule heating is balanced by the heat
convected out of the system, which determines the maximum
current density

Ji,max =
√√√√ hi�Ti

Lmaxρw

2(β2
i,2 − β2

i,1 + 2(βi,2 + βi,1))

(Li/Lmax)(β2
i,2 − β2

i,1)
. (19)

From the definition of the Nusselt number and assuming
forced convection in a channel, we have h ∝ L−1, which
implies Jmax ∝ L−1

max. The maximum dipole moment that can
be generated is thus

mmax = MJmax ∝ L3
max (20)

which is the same scaling as would be expected for a per-
manent magnet. The magnetic field generated scales homo-
thetically and the field gradients, which are proportional to
the force applied to an adjacent magnet, scale inversely
with Lmax.

C. Inductance and Time Constant

The inductances, and therefore time constants, of the
Omnimanget solenoids are difficult to calculate exactly
because of their shape and the presence of the spherical core.
However, an approximation can be derived that will suffice
for use in Omnimagnet design. The approach separates the
problem into two parts: the inherent inductance in the solenoid
due to the windings, and the additional inductance due to the
spherical core. As shown in the derivation provided in the
Appendix, the inductance L can be written as a function of
relative solenoid shape scaled by a function of solenoid size

L ≈ μ0ηL5

6π A2
w

f1(β1, β2, βc) (21)

f1(β1, β2, βc) = (β3
2 − β3

1 )

1/2∫

−1/2

β2∫

β1

f2(ζ1, ζ2)dζ1dζ2

+ πβ3
c (β2 − β1)

β2∫

β1

f2(ζ1, 0)dζ1

f2(ζ1, ζ2) = arctan

⎛

⎝ 1 + 2ζ2√
(1 + 2ζ2)2 + 2ζ 2

1

⎞

⎠

+ arctan

⎛

⎝ 1 − 2ζ2√
(1 − 2ζ2)2 + 2ζ 2

1

⎞

⎠

where βc is the ratio of core diameter to solenoid length.
The calculated inductances for the as-built configuration are
163, 110, and 82 mH, for the inner, middle, and outer
solenoids, respectively. This is within 35% of the mea-
sured values reported above, indicating reasonable agreement
between the approximation and the measurement. The values
of f1 for the optimal geometry defined earlier are 0.372,
0.089, and 0.037 for the inner, middle, and outer solenoids,
respectively.

The time constant τ for each solenoid is

τ = L
R

≈ L2 μ0

2πρw

f1(β1, β2, βc)

β2
2 − β2

1

(22)

Although the system resistance and inductance can be tailored
through wire selection, the time constant is independent of
wire choice. Since the equations for time constant and dipole
moment are functions of the same variables, it is not possible
to design the two properties independently.

V. FIELD CONTROL

Fundamentally, the Omnimagnet is a magnetic field source
with three control inputs (the current applied to each solenoid),
which can be used to generate a desired magnetic field at a
location in space. Since the magnetic field generated is closely
represented by a dipole field, at each location in space it
will produce both a field and spatial derivatives in the field.
With a single Omnimagnet with 3 DoF, it is not possible to
independently control field and field gradient simultaneously.

To determine the dipole moment m required by the Omn-
imagnet to produce a desired field B at some point p,
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Fig. 5. Propulsion of a helical capsule at 10 mm·s−1 through a lumen located 120 mm from the surface of the Omnimagnet, which is applying a rotating
magnetic field at the location of the helical capsule. Left: Numerical simulation with resulting solenoid currents (center). Right: Experimental demonstration
with a capsule mockup.

the vector dipole equation (3) must be inverted. Using the
dipole field analysis in [12], it can be shown that the inverse
exists of the form

m = 2π

μ0
‖p‖3(3p̂p̂T − 2I

)
B. (23)

Combining with (12), the currents required are thus

I = 2π

μ0
‖p‖3

M
−1(3p̂p̂T − 2I

)
B. (24)

VI. REMOTE MANIPULATION WITH AN OMNIMAGNET

At steady state, the torque applied by a magnetic field on
a magnetic tool will tend to align the tool with the field. This
can be used to reduce the control problem from controlling
torque directly, and thus requiring both tool orientation and
position, to controlling field directly, and thus requiring only
tool position. Controlling the propulsion of a ball or helical
screw with this approach has been explored using a rotating
permanent magnet [12]. However, when a permanent magnet
is used to create a rotating field, both the magnitude and
rotation rate of the field vary elliptically at the tool location;
thus, the rotational speed of the permanent magnet needs to
be constantly updated to produce a constant tool rotation rate
[12]. Since the Omnimagnet can produce a desired field at a
specific point in space, it is possible to create a rotating field
with angular velocity ω without the elliptical modulation in
magnitude associated with rotating permanent magnets. This
can be accomplished by updating the desired B in (24) as

B[k + 1] = eS(ω�t)B[k] (25)

where �t is the time step of the control system and the
matrix exponential of a skew-symmetric matrix creates a
rotation matrix [22]. Thus, the same steady-state rotating
control approaches can be performed by an Omnimagnet using
(24) and (25) in which, unlike permanent magnets, both the
desired field magnitude and orientation are specified.

