
OmniOrder: Directory-Based Conflict Serialization of Transactions ∗

Xuehai Qian † Benjamin Sahelices Josep Torrellas
University of California, Berkeley Universidad de Valladolid, Spain University of Illinois, Urbana-Champaign

xuehaiq@berkeley.edu benja@infor.uva.es torrellas@cs.uiuc.edu

http://iacoma.cs.uiuc.edu

Abstract

Effective execution of atomic blocks of instructions (also

called transactions) can enhance the performance and pro-

grammability of multiprocessors. Atomic blocks can be de-

marcated in software as in Transactional Memory (TM) or

dynamically generated by the hardware as in aggressive im-

plementations of strict memory consistency. In most current

designs, when two atomic blocks conflict, one is squashed — a

performance loss that is often unnecessary.

To avoid this waste, this paper presents OmniOrder, the

first design that efficiently executes conflicting atomic blocks

concurrently in a directory-based coherence environment. The

idea is to keep only non-speculative data in the caches and,

when the cache coherence protocol transfers a line, include in

the message the history of speculative updates to the line. The

coherence protocol transitions are unmodified. We evaluate

OmniOrder with 64-core simulations. In a TM environment,

OmniOrder reduces the execution time of the STAMP applica-

tions by an average of 18.4% over a scheme that squashes on

conflict. In an environment with SC enforcement with specu-

lation, we run 11 programs that implement concurrent algo-

rithms. OmniOrder reduces the programs’ execution time by

an average of 15.3% relative to a scheme that squashes on

conflict. Finally, OmniOrder’s communication overhead of

transferring the history of speculative updates is negligible.

1. Introduction

To improve the performance and programmability of multipro-

cessors, there is significant interest in efficiently supporting

the execution of atomic blocks of instructions — also called

transactions. Atomic blocks can be demarcated in software

by the programmer or the compiler, or generated dynamically

by the hardware on ordinary code. Examples of the former

include transactions in Transactional Memory (TM) [15] and

code regions demarcated to enable aggressive compiler op-

timization [2]. Hardware-generated blocks are created, for

example, in out-of-window speculation to prevent processor

stall in aggressive implementations of strict memory consis-

tency [6, 24].

Efficient atomic block execution requires system support

for a handful of architectural mechanisms. They include fast

register checkpointing, speculative execution of an atomic

block with temporary state buffering, detection of data conflicts

∗This work was supported by NSF grants CCF-1012759 and CNS-

1116237; the Illinois-Intel Parallelism Center (I2PC); Spanish Gov. & Euro-

pean ERDF grants TIN2010-21291-C02-01 and Consolider CSD2007-00050;

and NSF China grants 61073011 and 61133004.
†Xuehai Qian did this work while at the University of Illinois.

(i.e., data dependences) between a block and code executing

on another processor, and atomic block squash and commit.

Block squash involves discarding its state and rolling back

to the checkpoint; block commit involves making the state

generated by the atomic block irreversibly visible to the rest

of the system. Computer manufacturers such as IBM, Intel,

AMD, Oracle, and Azul have introduced or plan to introduce

some of these mechanisms in their systems.

Most of the proposed designs squash an atomic block on a

conflict with code executed on another processor — i.e., one

processor reads and the other writes to the same line, in either

order, or both write. Unfortunately, squashing blocks has a

cost in performance and energy, which can be substantial if

squashing is frequent. A few proposals stall the block until it

is safe to continue, but this still costs performance.

In practice, in many conflicts between two atomic blocks,

there is no need to squash or stall. This is the case, for exam-

ple, when the source of the dependence (i.e., the predecessor

processor) and the destination (i.e., the successor) access dif-

ferent parts of the same memory line. Moreover, even if they

access the same address, a squash can be avoided by eventually

committing the predecessor block first. In all of these cases,

the conflicting atomic blocks can execute concurrently without

squashes, and produce a state as if they had executed serially.

In other words, they are conflict serializable.

Supporting conflict serialization of atomic blocks can im-

prove performance, but introduces complexity. First, the sys-

tem has to keep a record of the conflicting blocks and their

predecessor-successor order — likely forming, by transitivity,

a chain of successor blocks. The type of dependence, such as

anti, output, true, and false, may also be recorded. Second, the

system needs to detect dependence cycles, where one block

ends up depending on itself through other blocks. In this case,

since the execution cannot be serialized, at least one of the

blocks needs to be squashed. Third, when a block is squashed,

we also need to squash at least all of its successors that have

true dependences (same-address RAW) with it — and recur-

sively, these successors’ successors. Finally, the commit of

dependent blocks has to be done in strict order.

The goal of this paper is to efficiently support conflict se-

rialization of atomic blocks in a distributed directory-based

coherence environment. Currently, there are several propos-

als that support conflict serialization of atomic blocks, most

notably DATM [20], SONTM [4], BulkSMT [18], and Wait-

n-GoTM [16]. However, they all fall short of the goal of this

paper. Specifically, DATM is designed for a broadcast-based

protocol. SONTM can be used in a directory setting, but it adds

many additional messages during block execution and commit.

978-1-4799-4394-4/14/$31.00 c© 2014 IEEE

BulkSMT is designed for SMT processors. Finally, Wait-n-

GoTM uses a hardware-software design that makes it hard

to apply to atomic blocks generated dynamically to support

an aggressive implementation of strict memory consistency.

Moreover, on a block squash, all of the block’s successors

get squashed, irrespective of whether or not they have true

dependences with it.

In this paper, we present OmniOrder, the first architecture

that efficiently executes conflicting atomic blocks concurrently

in a directory-based coherence environment. The blocks ap-

pear to be serialized. OmniOrder uses eager conflict detection

and can be used with both software-demarcated and hardware-

generated atomic blocks. The main idea behind OmniOrder

is to keep only non-speculative data in the caches and, when

the cache coherence protocol transfers a line, include in the

message the history of speculative updates to the line. The

coherence protocol transitions are unmodified, and are decou-

pled from the management of the speculative data. When an

atomic block commits, its updates are merged into the caches,

wherever they are. When a block is squashed, its updates are

discarded, also wherever they are.

Another key attribute of OmniOrder is its efficient state

recovery. Specifically, on a block squash, OmniOrder only

squashes the block’s successors that have same-address RAW

dependences with the block (and recursively, these successors’

successors). Also, OmniOrder has no centralized structure.

We evaluate OmniOrder in the context of both TM and

Sequential Consistency (SC) enforcement via out-of-window

speculation. We simulate a 64-core manycore. For TM, we

compare OmniOrder to InvisiFence [6] which, on a conflict

between two atomic blocks, squashes one of them. We show

that OmniOrder reduces the execution time of the STAMP

applications by an average of 18.4%. For SC enforcement, we

compare OmniOrder to five other speculative schemes that do

not allow concurrent execution of dependent atomic blocks.

We find that, on average, SPLASH-2 and PARSEC applica-

tions have too few conflicting blocks for OmniOrder to make

a difference. However, we also run 11 programs that imple-

ment concurrent algorithms such as non-blocking queues, and

that induce frequent speculation. In this case, OmniOrder

reduces the execution time by an average of 15.3% relative

to InvisiFence with Commit-On-Violation. Finally, we show

that the communication overhead of transferring the history of

speculative updates in OmniOrder is negligible.

This paper is organized as follows: Section 2 provides a

background; Sections 3 and 4 present the design and implemen-

tation of OmniOrder in the context of TM; Section 5 discusses

enforcing strict memory consistency; Section 6 evaluates Om-

niOrder; and Section 7 discusses related work.

2. Executing Conflicting Atomic Blocks

2.1. Existing Proposals

There are a few proposals that support conflict serializa-

tion of atomic blocks, such as DATM [20], SONTM [4],

BulkSMT [18], and Wait-n-GoTM [16]. While each of these

schemes advances the state-of-the-art in some directions, none

provides an effective approach usable in a distributed directory-

based protocol for both software-demarcated atomic blocks

(e.g., in TM) and hardware-initiated blocks (e.g., in speculation

for strict memory consistency).

DATM [20] uses cache-coherence protocol transactions to

detect dependences between atomic blocks. Then, it records

the order of the blocks in a centralized order vector. The order

vector is used to select the correct data version needed on an

access, to order the commits, and to detect dependence cycles.

An enhanced snoopy-based cache coherence protocol supports

the forwarding of speculative updates between caches like an

update-based protocol. Overall, this design is not suitable for

a directory scheme because updating the global order vector

needs broadcasts. Moreover, DATM couples the management

of the speculative data with the coherence protocol, adding 11

stable states to the protocol.

