
Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 10 February 2009
doi: 10.3389/neuro.11.005.2009

OMPC: an open-source MATLAB®-to-Python compiler

Peter Jurica* and Cees van Leeuwen

Perceptual Dynamics Laboratory, RIKEN Brain Science Institute, Wako-Shi, Saitama, Japan

Free access to scientifi c information facilitates scientifi c progress. Open-access scientifi c
journals are a fi rst step in this direction; a further step is to make auxiliary and supplementary
materials that accompany scientifi c publications, such as methodological procedures and data-
analysis tools, open and accessible to the scientifi c community. To this purpose it is instrumental
to establish a software base, which will grow toward a comprehensive free and open-source
language of technical and scientifi c computing. Endeavors in this direction are met with an
important obstacle. MATLAB®, the predominant computation tool in many fi elds of research, is
a closed-source commercial product. To facilitate the transition to an open computation platform,
we propose Open-source MATLAB®-to-Python Compiler (OMPC), a platform that uses syntax
adaptation and emulation to allow transparent import of existing MATLAB® functions into
Python programs. The imported MATLAB® modules will run independently of MATLAB®, relying
on Python’s numerical and scientifi c libraries. Python offers a stable and mature open source
platform that, in many respects, surpasses commonly used, expensive commercial closed source
packages. The proposed software will therefore facilitate the transparent transition towards a
free and general open-source lingua franca for scientifi c computation, while enabling access
to the existing methods and algorithms of technical computing already available in MATLAB®.
OMPC is available at http://ompc.juricap.com.

Keywords: technical computation, Python, Matlab, compiler

products are Octave and Scilab. None of these packages ever reached
100% compatibility and failed to meet the challenge of catching up
with a platform with substantial fi nancial support.

We propose OMPC as a possible alternative strategy to facilitate
transition to an open-source platform. OMPC aims to offer a bridge
between MATLAB® and Python. Development of the Python pro-
gramming language project was started in late 1980s (http://www.
artima.com/intv/python.html) at the National Research Institute
for Mathematics and Computer Science in the Netherlands as
an open-source scripting language for gluing components of an
operating system. Today, powerful hardware allows Python to be
used as a general purpose programming language. Over the years,
the community contributing to the development of the Python
language has grown considerably. Programmers and scientists
alike are attracted by the simplicity of its syntax and its powerful
set of features. Python is a good bet for a future free and open-
source product that will develop far and fast enough to become
the new lingua franca of technical computing (Fangohr, 2004;
Langtangen, 2006).

Since the early stages there have been attempts to develop a
Python package that offers certain features available in MATLAB®-
compatible languages (http://matpy.sourceforge.net/). Scientifi c
computation libraries were developed in the 1990s (Oliphant, 2006)
and have been updated several times (Ascher et al., 2001; Oliphant,
2007), gaining in reliability, stability and versatility over years of
development and use. The most important ones, especially in the
context of our project, are numpy, scipy and matplotlib (http://
numpy.scipy.org/, http://www.scipy.org/ and http://matplotlib.
sourceforge.net/ respectively). The fi rst two provide functions

INTRODUCTION
Scientifi c progress is optimally served when everyone has access
to the relevant information. No matter how effective commercial
organizations, such as publishers or software houses, are in distrib-
uting information; their copyright and proper use requirements are
often an impediment to information sharing. Open-access scientifi c
journals attempt to remedy this problem; but this is only a fi rst step,
involving the free distribution of scientifi c results. The next step
is to make auxiliary and supplementary materials that accompany
scientifi c publications, such as methodological and data-analysis
procedures, open and accessible to the scientifi c community in the
form of freely downloadable software.

Sharing software tools requires a common platform. Currently
one platform dominates the sciences: MATLAB®. As a commercial
product, this language has successfully conquered the market for
scientifi c communication (Moler, 2004, 2006) because it is easy
to adopt for beginners as well as professionals, and because of its
policy to offer licenses at reduced rates to educational institutions.
However, it does not meet our criteria to be used as a common
standard for free sharing of software tools. Using a method imple-
mented in MATLAB® requires a full MATLAB® license. Moreover,
its core software is closed source, preventing users from verifying,
updating, and improving it.

While some MATLAB® users fi nd the features of the language
suffi cient and see no reason to switch to an alternative, those who
want to move to another platform feel the weight of code already
written in MATLAB® impeding on their decision. Developers who
have tried to offer an open-source alternative have made efforts to
offer a level of compatibility with MATLAB®. Examples of such

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Eilif Muller, Brain Mind Institute, EPFL,
Switzerland
Dan Goodman, École Normale
Supérieure, France

*Correspondence:

Peter Jurica, Perceptual Dynamics
Laboratory, RIKEN Brain Science
Institute, Hirosawa 2-1, 351-0198
Wako-Shi, Saitama, Japan.
e-mail: pjurica@brain.riken.jp

http://ompc.juricap.com
http://www.artima.com/intv/python.html
http://matpy.sourceforge.net/
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 | 2

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

largely equivalent to those of MATLAB®, while matplotlib is pro-
viding plotting functionality. Within the controlled development
of Python, a proposal was made in 2000 to enhance Python with
a feature that has been one of the major assets of MATLAB®: the
availability of both matrix and element-wise operators (Zhu and
Lielens, 2000). Another proposal has been to include a numerical
array package numpy into the standard Python library, resulting
in a revision of the buffer interface for the Python 3.0 (Oliphant
and Banks, 2006). The new buffer interface facilitates the sharing
of multi-dimensional data between different Python extension
modules. All these developments point to an expanding role for
Python in scientifi c computation.