A rotating magnetic field was used to propel a threaded
capsule endoscope mockup down a transparent lumen, which
was offset by 120 mm from the surface of the Omnimagnet,
as shown in Fig. 5. Although the trajectory of the capsule
is simple (a line), the translating rotational field necessary to
drive the capsule uses all 3 DoF available to the Omnimagnet.
The desired magnetic field with ‖B‖ = 3 mT was updated
using (25) for a rotational rate of 4π rad · s−1. The position of
the capsule was tracked using a stereo-vision system, although
other localization methods, such as the magnetic localization
of [20], could be used in the future. This position was used
in conjunction with (24) to calculate the currents necessary
to produce the desired field at the location of the capsule.
The necessary currents were controlled by a dc voltage signal
sent from a Sensoray S626 controller card to Advanced
Motion Control AMC16A8 current drives at an update rate of
�t = 0.01 s.

VII. DISCUSSION

The Omnimagnet prototype developed in this paper uses
no form of forced cooling. However, for Omnimagnets to
be truly effective, they will need to be cooled. Immersive
fluid cooling and forced-convection fluid cooling will enable
higher currents, and therefore higher fields, to be generated.
An Omnimagnet’s dipole strength also increases with size, but
this must be balanced against an increase in cost and weight.

By combining multiple Omnimagnets together, it will be
possible to create more sophisticated magnetic manipulation
systems. For example, the Octomag system uses eight sta-
tionary electromagnets to generate 3 DoF force and 2 DoF
torque on magnetic devices [7]. A system consisting of three
Omnimagnets is essentially nine stationary electromagnets,
meaning that similar levels of control as the Octomag seem
conceivable. The commercial Stereotaxis Niobe system uses
two large orientation-controlled permanent magnets to steer
magnetic catheters. A system consisting of two Omnimagnets
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has the ability to recreate the same type of magnetic control.
Additionally, the spherical core inside the Omnimagnet makes
its use in multi-Omnimagnet systems extremely promising.
Because the average magnetization of a spherical core can be
solved using only knowledge of the applied field at the center
of the sphere, it will be possible to solve for the combined field
of multiple Omnimagnets analytically, rather than relying on
in situ system calibration.

If an Omnimagnet were constructed with a cubic core,
the available ferromagnetic material would increase by 57%,
which suggests that the overall strength of the magnet would
increase. Using the methodology outlined in this paper, prelim-
inary simulations indicate that the dipole moment of an equiv-
alently sized Omnimagnet with a cubic core would be about
115% of the no-ferromagnetic-material reference geometry,
which is 24% stronger than the optimal spherical-core geom-
etry. Because the core is no longer spherical, this additional
strength is also associated with larger dipole-modeling errors
(equivalent to the errors associated with cubic permanent
magnets [21]), and a significantly more complicated core
magnetization calculation. If multiple Omnimagnets were to
be used in concert, the complexity of the mutual magnetization
could be prohibitive, requiring in situ calibration. However, if
only one Omnimagnet is required for the application, a single
Omnimagnet with a cubic core could provide a significant
increase in strength with only a marginal increase in reopti-
mization and development complexity.

VIII. CONCLUSION

The design and optimization of an Omnimagnet was pro-
vided. The realized version of the design has an optimal
core-radius to outer-length ratio of 0.57 and can achieve
field strengths that are 87% of the unrealizable theoretical
reference. The design was optimized to create a dipole-like
field with the error relative to the dipole model falling to below
5% outside of 1.5 minimum-bounding-sphere radii from the
center. Manipulation with the Omnimagnet was demonstrated
by actuating a helical capsule down a lumen. Not only can
the Omnimagnet create a rotating dipole field like a permanent
magnet, but it can also control the field strength like a standard
electromagnet. This enables new control methodologies to be
explored. Moreover, the spherical core will allow the combined
field of multiple Omnimagnets to be solved analytically.

APPENDIX

This appendix provides the derivation of the approximate
inductance of a square-cross-sectional solenoid with a spheri-
cal core. The magnetic flux  through a current loop is related
to the inductance of the loop L by

 ≡
∫

B · da = LI (26)

where da is the differential area of the plane inside the
loop [18]. It should be noted that if the Omnimagnet’s
solenoids are mutually orthogonal, the mutual inductance
between each solenoid is zero because of the dot product

in (26). Thus, the inductance of a collection of connected
loops is

L =
N∑

i=1

i

I
(27)

where N is the total number of loops. Letting η be the area
packing efficiency of the wire, the total number of loops can
be obtained geometrically

N = ηT L

Aw
= η(β2 − β1)L2

2Aw
. (28)

Although possible, computing the sum in (27) is cumbersome.
If, instead of summing fluxes and loops in the solenoid, we
integrate an effective flux and cross-sectional loop density over
the solenoid, the computation of the inductance can be greatly
simplified. The loop density, gleaned by inspection of (28),
is η/Aw . Thus, in terms of an effective loop density the total
number of loops is