SONTM [4] orders dependent atomic blocks using Serializ-

ability Order Numbers (SON). Each block has an upper-bound

and a lower-bound SON. Each memory location accessed has

a read-number and a write-number stored in memory. While

some optimizations are possible, each load and store instruc-

tion in a block needs to get this read-number or write-number

to potentially update the block’s upper and lower bounds. If the

upper bound ends up being smaller than the lower bound, then

the block cannot be serialized with other conflicting blocks

and it is squashed. At block commit, a validation step involves

broadcasting write-numbers of all the updated data and receiv-

ing read-number responses from other processors. Overall,

while SONTM can be applied to a directory scheme, it adds

substantial execution overhead.

BulkSMT [18] enhances a Simultaneous Multithreaded

(SMT) processor to support the execution of conflicting atomic

blocks. It detects dependences between blocks using cache

access bits, and records block orders using simple, centralized

hardware tables. This design is not applicable to directories.

Wait-n-GoTM [16] is based on TokenTM [8], and uses a

hardware-software combination to execute conflicting atomic

blocks concurrently. Specifically, cross-block conflicts are

detected with cache-coherence protocol transactions. In the

sucessor processor, the hardware logs the ID of the predecessor

processor in a log software structure. Cycles are detected with

two hardware timestamps per atomic block that are updated

during communications. On a block squash, a software handler

restores the state and traverses the log software structure to

identify all the successors, squashing them all — irrespective

of the type of data dependence present. When a block with

conflicts wants to commit, a software handler decides whether

it can commit and which other blocks can now commit as

well. Wait-n-GoTM is applicable to directory-based coherence.

However the protocol requires software support for dependent-

block commits and squashes, making it applicable to TM,

but not to speculation in aggressive implementations of strict

memory consistency models.

2.2. Design Guidelines

We propose some design guidelines to support conflict serial-

ization of atomic blocks in directory-based systems.

• Decouple the speculative state of data from the coher-

ence protocol state. Design complexity is minimized if the

state transitions of the cache-coherence protocol are unaffected

by whether or not the data is speculative. This guideline is

followed by SONTM and Wait-n-GoTM, but not by DATM.

• Support efficient state recovery. For high performance,

the system should efficiently recover when an atomic block

(B) is squashed. Specifically, in addition to discarding B’s

state, the system should access the chain of B’s successors and

discard only the state generated by those that have true (i.e.,

same-address RAW) data dependences with it (recursively).

• Separate atomic-block ordering from data-version gran-

ularity. Conflicting atomic blocks should be ordered in a

successor chain based on dependences at the granularity of

cache lines — since this is the granularity detected by the co-

herence protocol. However, to be able to squash only blocks

with true data dependences, the system should record data ver-

sions at the granularity of the accesses (i.e., words or bytes).

Otherwise, unnecessary squashes occur.

• Minimize overhead if there are no conflicts. The execu-

tion of atomic blocks that do not have conflicts should add

minimal overhead to the system — e.g., it should not incur

additional memory accesses to update time stamps. SONTM

suffers from this overhead.

• Have no centralized structure. To operate in a scalable

distributed-directory environment, the design cannot have any

centralized hardware structures, as they become bottlenecks.

3. OmniOrder Design

In the context of a directory protocol, OmniOrder provides

efficient conflict serialization of atomic blocks for many types

of conflicts. Atomic blocks can be demarcated in software,

as under TM [15] or for compiler optimization [2]. They can

also be generated dynamically by the hardware, e.g., to avoid

stalls due to strict memory consistency models [6, 24]. In this

section, we focus on a TM system; we consider speculation

for memory consistency later. Without loss of generality, our

discussion assumes an MSI invalidation-based distributed di-

rectory scheme. Each processor has a private L1 cache and

shares the L2 cache with all the other processors. We start

by presenting the main idea, and then describe the coherence

operations.

3.1. Main Idea

The main idea behind OmniOrder is to decouple speculative

state management from the coherence protocol state transitions.

Even though processors execute transactions speculatively, and

speculative state from one transaction propagates to other trans-

actions in other processors, we do not modify the basic cache

coherence protocol. This is accomplished by recording, for

each line, the current history of speculative updates to it, and

keeping this history in a small per-processor buffer. The history

is then piggybacked on the coherence transactions for the line.

Cache lines always contain the non-speculative version of the

data, and only transition between ordinary coherence states.

This approach keeps the hardware simple.

For example, consider a memory line that is updated by

two transactions in two different processors, namely P0 and

P1. The first update brings the non-speculative version of the

line in Modified (M) state to P0’s cache, and the speculative

update is stored in a buffer in P0. The second update moves

the line from P0’s cache to P1’s cache, sets it to M state in

P1, and invalidates the entry from P0’s cache – exactly as

in the ordinary protocol. The speculative update by P0 is

piggybacked on the transaction and removed from P0’s buffer.

It is appended to the speculative update by P1 and stored

in a P1 buffer. P1 is now responsible for both speculative

updates, since P0 has lost all such information. Later, when

P0’s transaction commits, it will send a signal to its successor

P1, which will trigger the merge of P0’s speculative update into

the line in P1’s cache. If, instead, P0’s transaction is squashed,

P0 sends a signal to P1, which prompts the removal of P0’s

speculative update. In addition, since P0-P1 have a WAW

dependence, there is no need to squash P1’s transaction.

In its operation, OmniOrder links conflicting transactions

with predeccessor/successor pointers. Specifically, every time

that a cache line shared by transactions suffers a cache co-

herence transition, the source transaction(s) become(s) the

Predecessor(s) and the destination transaction becomes the

Successor. For example, Figure 1 shows a trace of accesses by

four transaction-executing processors (P0-P3) to same memory

line. First, P1 writes (wP1) and the line is loaded in M state.

Then, P0 writes, and both P0 and P1 change state. Hence, P1

and P0 have a predecessor-successor relationship (P1→P0).

Then, P2 and P3 read the line, and P0, P2, and P3 transition

to Shared (S) state. The two pairs (P0→P2 and P0→P3) have

predecessor-successor relationships. Finally, P3 writes to the

line, and so we have the relationship P0→P3 and P2→P3.

Note that, in an MSI protocol, a processor read-missing on a

line in state S elsewhere gets the line directly from the shared

L2 cache — rather than from another L1 cache. Consequently,

in our producer-consumer links, we will sometimes have to

link-in the directories as well (Section 3.2.1).

Trace: wP1 wP0 rP2 rP3 wP3

P0

P1

P2

P3

M I

M S

S

S M

I

I

Time

Figure 1: Example of a trace of accesses by four processors to
the same cache line. The table shows line states.

OmniOrder uses the predecessor-successor links to propa-

gate information about commits and squashes. For example,

Trace: wP0 wP1 rP2

P0

P1

P2

M

wP0

I

Succ={P1}

M
wP1

wP0

Pred={P0}

I

Succ={P1}

S
wP1

wP0

Pred={P0}

Succ={P2_via_Dir}

S
wP1

wP0

Pred={P1}

Squash={P1}

I I

S
wP1

Succ={P2_via_Dir}

S WP1

S
wP1

S WP1

P0
Squashed

P1
Committed

P0
Committed

P1
Squashed Time

I I

S WP0

wP1

Succ={P2_via_Dir}

S WP0

Pred={P1}

Squash={P1}

S WP0

wP1
S WP0

Pred={P1}

Squash={P1}

(a) (b) (c) (d) (e) (f) (g)

Figure 2: Example of OmniOrder’s operation. All accesses are to the same word.

when P1 commits (or gets squashed), the hardware informs

P0, which in turn informs P2 and P3, and so on. However,

these links do not automatically trigger squash operations. In-

deed, when a transaction P is squashed, its chain of successors

is followed, but only those transactions S that have RAW de-

pendences to the same address (word or byte depending on

the finest granularity of access information kept) with P are

squashed. For example, in Figure 1, assume that wP1 updates

word a, wP0 and rP2 access word b, and rP3 reads word a —

where a and b share the same line. Then, if the transaction in

P1 gets squashed, as the information is propagated down the

chain of successors, P0 and P2 are not squashed because they

accessed a different word. Only P3 is squashed. OmniOrder’s

support for this model saves squashes.

3.1.1. Example. To illustrate OmniOrder’s operation, Figure 2

shows an example of three transaction-executing processors

accessing the same word. First, in Chart (a), P0 writes to

the word (wP0), which brings the original line to its cache in

state M. However, the speculative update is kept separately

(shown as a cloud). In Chart (b), P1 has written to the word

(wP1). As a result, P0’s cache line and speculative buffer have

been invalidated, while P1 loads the unmodified line in state

M and takes responsibility of the two (ordered) speculative

updates in its speculative buffer. In addition, P0 and P1 have

been linked as predecessor-successor. In Chart (c), P2 has read

the word (rP2). Hence, both P1 and P2 caches now keep the

(unmodified) line in state S, and both keep the two speculative

updates in their buffers. In addition, P1 and P2 have linked

as predecessor-successor. In Chart (c), we write that P1’s

Successor set is “P2_via_Dir”. The reason is that, because

future readers of the line will get the line from the L2 cache

without informing P1, we need to keep some information in

the directory. We will explain the design later. In addition, P2

has created a Squash set that includes P1. It means that, if P1

is squashed, then P2 needs to be squashed as well. The set

does not include P0 because P1’s write isolates P2 from P0. In

addition, P1 does not have a Squash set because it has a WAW

with P0.