The main problem with these packages is that each offers only
a subset of MATLAB® features, but they lack a common, standard-
ized interface. Our fi rst aim, therefore, is to organize the available
numerical libraries and provide them with a common interface.
Our second aim is to provide 100% compatibility with MATLAB®
syntax and with its dynamic interpreter (the MATLAB® engine).
One advantage is that users will be able to download MATLAB®
applications and run them for free. For programmers, OMPC offers
the advantage of a free and open collaboration platform allowing
reuse of code developed for the commercial MATLAB® platform
without laborious rewriting.

OMPC is basically a translator of MATLAB® code to Python-
compatible syntax. This paper discusses the compiler and the fun-
damental concepts that allow it to generate interpretable code; in
particular code that will handle certain dynamic MATLAB® features
not present in Python. For the generated code to work, OMPC
needs to be complemented by a library that will ensure the proper
interpretation of the translated code. We refer to this library as
OMPClib. OMPClib contains, in particular, numerical objects
that emulate the dynamical behavior of their MATLAB® counter-
parts. Proof-of-concept implementations of OMPClib that possess
additional functionality just suffi cient to reproduce the results of
a spiking neural-network simulation (from Izhikevich, 2003) are
presented in the Supplementary Material. OMPClib is a work in
progress. A regularly updated version is found at the project’s web-
site (http://ompc.juricap.com). The current implementation of the
OMPClib is an integral component of the OMPC package and is
based on the extension modules numpy, scipy and matplotlib.

PROBLEM STATEMENT
In part, the translation of MATLAB® into Python code is a straight-
forward, technical problem. We need a compiler to generate Python
compatible code from MATLAB® code (see The Compiler). In addi-
tion, there are four MATLAB® types (string, cell array, array, and
slice) that have features not available in the corresponding Python
objects. For these, we introduce Python objects that act as proxies
for their MATLAB® equivalents (see Numerical Library).

The central, unique feature of the present translation problem
is that both languages are interpreted languages, but have different
dynamic features. Usually “dynamic” refers to a property of vari-
able types and means that variables do not have to have a declared
purpose or type – we refer to an object by its name and the inter-
preter decides at run-time if an operation on the variable is allowed.
However, MATLAB® also adds dynamics to a number of other
aspects of the language. The dynamic features of the MATLAB®

engine differ from those of Python as well as most other general-
purpose interpreters, because of the specifi c purpose for which
MATLAB® was designed. These issues include: array slicing, on-
demand updating of the variable namespace and populating it with
implied variables such as nargin/nargout, element-wise operations,
and implied returns. The dynamic feature of MATLAB® that is
the most diffi cult to implement in languages other than Python is
the nargin/nargout implied variable. The slicing syntax, although
available in Python, differs in syntax. In subsequent Sections
“Array Slicing, Index Base 1”, “Dynamic Update of the Variable
Name Space, Emulation of nargin/nargout”, “Assignments to Novel
Variables, Assignments to Slices”, “Element-wise Operations” and
“Implied Returns”, we show how each of these particular problems
can be solved. In Section “The mfunction Decorator” we mention
how OMPC allows integration of these solutions with a mini-
mum impact on the structure of the original MATLAB® code. Our
approach illustrates that it is possible, given enough knowledge of
the compiler of a particular language, to interpret code written in
an arbitrary programming language, provided that the emulated
language has a subset of the features of the emulating one. This
translation maxim may apply universally between any pair of lan-
guages. However, as we argue, Python in addition is syntactically
close, suffi ciently dynamic, and has a large enough library to enable
translation that leaves the original structure intact.

Any platform for technical and scientifi c computation should
keep up to the standards of speed and quality of MATLAB®. This
is only possible if such a platform is built on the base of standard
numerical packages. Indeed at the base of all of currently compet-
ing scientifi c packages we fi nd ATLAS (Automatically Tuned Linear
Algebra Software). This is the reason why results of operations on
matrices are bit-by-bit equivalent in MATLAB®, Python, Octave
and many other tools. Also the speed of execution of operations
defi ned in this library does not change signifi cantly between differ-
ent engines. There is no essential difference in speed of execution
compared to compiled languages like C/C+++; C/C++ code written
by the average user can even be slower compared to implemen-
tations available from the ATLAS BLAS/LAPACK libraries used
by numpy/scipy. This is because optimization of the elementary
operations is done automatically at the time of compilation of
the library and the speed of the result in not affected by the pro-
gramming language from which this library is initiated (except for
translation of parameters). The functionality of many toolboxes of
MATLAB® is dependent on a number of other open-source pack-
ages as well. These are all available to Python users and probably
have already been wrapped into a Python package. For custom
made, non-standard packages (MEX extensions), we still need a
way to allow OMPC to use them. This issue is discussed in Section
“OMPC Extensions”.