N =
∫

d N =
L/2∫

−L/2

T∫

0

η

Aw
dT d L . (29)

Keeping with the theme of non-dimensionalizing the geometric
lengths, we use the change of variable dT = LdζT and
d L = LdζL . With this substitution we obtain

N =
1/2∫

−1/2

(β2−β1)
2∫

0

ηL2

Aw
dζT dζL (30)

and (27) can be approximated as

L ≈ ηL2

I Aw

1/2∫

−1/2

(β2−β1)
2∫

0

(ζT , ζL)dζT dζL . (31)

It is now left to define the effective flux density in the solenoid
(ζT , ζL). Referring to (26), the flux density is formed by an
area component and a field component. The area associated
with the loop density can be obtained geometrically and is
L2(2ζT + β1)

2; the loop-density flux is therefore

(ζT , ζL) = L2(2ζT + β1)
2B(ζT , ζL). (32)

The magnetic field B(ζT , ζL) associated with the loop-density
flux is the average field within the differential loop, which is
difficult to calculate exactly but will be simplified with another
approximation.

Without loss of generality, we will take the axis of the
solenoid to be oriented in the cartesian z direction. The
calculation of B(ζT , ζL) is simplified by assuming the field
inside the solenoid when no core is present Bs(z) varies along
the solenoid axis but is constant across the cross section

Bs(z) = L Jμ0

π

β2∫

β1

(
atan

(
1 + 2z/L√

(1 + 2z/L)2 + 2ζ 2

)

+ atan

(
1 − 2z/L√

(1 − 2z/L)2 + 2ζ 2

))
dζ. (33)
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Note that (33) reduces to (11) when z = 0. Since we are
magnetizing the spherical core in its linear region, the field is
the superposition of the field from only the solenoid current
Bs(LζL) and the field only from the magnetization of the core
Bc(ζT , ζL); thus, B(ζT , ζL) ≈ Bs(LζL)+Bc(ζT , ζL). With this
simplification, the inductance due to the solenoid with a core
can be split into two separate problems: the inductance of
a solenoid with no core and the inductance due only to the
magnetization of the core.

Using (31)–(33), the inductance for a square solenoid with
no core is

Ls ≈ ηL4

Aw I

1/2∫

−1/2

β2−β1
2∫

0

(β1 + 2ζT )2Bs(LζL)dζT dζL

≈ ηL4(β3
2 − β3

1 )

6Aw I

1/2∫

−1/2

Bs(ζL L)dζL . (34)

The inductance contribution of the core is more difficult to
calculate; however, the calculation can be split into two parts
as well: that which is associated with the uniform field inside
the core, and that which is associated with the dipole field
outside the core.

Inside of a uniformly magnetized spherical core, the
magnetic field due only to the magnetization of the material
is uniform and is [18]

Bc,i = 2

3
μ0‖M‖ = 2Bs(0). (35)

When the magnetization is due to an external field, the total
internal field is then 2Bs(0) + Bs(0) = 3Bs(0), which is
expected since the demagnetization factor of a sphere is
1/3. Since the external field is already accounted for in the
solenoid-alone inductance, the field of 2Bc(0) will be used to
calculate the part of the inductance only due to magnetizing
the core material. The inductance associated with the field
inside the core is thus

Lc,i = ηL4(β2 − β1)

2Aw I

βc/2∫

−βc/2

π

(
1

4
β2

c + ζ 2
1

)
Bs(0)dζ

= πηL4(β2 − β1)β
3
cBs(0)

6Aw I
(36)

where βc is being introduced as the ratio of core diameter to
solenoid length.

Outside of the magnetized core, the field is purely dipolar
with the dipole moment given by (10). To numerically deter-
mine the inductance of this field, the differential flux is given
by

d

da
= μ0‖m‖

4π‖p‖3 ẑT(
3p̂p̂T−I

)
ẑ= L3β3

cBs(0)

8‖p‖3

(
3(ẑTp̂)2 − 1

)
.

(37)

The inductance is given by (31) where the flux is the flux
outside of the core and inside of the loop-density width being

integrated

Lc,dipole = ηβ3
c L4

8Aw I
B(0)

∫∫∫∫ (
2(ζL L)2 − x2 − y2

(x2 + y2 + (ζL L)2)5/2

)
dxdydζT dζL . (38)

Numerical analysis of this contribution indicates it accounts
for less than 2% of the total inductance and will be neglected
for simplicity.

Therefore, the total inductance is the combination of the
inductance due to the solenoid alone, plus the inductance due
to the uniform field inside of the magnetized core

L ≈ ηL4

6Aw I
(β3

2 − β3
1 )

1/2∫

−1/2

Bs(ζ2 L)dζ2

+ ηL4

6Aw I
π(β2 − β1)β

3
cBs(0). (39)

Combining (33) and (39), this inductance can be rewritten as
a function of relative solenoid shape scaled by a function of
solenoid size, as shown in (21), where f1(·) is the integration
described in (39) with f2(·) comprising the integrand of (33).
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