Assume now that P0 gets squashed and then P1 commits.

When P0 gets squashed (Chart (d)), a signal is propagated

through the complete P0 successor chain. In each of these

processors, starting from P0, P0’s speculative updates in the

buffers are discarded, and P0 is removed from any Predecessor

set. In this special case, where the squashed processor has no

predecessors, its Successor set is also cleared. Later, when

P1 commits (Chart (e)), a signal is propagated through P1’s

successor chain. In each of these processors, starting from

P1, P1’s speculative updates in the buffers are merged into

the cache line, and P1 is removed from any Predecessor and

Squash set (we will see that the L2 is automatically updated).

The successor set of the committing processor is cleared. Note

that squashes and commits do not change coherence states.

Assume that, instead of (d) and (e), P0 commits (Chart (f))

and P1 then gets squashed (Chart (g)). When P0 commits

(Chart (f)), the signal through P0’s successor chain triggers

the merge of P0’s speculative updates into the caches, and

the removal of P0 from any Predecessor set. P0’s Successor

set is cleared. Later, when P1 gets squashed (Chart (g)), a

signal through P1’s successor chain discards P1’s speculative

updates from all buffers (including P1’s) and clears P1 from

any Predecessor sets. In addition, any processor that has P1 in

its Squash set gets squashed. This happens to P2. As usual,

P1’s Successor set is cleared and P1 is removed from P2’s

Squash set. The caches of the squashed processors (P1 and P2)

keep their whole state, which was non-speculative.

3.2. OmniOrder’s Basic Operation

We now describe OmniOrder’s basic operation. The specu-

lative buffer in each processor is divided into two structures.

First, the speculative updates by the local processor are stored

in a cache called L0, which is accessed before the main cache

(L1). This ensures that locally-produced data can be accessed

quickly. Secondly, the history of speculative updates by pre-

decessor transactions are stored in a buffer called Speculative

Version Buffer (SVB). Each SVB entry contains the history of

updates for one word (since we assume here that words are

the finest granularity tracked). An entry contains an address

and an ordered list of tuples containing the writer processor ID

and the data. The SVB is accessed in parallel with L1. On an

external access, the relevant L0 and SVB entries are read and

combined to form the complete history, which is provided to

the requester. A cache line with state in L0 or SVB cannot be

displaced from L1, even if it is in state S. Before doing so, it

triggers a transaction squash (Section 4.2).

Each processor has a Predecessor Set (Pred_Set) and a Suc-

cessor Set (Succ_Set) bitmask. Each contains as many bits as

processors. OmniOrder sets bit i of Pred_Set or Succ_Set if

processor i is found to be a predecessor or a successor, respec-

tively, of the local processor. Each processor also has a Squash

Set (Sq_Set) bitmask. Bit i is set if the squash of a transaction

in processor i induces the squash of the local transaction. Re-

call that this only occurs for RAW dependences on the same

word. Finally, as we will see next, the directory can some-

times act as the “successor” of a processor in the dependence

chain. Consequently, each processor has a Successor Directory

Set (Succ_Dir) bitmask. It contains as many bits as directory

modules. OmniOrder sets bit i if directory module i acts as a

successor of the local processor.

OmniOrder requires that, on a coherence operation, the

source and destination processors know and record each other’s

ID. This is easy in directory-based schemes, where messages

are acknowledged and include the sender’s ID.

3.2.1. Role of the Directory in Maintaining the Predeces-

sor-Successor Chain. In an ordinary MSI directory protocol,

when a private cache read-misses on a line that is in M state

in another private cache, the line ends up being written back

to the shared cache (e.g., L2). Future read misses will be sat-

isfied from the shared cache; not from the last writer’s cache.

Hence, in OmniOrder, the directory in the shared L2 cache

must participate in building the predecessor-successor chain.

Consider a producer processor (Pprod) that caches a line in

M state with a history of speculative updates. In OmniOrder,

when a consumer processor (Pcons) read misses on the line,

as the history of speculative updates is sent to Pcons, the cor-

responding directory module in L2 (Di) also keeps a copy

of the history. From then on, Di acts as Pprod’s proxy for

this line. Specifically, while Pcons adds Pprod to its Pred_Set,

Pprod does not update its Succ_Set. Instead, Pprod sets the bit

in its Succ_Dir corresponding to Di, making Di a successor.

Moreover, each directory module also has as many Succ_Set

bitmasks as the number of processors in the machine. Conse-

quently, Di sets the bit for Pcons in its Succ_Set bitmask that

corresponds to Pprod .

From now on, future read misses to the line by other pro-

cessors, as they reach directory Di, will be satisfied by Di. Di

will respond with the memory line, the history of speculative

updates, and the ID of the last writer (Pprod). Di will then set

the Succ_Set bit corresponding to the new consumer. The latter

will set the Pred_Set bit corresponding to Pprod .

With this design, the directory ensures the continuity of

the predecessor-successor chain. When Pprod sends commit

or squash signals, it sends them to both the processors in its

Succ_Set and the directory modules in its Succ_Dir. The direc-

tory modules will forward them to the processors in their own

Succ_Set for Pprod . Note that, with this design, it is possible

that a processor receives more than one message for the same

commit or squash event in another processor. OmniOrder is

designed to handle this case.

In summary, each directory module contains an SVB buffer

like that in the processors, with entries coming from the SVBs

of multiple processors. In addition, it has an array of as many

Succ_Set bitmasks as there are processors in the machine.

3.2.2. Read Access in a Transaction. Figure 3(a) outlines the

algorithm followed when a processor (Pr or requesting proces-

sor) issues a request inside a transaction that is satisfied by a

second processor (Ps or supplier processor) also executing a

transaction. The steps may involve updating: (i) the coherence

state of the line in the Pr and Ps caches, (ii) L0 and SVB in

Pr and Ps, (iii) Succ_Set and Succ_Dir in Ps, (iv) Pred_Set

and Sq_Set in Pr, and (v) Succ_Set and SVB in one directory

module. In this section, we describe the case of a read.

Depending on the coherence operation, update:

1. Coherence state of the line in the Pr and Ps caches

2. L0 and SVB in Pr and Ps

3. Succ_Set and Succ_Dir in Ps

4. Pred_Set and Sq_Set in Pr

Transactional Read/Write by Pr that is Satisfied by Ps

Transaction Commit in P

3. Clear the local speculative hardware structures

2.1. Transactions in the successor chain may start commits

1. Merge all the speculative updates by P (locally and remotely)

(b)

(a)

5. Succ_Set and SVB in one directory module

2. Tell P’s successor chain of P’s commit [use Succ_Set and Succ_Dir]

Transaction Squash in P

1. Discard all the speculative updates by P (locally and remotely)

2.1. Transactions in the successor chain may start squashes

3. When all the earlier transactions are committed or squashed,

clear the local speculative hardware structures and restart

(c)

2. Tell P’s successor chain of P’s squash [use Succ_Set and Succ_Dir]

Figure 3: OmniOrder algorithms for a read/write in a transac-
tion (a), transaction commit (b) and squash (c).

Consider first a read miss. The non-speculative version of

the line is brought in S state to Pr’s cache. If there is a history

of speculative updates, it is piggybacked on the same message

and stored in Pr’s SVB. The last writer of the line (irrespective

of the word it wrote) is the predecessor. It will be the one that

will forward commits and squashes Pr.

OmniOrder needs to update the state of the directory since,

from now on, it will have the role of providing the line. The

actions taken depend on whether the line was in M state in

the last writer’s cache or in S state in multiple caches. In

the first case, the request reaches Ps, which caches the line in

M state. Ps changes the line to S state and creates the line’s

update history by combining its L0 entries with its SVB entries

(although L0 and SVB are unmodified). Then, it sends the line

and history to the directory module that maps the line (say i).

It also sets the i bit in its Succ_Dir bitmask. Directory module

i is now Ps’s successor and proxy for this line. Hence, it saves

the line in L2, copies the history to its SVB, and sets the Pr bit

in its Succ_Set for Ps. Then, it forwards line, history, and Ps’s

ID to Pr.

If, instead, the line was in S state in multiple caches, the

response comes directly from the directory module that maps

the line. That directory knows Ps’s ID from the last writer to

the line in the update history in its SVB. Hence, the directory

sets the Pr bit in its Succ_Set for Ps. Then, it sends to Pr the

line from L2, the history, and Ps’s ID.

In either case, Pr marks Ps as its predecessor by setting the

correct bit in Pred_Set (as indicated in the message from the

directory). Then, the history is inspected to find writers to the

word that Pr is reading. The last one (say processor j), if any,

is identified. In this case, Pr sets the j bit of its Sq_Set bitmask,

since this is a RAW. In the future, if processor j is squashed,

Pr will too.