PROPOSED SOLUTION
An underappreciated aspect of Python, especially in scientifi c com-
puting, is a feature known as introspection. Python offers built-
in modules that allow run-time inspection of its own bytecode.
Bytecode is the equivalent of the machine language in interpreted
and just-in-time compiled languages. Introspection makes possible
the run-time modifi cation of the bytecode of a program, provided
that the engine allows this. Python offers this facility. Where the

http://ompc.juricap.com

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 | 3

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

specifi c dynamic features of the MATLAB® engine have made it
impossible for Python to interpret MATLAB® code directly, we
show that with the help of introspection it is possible to emulate the
remaining features. The following section presents specifi c features
that together implement the proposed solution. Supplementary
Material fi les on the project site include Python scripts that dem-
onstrate the features presented in this section.

OMPC – A MATLAB®-TO-PYTHON COMPILER
OMPC is a compiler that translates MATLAB® code to function-
ally equivalent Python code. The design philosophy of OMPC is to
enable seamless integration of existing MATLAB® code in Python
programs. As a feature of convenience, OMPC allows automatic
loading and translation of .m fi les using the Python import state-
ment. Thus, assuming there is an m-function called add imple-
mented in a fi le called add.m, an example Python session using
this fi le would look as follows1:

>>> import ompc
>>> import add
>>> add(1,2)
ans = 3

The steps taken during execution are schematically illustrated
in Figure 1. They are:

1. import ompc – OMPC installs a so-called import hook into
the current instance of the interpreter. This allows OMPC to
act at every import statement and compile m-fi les to Python
code on demand. From this point on it is possible to import .m
fi les.

2. import add – the OMPC import hook is called and searches
for add.m on the current path (an equivalent to MATLAB®’s

path variable). OMPC compiles add.m to a .pym fi le and sub-
mits this fi le to Python’s built-in __import__ function that will
compile this fi le as any other regular Python fi le.

3. add(1, 2) – is a Python function call. It is running in the
current Python instance as a Python function working with
Python variables. In other words, MATLAB® is not involved at
any stage of this process.

OMPC is complemented by the module OMPClib. This module
provides implementations of objects that act as proxies of dynamic
features specifi c to MATLAB®.

Note that the mentioned enhancement of functionality is
realized without any change to the Python language itself. It is
absolutely important not to change the Python language in favor
of a single package. Changes to the interpreter should only be
made if they are met with general acceptance among the users
of the language. Otherwise it would lead to the opposite of the
unifi cation aimed for. Moreover, a program translated by OMPC
preserves the structure of the original MATLAB® program. The
resulting program, in all but three cases (function declaration,
switch statement, multiple statements on a single line), corre-
sponds line by line to its MATLAB® source code. An example of
equivalent MATLAB® and Python compatible codes can be found
in the “Results” section.

THE COMPILER
To use MATLAB® code in Python, an intermediate step of
MATLAB®-to-Python syntax adaptation is needed. The MATLAB®
code must be parsed and translated into Python code that is func-
tionally equivalent to its original. To parse MATLAB® source code
we used a free 100% Python implementation of lex and yacc pars-
ing tools called PLY (http://www.dabeaz.com/ply/). The compiler is
implemented in a single Python fi le (examples/ompc/ompcply.py).
This fi le is a collection of grammar defi nitions. Each defi nition
is associated with a processing function for a specifi c language
construct (keyword, number, assignment, index access and oth-
ers). The grammatical rule for each construct is specifi ed in the

1The following sections contain listings of code in both programming languages.
We adhere to the following convention: The mark >> at the beginning of a state-
ment signifi es a MATLAB® program, while the mark >>> signifi es Python code.
Each of the concepts introduced in the following subsections has a corresponding
executable script that is part of the Supplementary Material.

FIGURE 1 | OMPC structure. Each .m fi le has to be translated to Python compatible syntax. Statements for an .m fi le are replaced by their Python equivalents with
minimal structural changes that allow emulation. This translated code relies on features implemented in a numerical object similar to ndarray of the numpy module.

http://www.dabeaz.com/ply/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 | 4

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

documentation string of its processing function. The functions are
designed to cover every syntactically correct MATLAB® language
statement. The PLY module uses the grammar fi le to generate a
parser, which searches a source text for language constructs
and passes these to their corresponding processing functions.
The parser produces the translated Python-compatible code. In
the case of strings, the syntactical rule is the regular expression
STRING = r�((?:�|[^\n�])*)� and the processing function looks
as follows:

def p_expression_string(p):
 "expression : STRING"
 p[0] = "mstring(%s)"%p[1]

Every MATLAB® string that passes through this function will be
enclosed in the expression mstring(.). Such a string can have all the
features of a MATLAB® string. If this is not required, it is possible
to replace the last line with p[0] = p[1]. As a result the strings from
the original will stay intact.

The important advantage of using Python for the translation is
that its code is easy to read and can be easily modifi ed. Modifying
a Python program does not require installation of a large compli-
cated development system, common for low level languages like
C++ or Java. The development advantages outweigh the negligible
differences in processing speed.

NUMERICAL LIBRARY
Here we present the additional objects necessary for full compat-
ibility with MATLAB®. The following MATLAB® example illus-
trates the impossibility of differentiating between variables and
functions at translation.

