
OMPCUDA : OpenMP Execution Framework for CUDA

Based on Omni OpenMP Compiler

Satoshi OHSHIMA, Shoichi HIRASAWA, Hiroki HONDA

2010/6/16 IWOMP2010

1

Outline

 Motivation

 GPU and CUDA

 Implementation

 Performance evaluation

 Summary

2010/6/16 IWOMP2010

2

Motivation

 We want to make GPU programming more easily.
 GPU programming requires specific languages

 past: Shader (OpenGL+GLSL, DirectX+HLSL)

 now: CUDA

 future: CUDA and/or OpenCL ?

 programmers have to learn new languages and tools
 time-consuming, heavy

 Can we use exist common parallel programming
languages ?
 As a concrete implementation of our aim, we are now

developing an OpenMP framework for CUDA.

2010/6/16 IWOMP2010

3

GPU and CUDA

 GPU
 massively parallel hardware

 very high performance
 flops/watt, flops/price,

flops/volume

 GPGPU (General-Purpose
computing on GPUs)

 for science, numerical, and
multimedia programs

 CUDA
 architecture and

programming environment
for NVIDIA GPU

 provides extended
language of C/C++

0

200

400

600

800

1000

1200

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

G
F

L
O

P
S

year

GPU’s Performance

CPU

GPU

2010/6/16 IWOMP2010

SP SP SP SP

SharedMemory

GlobalMemory

SP SP SP SP

4

CUDA : from our point of view…(1/2)

 Fact

 Many users are using CUDA. The number of users is

increasing.

 Many applications got higher performance than using

CPU.

 Question

 Can all programmers use CUDA ? Is CUDA easy ?

 Parallel programming is now very important and in demand.

 But many programmers are already using other languages,

such as MPI and OpenMP.

2010/6/16 IWOMP2010

5

CUDA : from our point of view…(2/2)

 CUDA is not easy, it is difficult and

laborious(especially for beginners)

 the hardware model, memory model, execution

model

 tuning, debugging, ……

 (I sure acknowledge that CUDA is much easier and

clearer than graphics programming based GPGPU.)

 Can we use exist common parallel programming

languages ?

2010/6/16 IWOMP2010

6

What language (library) matches to CUDA?

 Execution model

 execution unit = function

 many execution instances
are launched and killed at
once

 Hardware model

 GPU has hierarchical

parallelism

 CPU and GPU have each
independent memory

2010/6/16 IWOMP2010

7

(At first we didn’t intend to use OpenMP for CUDA, just one of the candidates.)

GPU CPU

Data transfer &

launch function

Get results

• OpenMP’s typical parallel for/DO loop matches CUDA

MP

SP SP SP SP

SharedMemory

GlobalMemory

SP SP SP SP

7

How to assign OpenMP to GPU ?

2010/6/16 IWOMP2010

float data[N];

……

int main()

{

 ……

#pragma omp

 parallel for

for(){

 ……

}

 ……

 return 0;

}

sh
a

re
d

 m
e

m
o

ry

m
a

in
 m

e
m

o
ry

OpenMP program

shared

memory

sequential

portion

parallel

portion

(for loop)

sequential

portion

Execution model of

OpenMP

R/W

R/W

R/W

d
e

vice
 m

e
m

o
ry

(G
lb

o
a

lM
e

m
o

ry)

OMPCUDA

CPU GPU

sequential

portion

parallel

portion

sequential

portion

transfer all

shared data

very simple, high performance will obtain

only in simple high parallelism program

(current implementation only use

SharedMemory in reduction procedure) 8

How to make the system ?

 Scratchbuild ?

 Scratchbuild takes a long time.

 reinvention of the wheel

 It is not necessary to implement the OpenMP processor
by our own hand.

 Extend and re-create some existing environments

 We can reduce the time and labor of implementing the
OpenMP processor.

 There are some OpenMP compilers, which compiler can
I use it ?