The case of a read hit to a cached line is simple. There is no

change to the cache coherence protocol states and, therefore,

there is no change to the Pred_Set or Succ_Set of any processor.

If the read hits in L0, no further action is taken because Pr

reads its own update. Otherwise, the local SVB is checked for

the line’s update history. If it is found, it is checked for writers

to the word that Pr is reading. The last one (say processor j),

if any, is identified, and Pr sets the j bit of its Sq_Set bitmask,

since this is a RAW. Note that this bit may already be set.

3.2.3. Write Access in a Transaction. We now describe the

actions taken on a write (Figure 3(a)). Consider first a write

that misses in the cache. The coherence protocol ensures that

the non-speculative version of the line is brought to Pr’s cache

in M state, and all the sharers are invalidated. If there is a

history of speculative updates, it is piggybacked on the same

message and stored in Pr’s SVB. In addition, all processors

that had a copy of the line invalidate their relevant L0 and SVB

entries.

There are two cases, depending on whether, before the write,

the line was either in M state in the cache of the last writer (Ps),

or in S state in multiple caches. In the first case, Ps combines

the line’s L0 and SVB entries into the update history, and sends

to Pr the line, the history, and its ID. Also, Ps invalidates the

line’s entries in the cache, L0, and SVB, and sets the bit in

its Succ_Set bitmask that corresponds to Pr, since Pr is its

successor.

If, instead, the line was in S state in multiple caches, the di-

rectory module that maps the line (say i) processes the request.

It sends invalidations to all sharers (including the last writer

according to the SVB in the directory), passing Pr’s ID. The

sharer processors invalidate the line’s entries in their cache,

L0, and SVB, and set the bit in their Succ_Set bitmasks corre-

sponding to Pr. Note that the last writer now has as successors

directory i and the new writer. Finally, directory i clears its

SVB entry but retains its Succ_Set. It responds to Pr with the

line, the history, and list of the sharers in a bitmask.

As the response arrives at Pr, the Pred_Set is updated to

include the old owner (in the first case) or the old sharers (in

the second one). The update from Pr is kept in Pr’s L0. Since

Pr’s access is a write, Pr’s Sq_Set is unchanged.

Consider now a write hit to a line in S state. There is a

coherence protocol transaction, where all the sharers get their

entries for the line in their cache, L0, and SVB invalidated,

and Pr transitions its line state to M. OmniOrder performs the

same actions as in the case of a write miss on a line that was in

S state remotely, except that, as the line and history arrive at

Pr, they are discarded — Pr is already up-to-date.

Finally, on a write hit to a line in M state, OmniOrder per-

forms no action. Pr already has the history (if it exists), the

predecessor/successor state needs no change, and there is no

need to set Sq_Set bits. The update is saved in L0, overwriting

any update to the same word that was already there.

3.2.4. The Commit of a Transaction. A transaction in a pro-

cessor (P) is ready to commit when both P has completed the

execution of the transaction and P’s Pred_Set is zero. The latter

implies that all of P’s predecessor transactions are either com-

mitted or squashed. Figure 3(b) outlines the commit algorithm.

It has three operations: (i) merging all the speculative updates

generated by P with the corresponding non-speculative lines,

(ii) informing P’s successor chain of the commit, starting with

Succ_Set and Succ_Dir, which in turn may trigger the commit

of other transactions, and (iii) clearing the local speculative

hardware structures.

The first two operations happen concurrently. P’s specula-

tive updates are merged through a combination of local and

remote actions. Specifically, consider all the updates generated

by P while executing the transaction. Some of them are still

in P’s L0. These are the ones for lines that are in M or S state

in P’s cache. These updates are simply merged into P’s cache.

However, the lines in S state have copies in other caches (the

co-sharer caches) and in L2. These copies also need to be

updated. OmniOrder can access these co-sharers (and the L2)

through the Succ_Dir bitmask, since they are P’s successors.

Consequently, as P sends commit signals to its successors in

the second operation of the commit, the signals propagated

through the Succ_Dir bitmask will reach the successor directo-

ries and, from those directories’s Succ_Set, reach the co-sharer

caches. In both directories and caches, OmniOrder will merge

the corresponding SVB entries into the L2 and the caches,

respectively. Finally, some of P’s speculative updates are not

in P’s L0. They updated lines that have been invalidated from

P’s cache and, therefore, there is no local state. The updates

were transferred (together with the line) to successor proces-

sors. Consequently, as P sends the commit signals through its

successor chain, the signals propagated through P’s Succ_Set

will reach the processors with these updates in their SVBs.

They will merge them into their caches.

From this discussion, we see that, as part of the commit, P

sends a commit signal to all of its successors: the directory

modules in its Succ_Dir and the processors in its Succ_Set.

Both directories and processors further propagate the signal.

On reception of the signal, a directory module inspects its SVB,

picks the updates from P, merges them into the L2, clears these

SVB updates, and propagates the signal to its Succ_Set. On

reception of the signal, a processor checks its SVB, selects

the updates from P, merges them into its cache, clears these

SVB updates, and propagates P’s commit signal through its

own Succ_Dir and Succ_Set. After a processor completes its

merge operations, if the signal was for the commit of one of

the processors in its Pred_Set, then OmniOrder clears the cor-

responding Pred_Set bit. If, at this point, the whole Pred_Set

is empty and the local processor has completed its own trans-

action, then the local processor starts its own commit.

Note that a processor may receive multiple commit signals

corresponding to a single committing processor — e.g., due to

successor links through two directory modules. The protocol

handles this case gracefully without modification. Moreover, a

processor may receive two commit signals from two processors

out of order. This case is flagged when a processor inspects

its SVB to process a commit signal. If it finds that the SVB

contains an earlier update to the same line, the processor tem-

porarily cancels this commit and waits for the missing commit

signal, so it can process the commits in order.

Finally, the third operation in P’s commit in Figure 3(b) is

to clear the speculative hardware structures in P. They include

Succ_Set, Succ_Dir, Sq_Set, and the bits in the cache tags that

mark the lines in the cache that have been speculatively read

or written. The L0 is already empty. The SVB is also empty

because all the earlier transactions have already committed or

been squashed. Similarly, Pred_Set is already cleared. Before

the Succ_Dir gets cleared, however, P tells the directory mod-

ules in its Succ_Dir to clear their Succ_Set for P, since they

will not be used anymore.

3.2.5. The Squash of a Transaction. A transaction (T) in a

processor (P) is squashed when one of three scenarios happens.

One is when P receives a coherence message that indicates

that T may be participating in a dependence cycle with other

transactions. This situation is discussed in Section 4.3. The

second scenario is when an earlier transaction that is the source

of a true dependence with T is squashed. Finally, T is squashed

when it suffers conventional transaction-termination events

such as exceptions or attempted cache overflow of lines with L0

or SVB state. We discuss the case of overflow in Section 4.2.

Figure 3(c) outlines the algorithm followed in the squash of

a transaction in P. It comprises three operations: (i) discard-

ing all the speculative updates generated by P, (ii) informing

P’s successor chain of P’s squash, which may in turn trigger

the squash of other transactions, and (iii) when all the ear-

lier transactions are committed or squashed, clearing the local

speculative hardware structures and restarting the transaction.

The first two operations happen concurrently. To discard

the speculative updates generated by P, OmniOrder first clears

all of P’s L0 updates. Note that P’s SVB never includes P’s

own updates. Therefore, the SVB should not be modified. In

addition, no line in P’s cache should be invalidated because the

cache contains non-speculative data.

Some of P’s speculative updates may have propagated to the

SVBs of processors in P’s successor chain. Consequently, P

sends squash signals to the directory modules in its Succ_Dir,

and to the processors in its Succ_Set. They, in turn, will propa-

gate the signal to their successors.

When a directory module receives a squash signal origi-

nating in P, it inspects its SVB, discards the updates from P,

and propagates the signal to its Succ_Set bitmask. Similarly,

when a processor Q receives a squash signal originating in P, it

checks its SVB, discards the updates from P, and propagates

the signal further through its own Succ_Set and Succ_Dir bit-

masks. After this, if Q’s Pred_Set has the bit corresponding

to P on, it is reset. In addition, if Q’s Sq_Set has the bit cor-

responding to P on (i.e., P is the source of a true dependence

with Q), then Q has to be squashed. Hence, Q initiates a squash

for its own transaction.

Note that a processor Q may receive two squash signals

from two earlier transactions out of order. This case requires

no special support. Q can discard the SVB updates of the two

earlier processors in any order — unlike for transaction commit,

there is no need to do it in transaction order. In addition, Q

may receive multiple squash signals corresponding to a single

squashed processor. The protocol handles this case with no

changes as in the commit case.