>> add = @(a,b) a+b;
>> add(1,2) % Python -> add(1,2)
ans = 3
>> add = 1:10;
>> add(1,2)
ans = 2 % Python -> add[0,1]

MATLAB® uses the same syntax for calling a function and
retrieving elements from an array. This makes it impossible to
determine if an identifi er add in the above listing is a variable or
a function. Therefore it is not possible to correctly translate the
statement >> add(1,2) at compilation time. Our solution is based
on the fact that object-oriented programming allows overloading
of operators. We therefore have the option to overload the object’s
__call__ function. Thus the OMPC code can be executed in Python,
behaving equivalently to its MATLAB® original, independently of
whether add is a function or a variable. Note that this added feature
enhances the original numerical array (numpy in our examples)
without altering its original function. The new object marray inher-
its all functionality from the original numerical array. This object
enhanced by an overloaded __call__ operator allows the following
example to run in Python:

>>> add = lambda a,b: a+b;
>>> add(1,2)
3
>>> add = mslice[1:10];
>>> add(1,2)
ans = 2.0

The supplementary OMPC numerical object is currently
based on numpy’s array object. This is however not the only
option. It is possible to use base objects from another pack-
age like Numarray, CVXOPT (http://abel.ee.ucla.edu/cvxopt)
or others. For non-numerical objects we can enhance Python
built-in types. For example the OMPC string is based on the
Python string implementation. The OMPC’s cell array object is
based on the Python built-in list object, which is equivalent in
features to the cell array but, as is obvious from the following
example, the performance boost achieved by using the Python
list object is considerable.

>> m = {}; tic, for i=1:100000, m{i} = 12; end, toc
Elapsed time is 9.637410 seconds.

Python does not allow on-demand growing of lists, but this
feature can easily be emulated:

>>> class mcellarray(list):
 def __setitem__(self,i,v):
 if i >= len(self):
 self.extend([None]*(i-len(self)) + [v])

>>> m = mcellarray()
>>> tic()
>>> for i in xrange(100000): m[i] = 12
>>> toc()
Elapsed time is 0.372690 seconds.

The above example is not the optimal way of using the cell array.
Such incorrect use of MATLAB®’s benevolent interpreter is, how-
ever, very common. As the last example shows, Python can help to
greatly enhance the usability of such sub-optimal code.

ARRAY SLICING, INDEX BASE 1
The fi rst element of a Python sequence type is 0, while MATLAB®
uses 1 as the base for indexing, for instance a[0] in Python is
equivalent to a(1) in MATLAB®. OMPC solves this incompat-
ibility by overloading the numerical object’s __call__ method.
The same technique of overloading the __call__ function also
makes it possible to use MATLAB® style array slicing. Consider
again:

>>> b = a(1:10);

it is unclear until run-time if a is a function accepting a vector or a
vector from which we are retrieving the fi rst 10 elements. Python
does not allow using a slice object outside of the index [] operator.
By translating this statement into Python acceptable syntax

>>> b = a(mslice[1:10]);

and making a an object with overloaded __call__ operation,
this code can be executed in Python, behaving equivalently to its
MATLAB® original independently of whether a is a function or
a variable.

The mslice proxy object does two things. First it allows a slice
object to be used as a parameter to a function call. Secondly it
adapts MATLAB® index-base-1 slices from the syntax start:step:
stop to Python’s start:stop:step. Python’s slice object returns slices
up to the stop element, while MATLAB®’s slices range up to the
stop element including it.

http://abel.ee.ucla.edu/cvxopt

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 | 5

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

DYNAMIC UPDATE OF THE VARIABLE NAME SPACE, EMULATION OF
NARGIN/NARGOUT
Python comes with a built-in module called inspect. Using this
module it is possible to look into the execution stack to see in what
context a function is being executed. This means that at any time
a function is called we can look a couple of steps back in history
and ask the interpreter about the code from which our function
has been called. Consider the following statement:

>>> [a, b] = sort(rand(10,1))

Python accepts both a, b, and [a, b] (the correct syntax in
MATLAB®) as left-value for an assignment. The inspect module
makes it possible to ask the interpreter for the number of argu-
ments on the left side of the assignment at the moment just before
a function was called. The OMPClib module contains a function
_getnargout that does exactly this. The following Python statement
that leaves nargout undefi ned:

def f(x):
 if nargout == 2:
 return 1, 2
 else:
 return 1

can thus be rewritten to:

def f(x):
 nargout = _getnargout()
 if nargout == 2:
 return 1, 2
 else:
 return 1

The mfuction decorator, which will be discussed in detail in
Section “The mfunction Decorator”, makes sure that a call to the
_getnargout function is inserted in the preamble of all functions
translated by OMPC. This means that the original MATLAB® func-
tion body again can stay intact; we only need to apply the mfunction
decorator that inserts nargout and, similarly, nargin into the variable
namespace of the function during runtime.

ASSIGNMENTS TO NOVEL VARIABLES, ASSIGNMENTS TO SLICES
We explained that it is possible to use the __call__ function to allow
MATLAB®-style array slicing. There is one exception, however:
Python does not allow function calls to be used for assignment. We
circumvent this restriction by assigning to a property of the slice.
The property mediates the assignment operation and makes the
syntax acceptable to the Python parser. For instance,

>>> a(1) = 1 # Syntax error

is not allowed, but the following is:

>>> a(1).lvalue = 1

MATLAB® allows assignment to slices of variables that were
not previously initialized. The module inspect allows us to detect
assignment to non-existent variables. In the translated code, the
variables are initialized during runtime by the mfunction decorator
(see The mfunction Decorator).