2010/6/16 IWOMP2010

9

OMNI OpenMP Compiler (OMNI)

 OpenMP compiler developed in Tsukuba

 published over 10 years ago, and contributed a

great deal to the popularization of OpenMP

 does not support latest OpenMP specifications, but

it has some useful features

2010/6/16 IWOMP2010

10

 M.Sato, S.Satoh, K.Kusano, Y.Tanaka: Design of OpenMP Compiler for

an SMP Cluster. In: EWOMP ’99. (1999) 32–39

OMNI and OMPCUDA

 Overview of OMNI

2010/6/16 IWOMP2010

OMNI

intermediate code

toolkit

C

code

backend compiler

(gcc, etc.)

OpenMP

code

(C)

C

frontend

C++

frontend

Fortran77

frontend

OpenMP

code

(C++)

OpenMP

code

(Fortran77)
executable file

with runtime library

(a.out)

11

backend compiler

(gcc, etc.)

OMNI and OMPCUDA

 Overview of OMNI

2010/6/16 IWOMP2010

OMNI

intermediate code

toolkit

C

code

OpenMP

code

(C)

C

frontend

C++

frontend

Fortran77

frontend

OpenMP

code

(C++)

OpenMP

code

(Fortran77)

OMPCUDA

program translator
+

CPU’s
C(CUDA) code

GPU’s
C(CUDA) code

GPU compiler

(NVCC)

executable file

with modified

runtime library

(a.out+cubin)

executable file

with runtime library

(a.out)

12

Program translator

 important jobs

1. divide CPU portions and GPU portions

2. find and transfer shared variables

2010/6/16 IWOMP2010

13

Divide CPU portions and GPU portions

 in intermediate code of

OMNI, GPU portions are

rewritten to

independent functions

and thread launch

functions

 OMPCUDA can find GPU

portion easily by

searching OMNI’s
thread launch functions

2010/6/16 IWOMP2010

main(){

#pragma omp parallel for

 for(…; …; …){ loop_body }

}

void ompc_func1(){

 loop_body

}

ompc_main(){

 ompc_do_parallel(ompc_func1);

}

__global__ void mpcuda_func1(){

 loop_body

}

ompcuda_main(){

 cuLaunchGrid(ompcuda_func1);

}

original source

OMNI

OMPCUDA

on GPU

on CPU

14

Find and transfer shared variables

 make steady efforts

 global variables

 OpenMP on CPU doesn’t
need to transfer,

OMPCUDA has to analyze

 trace intermediate code

and check variables

 local variables

 OpenMP on CPU need to

transfer, local variables

have been checked by

OMNI

 problems

 dynamic variables(array

and struct), pointers

 difficult to know size

 common problem with

CPU’s OpenMP, but CPU
can execute because of

shared memory

 now OMPCUDA cannot

translate and execute

complex programs

2010/6/16 IWOMP2010

15

Runtime library

1. thread management
 assign OpenMP threads to GPU cores

 OMNI supports static, dynamic, and guided scheduling

 OMPCUDA now supports only simple static chunk
scheduling (next slide)

2. reduction
 using SharedMemory (using well-known algorithm)

3. barrier (!)
 OMNI runtime library handles barrier

 difficult for OMPCUDA (not implemented yet)
 CUDA can’t synchronize across the all processors

2010/6/16 IWOMP2010

16

MP

SP SP SP SP

SharedMemory

GlobalMemory

SP SP SP SP

16

Thread management (Assignment)

2010/6/16 IWOMP2010

original for loop

OMNI’s default

OMPCUDA

 0 1 2 3 4 5 6 7

 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

 0 1 2 3 4 5 6 7

 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

 0 1 2 3

 4 5 6 7

 8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Th 0

Th 1

Th 2

Th 3

Th 0

Th 1

Th 2

Th 3

Blk 0 Blk 1

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

Th 0

Th 1

Th 2

Th 3

Blk 2

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

Th 0

Th 1

Th 2

Th 3

Blk 3

Simple block division

(Also cyclic division is possible)

17

Performance evaluation

 Evaluation environment

 CPU: Intel XeonE5345 (4core, 2.33GHz)

 GPU: GeForce GTX 280 (240SP, 1.296GHz)

 etc.: CUDA Toolkit 2.0, Omni OpenMP Compiler 1.6,
CentOS 5.0

 Test programs:

1. matrix product, single C source code

2. pi calculation, single C source code

3. swim(SPEC OMP2001), single F77 source code

2010/6/16 IWOMP2010

(omit in this presentation)

18

Matrix product

 Simple loop program

 outer 2-fold loop is combined

 (in order to enlarge the parallelism)

2010/6/16 IWOMP2010

#define N 1024
float a[N*N], b[N*N], c[N*N];

#pragma omp parallel for private(j)
 for(i=0; i<N*N; i++){
 float tmp = 0.0f;
 for(j=0; j<N; j++){
 tmp += a[(i/N)*N+j] * b[j*N+(i%N)];
 }
 c[i] = tmp;
 }

19

Result of matrix product

2010/6/16 IWOMP2010

0 50 100 150 200

OMPCUDA

OmniCPU
4 threads

ATLAS
single thread

ATLAS
4 threads

hand-written
CUDA

time(msec)

matrix product, size 1024*1024, single precision

OMPCUDA can get a good performance

same as ATLAS with simple loop program

Optimized program is very fast. Utilizing

SharedMemory and unrolling are important.

(about 20 GFLOPS)

(over 100 GFLOPS)

CPU

20

～ ～

swim (SPEC OMP2001)

 swim

 more realistic program than matrix product

 one of the smallest and simplest program in SPEC
OMP2001

 double precision

 only maximum size (constant number) is changed

 Performance (“test” dataset)
 CPU with single thread: 0.2sec

 OMPCUDA: 20sec
 very slow, but it is not because of double precision

2010/6/16 IWOMP2010

21

Why OMPCUDA get very low performance ?

2010/6/16 IWOMP2010

* declaration of global large arrays

* mainloop

90

COMMON U(N1,N2), V(N1,N2),...

NCYCLE = NCYCLE + 1

CALL CALC1

CALL CALC2

IF(NCYCLE .GE. ITMAX)STOP

CALL CALC3

GO TO 90
CALC1, CALC2, CALC3 are subroutine, which

contains large size parallel loop and uses

global large arrays.

These subroutines hold almost all of

execution time on CPU.

transfer

transfer

transfer

transfer

transfer

outline of swim program:

22

Room for improvement

 reduce the time of data transfer

 leave the data on GPU

 analyze program consistently using exist various
techniques

 move data from GlobalMemory to SharedMemory
and register

 Can Fermi’s cache memory solve this issue?

 other pragma

 example: sections
 assign to CUDA’s Block level parallelization

2010/6/16 IWOMP2010

23

Related Work

 Lee et al.*

 OpenMP compiler for CUDA

 has optimization mechanisms and has obtained high

performance in some programs

 We will be able to get their optimized technique.

 PGI

 latest PGI compiler supports pragma-based parallel

programming for CUDA in C/C++/Fortran

 PGI’s pragma is not equal to OpenMP pragma.

 discussion: OpenMP pragma vs new pragma suitable for GPU

2010/6/16 IWOMP2010

24

* Lee, S., Min, S.J., Eigenmann, R.: Openmp to gpgpu: a compiler framework

for automatic translation and optimization. In: PPoPP ’09, pp.101-110 (2009)

Conclusion

 “OMPCUDA”: We are developing OpenMP framework for CUDA.

 Motivation (Purpose)
 Make GPU programming easy !

 Implementation
 based on OMNI, we made program translator and runtime library

 Result
 could get good performance by using normal OpenMP code

 couldn’t get good performance in program with multiple kernels with
large shared variables

 (many) Future work and challenges
 corresponding to complex programs (pointer…)
 cutting the transfer time (swim)

 bringing in Lee’s technique

 using SharedMemory (Can Fermi’s cache solve this?)
 corresponding to Fortran90/95… (OMNI 1.6 only supports F77)

2010/6/16 IWOMP2010

25

2010/6/16 IWOMP2010

Thank you for your kind attention.

acknowledgment: Omni Compiler project for releasing OMNI.

26

Question?

(ohshima@cc.u-tokyo.ac.jp)