Finally, the third operation in P’s squash as shown in Fig-

ure 3(c) only takes place when P’s Pred_Set is found to be

empty — which means that all of P’s predecessor transactions

have committed or been squashed. At this point, OmniOrder

clears the speculative hardware structures in P. They include

Succ_Set, Succ_Dir, Sq_Set, and the speculative access bits in

the cache tags. The L0 is already cleared. The SVB is already

empty because there is no earlier transaction than P. Like in the

commit, before the Succ_Dir gets cleared, P requests the direc-

tory modules in its Succ_Dir bitmask to clear their Succ_Set

for P. At this point, P can restart the transaction.

4. OmniOrder Implementation

This section describes a possible implementation of Om-

niOrder. We first describe OmniOrder’s hardware structures,

and then how OmniOrder handles speculative state overflow

and detects conflict cycles.

4.1. Hardware Structures

4.1.1. Hardware Structures in the Processor. As shown in

Figure 4(a), OmniOrder’s main hardware structures in the

processor are the L0, the SVB, and a set of bitmasks in the

cache controller. The L0 is a small and fast set-associative

cache that contains the speculative updates generated by the

local processor — all except for updates to lines that have

been invalidated from the L1 cache. L0 lines have the same

size as L1 cache lines, but they add per-word valid bits (or

per-byte bits, instead, if the finest granularity of access used

is bytes). The L0 is accessed before the L1 cache and ensures

that locally-produced speculative data is readily accessible.

v v v v

SR SW

L1
Cache ...

Addr
ID+Data

Counting
Bloom
Filter

L0

Pred_Set

Succ_Set

Sq_Set

Succ_Set

Num_Proc

Num_Dir

(a)

SVB ...
Num_Proc

N
u

m
_

P
ro

c

(b)

ID+Data

Succ_Set
Array

SVB

Figure 4: OmniOrder hardware structures.

The SVB is a small fully-associative buffer that contains

the history of speculative updates to locally-cached lines by

other processors executing transactions that are ordered before.

Each entry corresponds to one word-level address. As shown

in the figure, an entry contains the word address and the history

of updates to it. The history consists of up to four ordered

updates from different processors. Each update has the writing

processor ID and the last value produced by that processor.

The SVB is accessed at the same time as the L1 cache.

Since it is likely that there are only a few dependences

between concurrently-executing transactions, the SVB is small.

However, it would still be costly to access the SVB every time

that the L1 is accessed. Hence, to save SVB accesses, we add

a counting bloom filter [9]. The filter has the hashes of all the

addresses currently in the SVB. Since it is a counting filter, it

allows adding and removing addresses as they are added and

removed from the SVB. The filter is accessed in parallel with

L0; if it misses, the SVB will not be accessed.

After an SVB entry receives its initial contents, its up-

dates will be gradually removed as transactions commit or

get squashed. No new updates will ever be added, until the

entry is completely cleared and reloaded. Specifically, updates

by committing transactions will be removed in order; updates

by squashed transactions will be removed in any order, poten-

tially creating “holes” in the history. Overall, given an SVB

entry, it is always easy to deduce the order of the updates.

Finally, given the likely modest number of dependences be-

tween concurrently-executing transactions, each SVB entry

only needs space for a few updates (e.g., four).

The cache controller has four bitmasks. Pred_Set, Succ_Set,

and Sq_Set have as many bits as processors in the manycore.

They record the processors whose transactions immediately

precede (Pred_Set) or succeed (Succ_Set) the local one, and the

processors whose transactions, if squashed, cause the current

one to squash (Sq_Set). Succ_Dir has as many bits as directory

modules in the manycore. It records the directory modules that

act as successors of the current transaction.

Finally, the tag of each L1 cache line has a Speculative

Read (SR) and a Speculative Written (SW) bit. These bits

are set when the line is read or written, respectively, by the

local transaction. When an incoming coherence transaction is

received for a line, these bits are checked to decide whether

the L0 and SVB need to be accessed.

4.1.2. Hardware Structures in the Directory Module. As

shown in Figure 4(b), the hardware structures in each directory

module are an SVB and a Succ_Set array. The SVB is like the

one in a processor. The Succ_Set array contains one Succ_Set

for each of the processors in the manycore. Each Succ_Set is

like the one in a processor.

4.1.3. Summary. OmniOrder’s hardware needs are modest.

In addition, the hardware is relatively decoupled from the

cache coherence protocol. Cache lines transition between the

conventional coherence states. Also, requests issue line-level

addresses to the network, and move full cache lines rather than

single words. All this keeps OmniOrder’s complexity modest.

We will also see that the increase in traffic is very small.

4.2. Handling Speculative State Overflow

If an line in the L1 cache that has been accessed in a transaction

is about to be displaced from the hardware structures due to

overflow, the transaction cannot continue normally. However,

we have to be careful about naively squashing the transaction:

the potentially displaced line may have a history of earlier

updates in its SVB, and such updates cannot be discarded or

lost. For this reason, in OmniOrder, an overflow can only

discard a line accessed in the transaction if the line has no local

SVB entries, and it immediately triggers a squash. A special

case occurs when all the lines in a cache set have SVB state.

In this case, an access to another line mapping to the same set

immediately triggers a squash.

After the overflow-triggered squash, the transaction is

restarted in a conventional transactional mode that does not

allow inter-transactional dependences. This approach is similar

to that of Ramadan et al. [20]. Once in conventional transac-

tional mode, on speculative state overflow, a transaction has

not exposed its state to other transactions or used other trans-

actions’ state. Hence, OmniOrder can avoid squashing it by

using any of the existing conventional overflow-handling TM

mechanisms (e.g., [11]).

4.3. Conflict Cycle Detection

When conflicting transactions form a cycle, they cannot be

serialized any more. As an example, consider Figure 5, which

shows four transactions running concurrently. Conflicts be-

tween transactions are shown as arrows. If, at this point a

conflict between T2 a T3 appears, there is a cycle. Conse-

quently, OmniOrder has to detect each cycle, break the cycle

by squashing at least one of the conflicting transactions, and

ensure that the cycle cannot repeatedly reappear.

T0 T1 T2 T3

A

F

B

C

D
E

Figure 5: Example of transactions with conflicts.

OmniOrder uses a cheap, conservative way to detect and

break cycles. It uses the fact that, to participate in a cycle, a

transaction has to be the source of a line dependence and the

destination of another line dependence. In addition, in at least

one of the transactions in the cycle, the dependence where

the transaction is the source is formed before the dependence

where the transactions is the destination. For example, in

Figure 5, if a new dependence from from T2 to T3 is created,

the condition is true for at least T0. However, this criterion is

conservative, as the condition may be true without a cycle —

e.g., in Figure 5, the condition is true for T0 but there is no

cycle.

Hence, when a transaction (T) becomes the destination of a

conflict, OmniOrder checks T’s Succ_Set and Succ_Dir. If they

are not empty, then there is a chance of a cycle and OmniOrder

triggers the squash of T (Section 3.2.5). If there is a cycle, the

squash signal eventually returns to T, which ignores it.

We want to avoid that, as squashed transactions restart, they

fall into the same cycle again. Hence, the single transaction (T)

that detected the cycle is restarted in the conventional transac-

tional mode that does not allow inter-transactional dependences

(Section 4.2). Consequently, T will not participate in the cycle

again, and the same cycle cannot reoccur.

Overall, compared the cycle-detection algorithm described

in Volition [19], OmniOrder uses trivially-simple hardware

and minimizes protocol races because only a single processor

detects the cycle. However, while Volition finds only true

cycles, OmniOrder can report false-positive cycles.

5. Speculation for Strict Consistency Models

OmniOrder also allows the concurrent execution of conflict-

ing hardware-generated atomic blocks. The protocol needs no

changes. Here, we describe how OmniOrder eliminates the

stalls of loads and stores under SC. The result is a more pow-

erful environment than existing proposals for out-of-window

speculation (e.g., InvisiFence [6] and Bulk [24]).

5.1. Basic Idea

In a basic implementation of SC, a store in the write buffer

prevents subsequent loads from retiring and subsequents writes

in the write buffer from performing. As a result, the processor

may stall. Current proposals for out-of-window speculation

avoid stalling by creating a register checkpoint in hardware

before the disallowed access, and continuing execution specu-

latively, typically buffering the speculative state in the cache.

For example, InvisiFence triggers a checkpoint and enters spec-

ulative execution when a load or a store are about to retire and

there is already a store in the write buffer. Eventually, when

the write buffer becomes empty, the speculative block of in-

structions executed is committed, the checkpoint is discarded,

and the execution returns to non-speculative mode. However,

if before this happens, the processor (P0) receives a coher-

ence message on any speculative data, the speculative block is

squashed and the register checkpoint is restored. As an alter-

native to the squash, in InvisiFence with Commit on Violation

(CoV), P0 delays processing the coherence action and stalls,

hoping to drain the write buffer and commit all speculative

data before processing the incoming signal. If the speculative

block has not committed after some timeout, it is squashed.