ELEMENT-WISE OPERATIONS
MATLAB® offers a convenient way of differentiating between oper-
ations for matrices and their element-wise equivalents. Although
such a differentiation was repeatedly proposed for Python (Zhu and
Lielens, 2000) it never gained enough support from the broader
Python community. In numpy, all numerical operations on arrays
are element-wise by default. In principle, it would not have been
a problem to use function calls to differentiate between these and
matrix operations, for instance:

a .* b => multiply(a, b) and a * b => dot(a, b)

However in accordance with our principle to preserve as much
as possible the original structure of the MATLAB® code, we sug-
gest another solution. This solution is inspired by a recipe from
the community-driven Python cookbook (http://code.activestate.
com/recipes/384122/). Python allows overriding of operators on
either side of an operand. This feature is commonly used to enable
automatic coercion of types. For example, it allows the user to
apply an arithmetic operation between a numpy array and any-
thing else. So, for adding to array x a list [1,2], instead of having
to convert it to an array: x + array([1,2]), we can simply write:
x + [1,2]. Therefore it is possible to change the above translation
rule as follows:

a .* b => a *elmul* b and a * b => a * b

The elmul is an instance of an object that has overloaded the *
operator (the __mul__ and __rmul__ function). Independently of
the execution order of the operations in the statement, the elmul
object remembers the operand from the fi rst multiplication and
instructs the second operand to perform element-wise multiplica-
tion (a*elmul -> elmul.left = a, elmul*b -> elmul.left*b).

IMPLIED RETURNS
MATLAB® uses implied returns; the “return” statement without
parameters serves only for breaking the execution of a function.
The return parameters of a function are specifi ed in the function
declaration. Python requires specifi cation of these variables at each
point of exit from the function. Python’s return statement consists
of a list of variables to be returned from a function call. Absence of
the list means the empty object None is returned.

function [mi,ma] = minmax(a)
mi = min(a);
if nargout > 1, ma = max(a); end

@mfunction("mi, ma")
def minmax(a=None)
 mi = min(a)
 if nargout > 1: ma = max(a)

In the above example it is not possible to simply append a
return statement return mi, ma. Because its value is being assigned
to a single object (mi), the minmax function is expecting to return
a single value. Python would therefore automatically assign a
sequence, or tuple, containing both return values to the single
variable at the output of the function call. This is illustrated in
the following:

>>> mi = minmax(rand(1,10));
ans = (0.0574, None)

http://code.activestate.com/recipes/384122/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 | 6

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

It would, in principle, be possible to add a statement return (mi,
ma)[:nargout] in all locations where function exit could occur. This
strategy would already rely on the introspection function to determine
the value of nargout. However, adding such statements is cumber-
some and destroys the structure of the original syntax. Introspection
allows us to preserve the structure by automatically modifying the
bytecode of translated functions, inserting the equivalent code wher-
ever needed. This and other previously mentioned modifi cations to
the bytecode are handled by the mfunction decorator.

THE MFUNCTION DECORATOR
Python offers the feature of decorators since version 2.4. Simply put,
decorators are function factories. They allow us to turn a regular
Python function into one that behaves like a MATLAB® function.
A Python decorator receives a function just before it is loaded into
the current workspace. The decorator can manipulate the function
in arbitrary ways. The mfunction decorator modifi es each function
translated by OMPC. We use the decorator to emulate the existence
of the variables nargin/nargout, to allow assignments to novel vari-
ables, and to implement implied returns (Figure 2).

This modifi cation of byte-code happens at run-time. It happens
only once when the interpreter loads a function, not every time the
function is called. The performance of the decorated function does
not differ from the performance of a function where modifi cations
are stated explicitly in the source code.

OMPC EXTENSIONS
Here we deal with the issue of how OMPC handles C/C++ and
FORTRAN (MEX) extensions for MATLAB®. Both MATLAB®
and Python allow extensions and both have an offi cial protocol
for writing them. However, the interface between platform and
extension differs considerably between the two respective lan-
guages. Extensions written for MATLAB®, therefore, do not work
in Python. We can solve this problem by implementing a C sup-
port library that allows compilation of extensions independently
of MATLAB. Compilation turns these routines into dynamic-link
libraries that can be called by any language, including Python. The
Supplementary Material has an example that shows how the mxCre-
ateDoubleMatrix function can be implemented for example, using
the Standard Template Library of C++.

In general it is very easy in Python to wrap external libraries
by using the open-source application GCCXML (http://www.
gccxml.org/). The Python community extensively uses this
application for automatically generating Python extensions for
libraries with complex structure and large numbers of exported
symbols. The advantage of GCCXML over tools like Cython or
Pyrex (http://cython.org/) and the multipurpose Swig (http://
www.swig.org/) is that it is based on a production-stable GCC
compiler. This means that any large project that relies on the lat-
est features of C++, including the use of templates, can be auto-
matically correctly parsed and analyzed to be further processed to

FIGURE 2 | Code injection by the mfunction decorator. Top-left panel:
original MATLAB® code; Bottom-left panel (A): translation with added code
necessary for execution in Python without mfunction; Right panel
(B): illustration of how mfunction inserts byte-code into automatically

translated functions at runtime. This is done only the fi rst time
each mfunction is loaded into the Python interpreter. Because these
additions are invisible to the user, the structure of the original code
remains intact.

http://www.gccxml.org/
http://cython.org/
http://www.swig.org/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 | 7

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

generate extensions (www.boost.org/doc/libs/release/libs/python/
doc/, http://pypi.python.org/pypi/ctypeslib/ and many others).

RESULTS
A website has been created for the project, http://ompc.juricap.
com/. The compiler is also available on-line at http://ompclib.
appspot.com/. This site will serve as a bug-tracking utility that
will allow users to submit fi les that are not correctly processed
by OMPC.

Because the formal specifi cation of the MATLAB® syntax is not
publicly available, it is diffi cult to properly test the OMPC compiler.
However, we have successfully translated m-fi les that are part of the
standard MATLAB® distribution. In addition, the compiler was
tested successfully using source code collected from a number of
users within the RIKEN Brain Science Institute and outside collabo-
rators. The styling of MATLAB® source code varied signifi cantly
from person to person.

The following example consists of original source code,
contained in online Supplementary Material to a neuroscience
publication (Izhikevich, 2003). The example shows the origi-
nal MATLAB® m-file and its fully automatic translation by
OMPC.

% Created by Eugene M. Izhikevich, February 25, 2003
% Excitatory neurons Inhibitory neurons
Ne=800; Ni=200;
re=rand(Ne,1); ri=rand(Ni,1);
a=[0.02*ones(Ne,1); 0.02+0.08*ri];
b=[0.2*ones(Ne,1); 0.25−0.05*ri];
c=[−65+15*re.ˆ2; −65*ones(Ni,1)];
d=[8−6*re.ˆ2; 2*ones(Ni,1)];
S=[0.5*rand(Ne+Ni,Ne),−rand(Ne+Ni,Ni)];

v=−65*ones(Ne+Ni,1); % Initial values of v
u=b.*v; % Initial values of u
firings=[]; % spike timings

for t=1:1000 % simulation of 1000 ms
 I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic input
 fired=find(v>=30); % indices of spikes
 if ∼isempty(fired)
 firings=[firings; t+0*fired, fired];
 v(fired)=c(fired);
 u(fired)=u(fired)+d(fired);
 I=I+sum(S(:,fired),2);
 end;
 v=v+0.5*(0.04*v.ˆ2+5*v+140−u+I);
 v=v+0.5*(0.04*v.ˆ2+5*v+140−u+I);
 u=u+a.*(b.*v−u);
end;
plot(firings(:,1),firings(:,2),’.’);

The OMPC equivalent is:

Created by Eugene M. Izhikevich, February 25, 2003
Excitatory neurons Inhibitory neurons
Ne = 800
Ni = 200;

re = rand(Ne, 1)
ri = rand(Ni, 1);

a = mcat([0.02 * ones(Ne, 1),
 OMPCSEMI, 0.02 + 0.08 * ri])
b = mcat([0.2 * ones(Ne, 1),
 OMPCSEMI, 0.25 − 0.05 * ri])
c = mcat([−65 + 15 * re **elpow** 2,
 OMPCSEMI, −65 * ones(Ni, 1)])
d = mcat([8 − 6 * re **elpow** 2,
 OMPCSEMI, 2 * ones(Ni, 1)])
S = mcat([0.5 * rand(Ne + Ni, Ne), −rand(Ne + Ni, Ni)])

v = −65 * ones(Ne + Ni, 1) # Initial values of v
u = b *elmul* v # Initial values of u
firings = mcat([]) # spike timings

for t in mslice[1:1000]: # simulation of 1000 ms
 I = mcat([5 * randn(Ne, 1), OMPCSEMI,
 2 * randn(Ni, 1)]) # thalamic input
 fired = find(v >= 30) # indices of spikes
 if not isempty(fired):
 firings = mcat([firings, OMPCSEMI,
 t + 0 * fired, fired])
 v(fired).lvalue = c(fired)
 u(fired).lvalue = u(fired) + d(fired)
 I = I + sum(S(mslice[:], fired), 2)
 end
 v = v + 0.5 * (0.04 * v **elpow** 2 + 5 *
 v + 140 − u + I)
 v = v + 0.5 * (0.04 * v **elpow** 2 + 5 *
 v + 140 − u + I)
 u = u + a *elmul* (b *elmul* v − u)
end
plot(firings(mslice[:], 1), firings(mslice[:], 2),
 mstring('.'))

In this example we observe how well the translation preserves
the structure of the original MATLAB® program. The above
OMPC code is generated using rules that result in maximum
compatibility. For example the last line contains the Python
object mstring(‘.’) that emulates the MATLAB® string object. As
a consequence, the string is modifi able, as in the original. Since
this is not necessary in the context of this program, a simple
Python string could be used instead, as explained in Section
“The Compiler”. It is possible to further simplify the syntax by
syntactical shortcuts, so called index tricks (r_, c_, mgrid), that
are already part of the numpy library (Oliphant, 2006). The plot
statement of the last program could therefore be simplifi ed to,
for example:

plot(firings(m_[:], 1), firings(m_[:], 2), ‘.’)