B0

P0 P1

B1

T
im
e

Non-spec access

Speculative access

Checkpoint

Figure 6: Hardware-
initiated
speculative
blocks.

OmniOrder goes further (Fig-

ure 6). If, while P0 is execut-

ing block B0 speculatively, it

receives a coherence message

from another processor (P1) on

any speculative data, P0 is not

squashed. Instead, P1 starts its

own speculative block (B1) that

is made a successor of B0. These

two speculative blocks follow the

same OmniOrder protocol as in

Section 3, and will be forced to

commit in order. Other specula-

tive blocks from other processors

can also join in, creating successor chains. Compared to In-

visiFence, OmniOrder has avoided the squash, hence improv-

ing performance.

5.2. Starting and Terminating Speculative Execution

To support the concurrent execution of conflicting speculative

blocks, OmniOrder extends the conditions required to start and

terminate speculative execution beyond InvisiFence’s. Specif-

ically, in OmniOrder, processors enter Speculative Mode for

one of two reasons. The first one is to avoid stalling at loads or

stores when SC would require it — exactly like in InvisiFence.

The second reason is the execution of an access that is found to

be data dependent on a reference in another processor’s spec-

ulative block. To understand the implications of this second

reason, we consider loads and stores separately.

Assume that processor P1 is not executing a speculative

block. Assume that it executes a load and that the return line

brings the history of speculative updates (just one in this case)

from P0, which is executing B0. In this case, OmniOrder starts

a dependent speculative block B1 in P1. For this, it marks the

ROB entry for the load so that, right before the load retires, it

creates a register checkpoint. The load is the first instruction

of speculative block B1, which is a successor of speculative

block B0 in P0 (Figure 6).

Assume now that, instead, P1 executes a store and the re-

sponse message brings the history of speculative updates from

P0. Unlike in the previous case, the store has already retired.

Now, we would not be able to create a register checkpoint,

which is needed in order to support speculative blocks. Conse-

quently, OmniOrder does create a checkpoint every time that

a store retires and the processor is not already in Speculative

Mode. With this design, the store is the first instruction of

speculative block B1, which is a successor of B0 (Figure 6).

In OmniOrder, for a processor to commit a block B1 and

leave the Speculative Mode, two conditions must simultane-

ously hold. The first one is that the local write buffer is empty.

This is the one and only condition needed in InvisiFence. The

second condition is that all its predecessor speculative blocks

(such as B0 in Figure 6) have committed or been squashed.

The processor can help these conditions by stalling when B1

is getting large and, hence, there is risk of losing much work.

Overall, the complete OmniOrder rules for checkpointing

and entering Speculative Mode is as follows. For a store, check-

point at retirement. In this case, the write buffer is necessarily

empty since, otherwise, the processor would already be in

Speculative Mode. This rule supersedes all the checkpoints by

InvisiFence at writes. For a load, checkpoint at retirement if

either the response included a history of speculative updates,

or the write buffer is not empty. This second requirement

is needed to avoid SC-induced stall, and is also present in

InvisiFence.

Compared to a scheme like InvisiFence, OmniOrder acti-

vates the Speculative Mode more often. While some of these

additional activations are needed (e.g., when the processor

accesses data that is speculative elsewhere), others are not.

Unnecessary activations occur when a store (i) finds an empty

write buffer, (ii) does not end up accessing a speculatively line

elsewhere, and (iii) completes and gets removed from the write

buffer before the processor retires any subsequent load or store

(otherwise, a checkpoint is needed to avoid an SC-induced

stall). In practice, these stores cause little overhead, since, as

soon as they complete, execution leaves Speculative Mode.

5.3. Speculative State Overflow

Handling speculative state overflow in this environment is

relatively simple: before any speculative state is displaced,

the processor stalls. If this was a speculative block generated

to avoid SC-induced stalls, it will eventually commit as its

pending stores complete. If, instead, this block was started due

to a dependence, once its predecessors commit or get squashed,

and its pending stores complete, it will be able to commit. This

is unlike when executing transactions (Section 4.2), where

atomic blocks cannot commit early.

6. Evaluation

We evaluate OmniOrder using simulations of a 64-processor

chip using the SESC simulator [22]. The architecture modeled

is shown in Table 1. Note that, while Section 3 described

OmniOrder’s operation under an MSI protocol, we model an

MESI protocol. We focus on three aspects: (1) the performance

of OmniOrder with TM, (2) the performance of OmniOrder

with speculation for SC, and (3) the overhead of OmniOrder.

Parameter Value

Architecture Manycore chip with 64 cores

Core 4-issue wide out-of-order

ROB, write buffer 176 entries, 32 entries

Memory consistency RC or TSO at the hardware level

L0 buffer 8KB, 4-way asso.

SVB 128 entries/proc; 128 entries/dir module

Priv. L1 cache 64KB WB, 4-way asso., 2-cycle round trip

Shar. L2 cache 256KB per bank, 64 banks, 8-way asso., 11-

cycle round trip (local module)

Cache line size 32B

Coherence MESI, full-mapped directory in 64 modules

Network 2-D mesh, 7-cycle hop latency

Main memory 200-cycle round trip

Table 1: Architecture simulated.

For (1), we use 8 applications from STAMP. We compare

OmniOrder to InvisiFence, which squashes a transaction on

conflict. For InvisiFence, we use the “oldest transaction wins”

policy. For (2), we compare OmniOrder to 5 existing SC

implementations on top of RC hardware. The schemes are

shown in Table 2. For END_SC [23], we model a system

with 16KB pages. For each scheme, we use 12 applications

from SPLASH-2 and 4 from PARSEC. To get further insight,

we also use the three most competitive schemes (IF, IF_COV

and OO), to run 11 small programs that implement concurrent

algorithms such as non-blocking queues. These codes were

mostly obtained from [1]. Finally, for (3), we measure the

communication overhead of OmniOrder. Table 3 shows the

applications.

Name Implementation Description

SC_Window In-window speculation [12]

CO Conflict Ordering [17]

END_SC End-To-End SC [23]

IF InvisiFence [6]

IF_COV IF with Commit-On-Violation [6]

OO OmniOrder

Table 2: SC implementations on top of RC hardware.

6.1. Performance of OmniOrder with TM

Figure 8 compares the execution time of the STAMP applica-

tions running on InvisiFence (IF) and OmniOrder (OO). For

each program, the execution time is normalized to IF, and the

cycles broken into the categories: retiring instructions (Useful),

stalled due to pipeline hazards (Pipeline), stalled due to mem-

ory system accesses (Memory), stalled due to store buffer full

(SBFull), and squashed (Squashed). The rightmost two bars

show the averages, and are not broken into categories.