The structural equivalence of both programs was made pos-
sible by using the introspection functionality of Python. Some
of the dynamical features, however, can equally well be resolved
by the OMPC compiler, provided that we are willing to compro-
mise on structural equivalence. This would enhance the clarity of
code for Python developers not familiar with implied variables of
MATLAB®. Only adopting and testing OMPC will allow the users
to make the correct decision. The fi nal form of code generated by
OMPC has still to be agreed upon. Future developments of the
compiler will enable such options through switches.

In the Supplementary Material to this paper, we provide OMPC
executables of the spiking neuron model described in (Izhikevich,

www.boost.org/doc/libs/release/libs/python/doc/
http://pypi.python.org/pypi/ctypeslib/
http://ompc.juricap.com/
http://ompclib.appspot.com/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 | 8

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

2003). At the moment of writing, two versions are available. One is
based on the ndarray numerical array of the numpy library. However,
optimized numerical packages such as numpy are not available yet
for the newest Python interpreters. The other version, therefore,
shows a pure Python implementation of an n-dimensional numeri-
cal array. This version is signifi cantly slower for operations on large
arrays but, because it runs on a clean Python installation, can be
run on other realizations of Python as well; we have successfully
tested this for Jython2.5a1, Python 2.6 and 3.0. The standard Python
modules array, random and math are at the core of this second
version; any Python interpreter suffi ciently developed to contain
these modules will execute the model. Maintaining a pure Python
version of OMPC could enable acceleration of OMPC modules
using PyPy (http://codespeak.net/pypy/, Rigo and Pedroni, 2006)
or Shedskin (An Optimizing Python-to-C++ compiler, http://shed-
skin.blogspot.com/).

DISCUSSION
A number of different implementations of Python are currently
available. We choose CPython because it is the primary Python
engine; the most mature and stable implementation. All numeri-
cal extensions were originally developed for CPython. CPython,
moreover, offers by default the ctypes module, which is of cru-
cial importance as a support library for OMPC. CPython allows
easy and effi cient access to extension modules written in C/C++,
FORTRAN and many other languages that allow us to create
dynamic-link libraries.

Amongst forthcoming Python implementations that may infl u-
ence the future development of OMPC, the most interesting one
is PyPy. PyPy is an implementation of Python in Python itself
and supports compilation of a restricted subset called RPython
(Restricted Python, http://codespeak.net/pypy/dist/pypy/doc/
coding-guide.html#rpython, Section 1.4) into the C language and
from there on into native binary executables. Although this pos-
sibility has not been tested, if PyPy will support specifi c CPython
features it should be possible to compile OMPC generated fi les to
native executables.

OMPC aims ultimately to offer full compatibility with the syntax
and the engine of MATLAB®. A number of its features, however,
have not yet been addressed in this article. The most sought after
ones relate to its GUI components. Implementing these is practica-
ble, based on the fact that the MATLAB® application GUI-designer
stores its information in “.fi g” fi les, which are actually .mat data
fi les. This means that they can be loaded into Python using OMPC,
enabled through the scipy.io module. These fi les hold enough infor-
mation to identify and reconstruct the GUI components within a
fi gure.

There is currently no plan to implement embedded Java,
because we consider it not to be a crucial part of MATLAB®.
While Java can be useful in MATLAB®, for example, for net-
working applications, the verbosity and complexity of Java are
a great obstacle to use for anybody without a professional soft-
ware engineering background. Moreover, all features that Java
offers as an enhancement of MATLAB® are, most likely, present
in Python as well. For networking purposes, therefore, Python is a
much more suitable extension than Java for a high level language
such as MATLAB®. Python includes support for networking by

default. It contains modules with ready-to-use implementations
of client-server applications. A good example is the OMPC on-line
compiler currently hosted as a Python service at http://ompclib.
appspot.com/.

In a broader scope, one of the great advantages of being able to
parse source code is that it allows analysis and possible optimiza-
tion of the code that will be executed. This is the approach taken
by platforms based on virtual machines like.NET, Java and LLVM.
Source code that can be parsed and translated into an intermediate
format (CIL, formerly known as MSIL, Java Bytecode, or LLVM IR)
can be run or translated to another low-level language including
machine code. PyPy uses this technique to translate a suffi ciently
static subset of Python into C (Rigo and Pedroni, 2006). OMPC
is an example of how to use Python byte-code as an intermediate
representation.

Choosing Python as a platform for technical computation offers
a number of additional benefi ts. As a popular general-purpose
language, Python offers up-to-date facilities for online sharing,
and enhancing the visibility of projects, in which computational
methods are naturally embedded. The online OMPC compiler
included in the Supplementary Material is one example of such
an application. Python is currently one of the most popular tools
in server-side Web 2.0 development.

The introduction mentions a number of attempts to provide
MATLAB® functionality in Python. Currently there is only one
actively developed project MlabWrap (http://mlabwrap.source-
forge.net/) that allows the use of MATLAB® functions along with
the numerical extensions of Python. This project embeds the
MATLAB® engine in a Python extension. This extension however
requires a licensed copy of MATLAB®. A similar approach could
be taken with the open-source library liboctave that is at the core
of the GNU Octave (http://www.gnu.org/software/octave/). The
design of OMPC allows any implementation of OMPClib to be used
for execution of the OMPC generated Python code. An OMPClib
could be built with liboctave’s Array class as its base numerical
object. The advantage of wrapping a library instead of embedding
an interpreter is the great simplifi cation of memory management.
Embedding a interpreter in an extension is very similar to running
a second process of which the data in memory are not directly
accessible to Python and another extensions.