 B
a

rn
e

s
_

S
C

_
W

in
d

o
w

 B
a

rn
e

s
_

T
S

O
 B

a
rn

e
s
_

R
C

 B
a

rn
e

s
_

C
O

 B
a

rn
e

s
_

E
N

D
_

S
C

 B
a

rn
e

s
_

IF
 B

a
rn

e
s
_

IF
_

C
O

V
 B

a
rn

e
s
_

O
O

 B
la

c
k
s
c
h

o
le

s
_

S
C

_
W

in
d

o
w

 B
la

c
k
s
c
h

o
le

s
_

T
S

O
 B

la
c
k
s
c
h

o
le

s
_

R
C

 B
la

c
k
s
c
h

o
le

s
_

C
O

 B
la

c
k
s
c
h

o
le

s
_

E
N

D
_

S
C

 B
la

c
k
s
c
h

o
le

s
_

IF
 B

la
c
k
s
c
h

o
le

s
_

IF
_

C
O

V
 B

la
c
k
s
c
h

o
le

s
_

O
O

 C
h

o
le

s
k
y
_

S
C

_
W

in
d

o
w

 C
h

o
le

s
k
y
_

T
S

O
 C

h
o

le
s
k
y
_

R
C

 C
h

o
le

s
k
y
_

C
O

 C
h

o
le

s
k
y
_

E
N

D
_

S
C

 C
h

o
le

s
k
y
_

IF
 C

h
o

le
s
k
y
_

IF
_

C
O

V
 C

h
o

le
s
k
y
_

O
O

 F
F

T
_

S
C

_
W

in
d

o
w

 F
F

T
_

T
S

O
 F

F
T

_
R

C
 F

F
T

_
C

O
 F

F
T

_
E

N
D

_
S

C
 F

F
T

_
IF

 F
F

T
_

IF
_

C
O

V
 F

F
T

_
O

O

 F
lu

id
a

n
im

a
te

_
S

C
_

W
in

d
o

w
 F

lu
id

a
n

im
a

te
_

T
S

O
 F

lu
id

a
n

im
a

te
_

R
C

 F
lu

id
a

n
im

a
te

_
C

O
 F

lu
id

a
n

im
a

te
_

E
N

D
_

S
C

 F
lu

id
a

n
im

a
te

_
IF

 F
lu

id
a

n
im

a
te

_
IF

_
C

O
V

 F
lu

id
a

n
im

a
te

_
O

O

 F
m

m
_

S
C

_
W

in
d

o
w

 F
m

m
_

T
S

O
 F

m
m

_
R

C
 F

m
m

_
C

O
 F

m
m

_
E

N
D

_
S

C
 F

m
m

_
IF

 F
m

m
_

IF
_

C
O

V
 F

m
m

_
O

O

 L
U

_
S

C
_

W
in

d
o

w
 L

U
_

T
S

O
 L

U
_

R
C

 L
U

_
C

O
 L

U
_

E
N

D
_

S
C

 L
U

_
IF

 L
U

_
IF

_
C

O
V

 L
U

_
O

O

 O
c
e

a
n

_
S

C
_

W
in

d
o

w
 O

c
e

a
n

_
T

S
O

 O
c
e

a
n

_
R

C
 O

c
e

a
n

_
C

O
 O

c
e

a
n

_
E

N
D

_
S

C
 O

c
e

a
n

_
IF

 O
c
e

a
n

_
IF

_
C

O
V

 O
c
e

a
n

_
O

O

 R
a

d
io

s
ity

_
S

C
_

W
in

d
o

w
 R

a
d

io
s
ity

_
T

S
O

 R
a

d
io

s
ity

_
R

C
 R

a
d

io
s
ity

_
C

O
 R

a
d

io
s
ity

_
E

N
D

_
S

C
 R

a
d

io
s
ity

_
IF

 R
a

d
io

s
ity

_
IF

_
C

O
V

 R
a

d
io

s
ity

_
O

O

 R
a

d
ix

_
S

C
_

W
in

d
o

w
 R

a
d

ix
_

T
S

O
 R

a
d

ix
_

R
C

 R
a

d
ix

_
C

O
 R

a
d

ix
_

E
N

D
_

S
C

 R
a

d
ix

_
IF

 R
a

d
ix

_
IF

_
C

O
V

 R
a

d
ix

_
O

O

 R
a

y
tra

c
e

_
S

C
_

W
in

d
o

w
 R

a
y
tra

c
e

_
T

S
O

 R
a

y
tra

c
e

_
R

C
 R

a
y
tra

c
e

_
C

O
 R

a
y
tra

c
e

_
E

N
D

_
S

C
 R

a
y
tra

c
e

_
IF

 R
a

y
tra

c
e

_
IF

_
C

O
V

 R
a

y
tra

c
e

_
O

O

 S
tre

a
m

c
lu

s
te

r_
S

C
_

W
in

d
o

w
 S

tre
a

m
c
lu

s
te

r_
T

S
O

 S
tre

a
m

c
lu

s
te

r_
R

C
 S

tre
a

m
c
lu

s
te

r_
C

O
 S

tre
a

m
c
lu

s
te

r_
E

N
D

_
S

C
 S

tre
a

m
c
lu

s
te

r_
IF

 S
tre

a
m

c
lu

s
te

r_
IF

_
C

O
V

 S
tre

a
m

c
lu

s
te

r_
O

O

 S
w

a
p

tio
n

s
_

S
C

_
W

in
d

o
w

 S
w

a
p

tio
n

s
_

T
S

O
 S

w
a

p
tio

n
s
_

R
C

 S
w

a
p

tio
n

s
_

C
O

 S
w

a
p

tio
n

s
_

E
N

D
_

S
C

 S
w

a
p

tio
n

s
_

IF
 S

w
a

p
tio

n
s
_

IF
_

C
O

V
 S

w
a

p
tio

n
s
_

O
O

 V
o

lre
n

d
_

S
C

_
W

in
d

o
w

 V
o

lre
n

d
_

T
S

O
 V

o
lre

n
d

_
R

C
 V

o
lre

n
d

_
C

O
 V

o
lre

n
d

_
E

N
D

_
S

C
 V

o
lre

n
d

_
IF

 V
o

lre
n

d
_

IF
_

C
O

V
 V

o
lre

n
d

_
O

O

 W
a

te
r-n

s
_

S
C

_
W

in
d

o
w

 W
a

te
r-n

s
_

T
S

O
 W

a
te

r-n
s
_

R
C

 W
a

te
r-n

s
_

C
O

 W
a

te
r-n

s
_

E
N

D
_

S
C

 W
a

te
r-n

s
_

IF
 W

a
te

r-n
s
_

IF
_

C
O

V
 W

a
te

r-n
s
_

O
O

 W
a

te
r-s

p
_

S
C

_
W

in
d

o
w

 W
a

te
r-s

p
_

T
S

O
 W

a
te

r-s
p

_
R

C
 W

a
te

r-s
p

_
C

O
 W

a
te

r-s
p

_
E

N
D

_
S

C
 W

a
te

r-s
p

_
IF

 W
a

te
r-s

p
_

IF
_

C
O

V
 W

a
te

r-s
p

_
O

O

 0

0.25

0.5

0.75

1.0

1.25

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Useful Pipeline Memory SBFull Squashed+Stall SBNonEmpty

Figure 7: Execution time for different implementations of SC, TSO, and RC.

Set Application Description

Aharr Variant of Harris

Dekker Algorithm for 2 proc. mutual exclusion

Harris Non-blocking set

Lazylist List-based concurrent set

Conc. Moirbt Non-blocking sync. primitives

Algo. Moircas Non-blocking sync. primitives

Ms2 Two-lock queue

Msn Non-blocking queue

Mst Non-blocking queue

Peterson Algorithm for N proc. mutual exclusion

Snark Non-blocking double-ended queue

Apps 12 SPLASH-2, 4 PARSEC, and 8 STAMP codes

Table 3: Applications executed.

 B
a

y
e

s
_

IF
 B

a
y
e

s
_

O
O

 G
e

n
o

m
e

_
IF

 G
e

n
o

m
e

_
O

O

 In
tru

d
e

r_
IF

 In
tru

d
e

r_
O

O

 K
m

e
a

n
s
_

IF
 K

m
e

a
n

s
_

O
O

 L
a

b
y
rin

th
_

IF
 L

a
b

y
rin

th
_

O
O

 S
s
c
a

2
_

IF
 S

s
c
a

2
_

O
O

 V
a

c
a

tio
n

_
IF

 V
a

c
a

tio
n

_
O

O

 Y
a

d
a

_
IF

 Y
a

d
a

_
O

O

 A
v
g

_
IF

 A
v
g

_
O

O

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Useful
Pipeline

Memory
SBFull

Squashed

Figure 8: Execution time of OmniOrder with TM.

We see that, on average, OO reduces the execution time

of the applications by a significant 18.4% over IF. These ap-

plications have little Useful time; most of the time is spent

on Memory, Pipeline, and Squashed. OmniOrder is able to

speed-up some programs mostly by reducing the Squashed

time through transaction serialization. This is especially sig-

nificant in Intruder, which has a producer-consumer pattern

between some transactions. In other programs, OmniOrder

speeds-up execution mostly by reducing the Memory time.

This is done by allowing speculative data to be used by depen-

dent processors, rather than squashing and accessing the data

from memory. These results are similar to [20].

6.2. Performance of OmniOrder for Efficient SC

Figure 7 compares the execution time of the SPLASH-2 and

PARSEC applications running on 6 implementations of SC on

top of RC hardware (including OmniOrder (OO)). For each

application, the execution time is normalized to SC_Window.

As a reference, the figure also shows the time for TSO and

RC executions. The execution cycles are broken into the same

categories as in Figure 8 plus a new category: stalled due to

non-empty store buffer (SBNonEmpty). To simplify the plot,

in IF_COV, the stall time is included in the Squashed cycles.

The leftmost three bars show that the execution time de-

creases from SC_Window to TSO and to RC. The next two

schemes (CO and END_SC) perform optimized in-window

speculation. CO reduces the execution time by lowering the

wait time for store completion. However, some eagerly-fetched

pending lists force some load hits to re-execute after invalidat-

ing cache lines. END_SC often suffers from SBNonEmpty

cycles. This is because many accesses use the FIFO store

buffer, since they are classified as unsafe.

The last three schemes (IF, IF_COV, and OO) perform out-

of-window speculation. For most programs, their execution

time is similar, and very close to RC. This is because there

are few block conflicts. Still, in Barnes, Ocean, and Raytrace,

there are conflicts, and IF incurs a visible amount of Squashed

cycles. IF_COV reduces the Squashed+Stall cycles by a certain

amount, and OO practically removes them all. On average,

however, the three schemes perform similarly here.

Figure 9 shows the execution time of the concurrent algo-

rithms for the best three schemes (IF, IF_COV and OO). These

programs have more frequent block conflicts. Hence, IF has

significant Squashed time. IF_COV avoids some squashes by

stalling, but the combination Squashed+Stall is still high. In

fact, stalling a block may cause more blocks to get trapped

in the stall. OO eliminates practically all the Squashed time,

reducing the execution time noticeably. On average, OO’s

execution time is 15.3% lower than IF_COV’s.

Overall, we conclude that, for codes with very few conflicts,

IF and OO perform similarly. However, when there are fre-

quent conflicts, as in three of our applications and all of our

concurrent algorithms, OO provides a good speedup over IF

and IF_COV. The data shows that most of these conflicts do not

create cycles, and that both squashes and stalls can be avoided.

6.3. OmniOrder Communication Overhead

To assess OmniOrder’s communication overhead, Figure 10

shows all the traffic in the system in bytes broken down into the

 D
e

k
k
e

r_
IF

 D
e

k
k
e

r_
IF

_
C

O
V

 D
e

k
k
e

r_
O

O
 P

e
te

rs
o

n
_

IF
 P

e
te

rs
o

n
_

IF
_

C
O

V
 P

e
te

rs
o

n
_

O
O

 A
h

a
rr_

IF
 A

h
a

rr_
IF

_
C

O
V

 A
h

a
rr_

O
O

 H
a

rris
_

IF
 H

a
rris

_
IF

_
C

O
V

 H
a

rris
_

O
O

 L
a

z
y
lis

t_
IF

 L
a

z
y
lis

t_
IF

_
C

O
V

 L
a

z
y
lis

t_
O

O

 M
o

irb
t_

IF
 M

o
irb

t_
IF

_
C

O
V

 M
o

irb
t_

O
O

 M
o

irc
a

s
_

IF
 M

o
irc

a
s
_

IF
_

C
O

V
 M

o
irc

a
s
_

O
O

 M
s
2

_
IF

 M
s
2

_
IF

_
C

O
V

 M
s
2

_
O

O

 M
s
n

_
IF

 M
s
n

_
IF

_
C

O
V

 M
s
n

_
O

O

 M
s
t_

IF
 M

s
t_

IF
_

C
O

V
 M

s
t_

O
O

 S
n

a
rk

_
IF

 S
n

a
rk

_
IF

_
C

O
V

 S
n

a
rk

_
O

O

 A
v
g

_
IF

 A
v
g

_
IF

_
C

O
V

 A
v
g

_
O

O

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Useful
Pipeline

Memory
SBFull

Squashed+Stall
SBNonEmpty

Figure 9: Execution time of concurrent algorithms.

following categories: MemAcc is the off-chip traffic; Read and

Write are the on-chip traffic related to read and write requests,

respectively; and Fwd is the traffic due to forwarding the update

histories and squash/commit signals between processors. Each

bar is normalized to the sum of MemAcc, Read, and Write. In

all programs, the additional bandwith consumed by OmniOrder

with Fwd is very small.

B
a
rn

e
s

 B
la

c
k
s
c
h
o
le

s
 C

h
o
le

s
k
y

 F
F

T

 F
lu

id
a
n
im

a
te

 F
m

m

 L
U

 O
c
e
a
n

 R
a
d
io

s
ity

 R
a
d
ix

 R
a
y
tra

c
e

 S
tre

a
m

c
lu

s
te

r

 S
w

a
p
tio

n
s

 V
o
lre

n
d

 W
a
te

r-n
s

 W
a
te

r-s
p

 0

20.0

40.0

60.0

80.0

100.0

120.0

T
ra

ff
ic

 i
n

 B
y
te

s
 (

%
)

MemAcc
Read

Write
Fwd

Figure 10: Traffic in the system.

7. Related Work

OmniOrder builds on extensive work on TM [14]. On a conflict,

most TM schemes squash one of the transactions, while a few

stall one of the transactions. RETCON [7] allows conflicting

transactions to complete, and then employs slice re-execution

to repair incorrect memory state. Such repair is limited to

simple cases such as counters. Other proposals learn repeated

conflicts and avoid scheduling conflicting transactions in paral-

lel [5] or take checkpoints to reduce the rollback extent [25].

Enforcing strict memory consistency models through out-

of-window speculation has received much attention (e.g., [6,

10, 13, 21, 26]). This environment is different from TM, since

atomic blocks are created dynamically by the hardware, and

can typically terminate as soon as all the pending accesses com-

mit. OmniOrder is the first scheme that allows these atomic

blocks to provide speculative data to other processors. Other

schemes retain SC without needing out-of-window speculation

— e.g., Conflict Ordering [17] tries to avoid dependence cycles

that could violate SC, while End-to-End SC [23] directs ac-

cesses to private and shared (or unsafe) data to different write

buffers, and only reorders the former.

There is a similarity between the history of updates trans-

ferred in OmniOrder and the diff modifications transferred

in software DSM systems that use lazy RC such as Tread-

Marks [3]. A diff encodes the modifications to a page.

8. Conclusion

This paper presented OmniOrder, the first design that effi-

ciently executes conflicting atomic blocks concurrently in a

directory-based coherence environment. Caches keep only

non-speculative data, and coherence protocol transfers include

the history of speculative updates to the line. We evaluated

OmniOrder with 64-core simulations. In a TM environment,

OmniOrder reduced the execution time of the STAMP pro-

grams by an average of 18.4% over a scheme that squashed on

conflict. In an environment for SC enforcement, on average,

SPLASH-2 and PARSEC programs have too few conflicting

blocks for OmniOrder to make a difference. However, we ran

11 concurrent-algorithm programs that and have frequent spec-

ulation. OmniOrder reduced their execution time by an average

of 15.3% over a scheme that squashed on conflict. Finally, the

communication overhead of OmniOrder was negligible.

References
[1] CheckFence. http://sourceforge.net/projects/checkfence/.
[2] W. Ahn et al. BulkCompiler: High-Performance Sequential Consistency

through Cooperative Compiler and Hardware Support. In MICRO’09.
[3] C. Amza et al. TreadMarks: Shared Memory Computing on Networks

of Workstations. Computer, February 1996.
[4] U. Aydonat and T. Abdelrahman. Hardware Support for Relaxed Con-

currency Control in Transactional Memory. In MICRO, 2010.
[5] G. Blake et al. Proactive Transaction Scheduling for Contention Man-

agement. In MICRO, December 2009.
[6] C. Blundell et al. InvisiFence: Performance-transparent Memory Or-

dering in Conventional Multiprocessors. In ISCA, 2009.
[7] C. Blundell et al. RETCON: Transactional Repair without Replay. In

ISCA, June 2010.
[8] J. Bobba et al. TokenTM: Efficient Execution of Large Transactions

with Hardware Transactional Memory. In ISCA, June 2008.
[9] F. Bonomi et al. An Improved Construction for Counting Bloom Filters.

In European Symposium on Algorithms, Sep 2006.
[10] L. Ceze et al. BulkSC: Bulk Enforcement of Sequential Consistency.

In ISCA, June 2007.
[11] J. Chung et al. Tradeoffs in Transactional Memory Virtualization. In

ASPLOS, 2006.
[12] K. Gharachorloo et al. Two Techniques to Enhance the Performance of

Memory Consistency Models. In ICPP, August 1991.
[13] C. Gniady et al. Is SC + ILP = RC? In ISCA, May 1999.
[14] T. Harris et al. Transactional Memory. Morgan & Claypool, 2010.
[15] M. Herlihy and E. Moss. Transactional Memory: Architectural Support

for Lock-free Data Structures. In ISCA, 1993.
[16] S. A. R. Jafri et al. Wait-n-GoTM: Improving HTM Performance by

Serializing Cyclic Dependencies. In ASPLOS, 2013.
[17] C. Lin et al. Efficient Sequential Consistency via Conflict Ordering. In

ASPLOS, 2012.
[18] X. Qian et al. BulkSMT: Designing SMT Processors for Atomic-Block

Execution. In HPCA, February 2012.
[19] X. Qian et al. Volition: Scalable and Precise Sequential Consistency

Violation Detection. In ASPLOS, 2013.
[20] H. Ramadan et al. Dependence-Aware Transactional Memory for

Increased Concurrency. In MICRO, 2008.
[21] P. Ranganathan et al. Using Speculative Retirement and Larger In-

struction Windows to Narrow the Performance Gap Between Memory
Consistency Models. In SPAA, June 1997.

[22] J. Renau et al. SESC Simulator. http://sesc.sourceforge.net.
[23] A. Singh et al. End-To-End Sequential Consistency. In ISCA, 2012.
[24] J. Torrellas et al. The Bulk Multicore Architecture for Improved Pro-

grammability. Communications of the ACM, 52(12), 2009.
[25] M. Waliullah et al. Intermediate Checkpointing with Conflicting Access

Prediction in Transactional Memory Systems. In IPDPS, 2008.
[26] T. Wenisch et al. Mechanisms for Store-wait-free Multiprocessors. In

ISCA, June 2007.