The interest of the scientifi c community in the Python language
is growing (Langtangen, 2006, http://www.scipy.org/, http://www.
neuralensemble.org/), making it ever more likely that it will become
the main open-source language of scientifi c computation. One
of the important obstacles in this transition is the large amount
of legacy code written in MATLAB®. A fully automatic transla-
tion system could enable the reuse of large projects, the size of
which makes human translation infeasible. By presenting OMPC,
we demonstrated that Python could adopt MATLAB® code for
reuse; without human intervention this code can be translated into
Python. OMPC does this in a manner that, whenever possible,
preserves the structure of the original. The syntax and design of
MATLAB® language proved to be easy for beginners. In MATLAB®
every object is also a multi-dimensional array, even a number is a
1 × 1 matrix. Python users however face the challenge of under-
standing concepts such as different types (numbers and arrays) and
others common in programming, for example object reference. A

http://codespeak.net/pypy/
http://shedskin.blogspot.com/
http://codespeak.net/pypy/dist/pypy/doc/coding-guide.html#rpython
http://ompclib.appspot.com/
http://mlabwrap.sourceforge.net/
http://www.gnu.org/software/octave/
http://www.scipy.org/
http://www.neuralensemble.org/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 | 9

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

number of MATLAB® inspired features could help removing many
obstacles for a user introduced to Python’s numerical facilities.
We discussed such features and their implementation in OMPC.
By providing automatic translation of MATLAB® code to Python
and the enhanced ease of use, OMPC will promote Python as the
open-source alternative for scientifi c computation. To the Python
community, OMPC offers this bridge as an incentive towards the
further enhancement of numerical computation capabilities.

ACKNOWLEDGMENTS AND REMARKS
MATLAB® is a registered trademark of The MathWorks, Inc.
“Python” and the Python logos are trademarks or registered trade-
marks of the Python Software Foundation.

SUPPLEMENTARY MATERIAL
The Supplemental Data for this article can be found online at http://
ompc.juricap.com/.

REFERENCES
Ascher, D., Dubois, P. F., Hinsen, K.,

Hugunin, J., and Oliphant, T.
(2001). Numerical Python, Technical
R e p o r t U C R L - M A - 1 2 8 5 6 9 ,
Lawrence Livermore National
Laboratory. Available at: http://numpy.
scipy.org.

Fangohr, H. (2004). A Comparison
of C, MATLAB, and Python as
Teaching Languages in Engineering,
Lecture Notes in Computer Science,
Vol. 3039/2004. Berlin/Heidelberg,
Springer, pp. 1210–1217.

Izhikevich, E. M. (2003). Simple model of
spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572.

Langtangen, H. P. (2006). Python
Scripting for Computational Science.
Basel, Birkhäuser.

Moler, C., The Creator of MATLAB
(2004). The Origins of MATLAB.
Available at: http://www.mathworks.
com/company/newsletters/news_
notes/clevescorner/dec04.html.

Moler, C. (2006). The Growth of MATLAB
and The MathWorks over Two Decades.
Available at: http://www.mathworks.
com/company/newsletters/news_
notes/clevescorner/jan06.pdf.

Oliphant, T. E. (2006). Guide to NumPy.
Trelgol Publishing, Spanish Fork, UT.
Available at: http://numpy.scipy.org.

Oliphant, T. E., (2007). Python for scien-
tifi c computing. Comput. Sci. Eng. 9,
10–20.

Oliphant, T. E., and Banks, C. (2006).
Index of Python Enhancement
Proposals (PEPs), PEP 3118:
Revising the Buffer Protocol.

Available at: http://www.python.
org/dev/peps/pep-3118/.

Rigo, A., and Pedroni, S. (2006). PyPy’s
Approach to Virtual Machine
Construction, Dynamic Languages
Symposium at OOPSLA. Available at:
http://codespeak.net/svn/pypy/extra-
doc/talk/dls2006/pypy-vm-construc-
tion.pdf.

Zhu, H., and Lielens, G. (2000).
Index of Python Enhancement
Proposals (PEPs), PEP 225:
Elementwise/Objectwise Operators.
Available at: http://www.python.
org/dev/peps/pep-0225/.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that

could be construed as a potential confl ict
of interest.

Received: 14 September 2008; paper pend-
ing published: 13 October 2008; accepted:
30 January 2009; published online: 10
February 2009.
Citation: Jurica P and van Leeuwen
C (2009) OMPC: an open-source
MATLAB®-to-Py thon compi l e r.
Front. Neuroinform. (2009) 3:5. doi:
10.3389/neuro.11.005.2009
Copyright © 2009 Jurica and van Leeuwen.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

http://ompc.juricap.com/
http://numpy.scipy.org
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/dec04.html
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/jan06.pdf
http://numpy.scipy.org
http://www.python.org/dev/peps/pep-3118/
http://codespeak.net/svn/pypy/extradoc/talk/dls2006/pypy-vm-construction.pdf
http://www.python.org/dev/peps/pep-0225/

