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Abstract. We describe a static analysis tool for OpenMP programs integrated into the standard
open source Eclipse IDE. It can detect an important class of common data-race errors in OpenMP
parallel loop programs by flagging incorrectly specified omp parallel for directives and data
races. The analysis is based on the polyhedral model, and covers a class of program fragments
called Affine Control Loops (ACLs, or alternatively, Static Control Parts, SCoPs). ompVerify
automatically extracts such ACLs from an input C program, and then flags the errors as spe-
cific and precise error messages reported to the user. We illustrate the power of our techniques
through a number of simple but non-trivial examples with subtle parallelization errors that are
difficult to detect, even for expert OpenMP programmers.

1 Introduction

Parallel programming is a difficult, and the semantic gap between sequential and parallel pro-
gramming is huge. Automatic parallelization of sequential codes has seen significant headway on
program analysis and transformation frameworks, but selection of the optimal transformation re-
mains a difficult challenge. Most authors of parallel software retain “manual control” by paralleliz-
ing codes themselves with tools such as OpenMP.

In the sequential world, programmers are now used to type-safe languages and sophisticated
tools and Integrated Development Environments (IDEs). They expect their IDEs to provide code
refactoring, navigation, dynamic compilation, automatic builds, “instant” and rapid feedback through
structured editors and static analysis, as well as debugging support. This paper shows how the in-
frastructure for automatic parallelization, specifically the “polyhedral model” for program analysis,
can be employed to benefit OpenMP programmers. Our work complements recent work on parallel
debugging tools4 [1,2] with effective feedback to programmers about problems that can be identified
statically.

Our analysis finds semantic errors of shared memory programs that parallelize loops with the
OpenMP omp for work-sharing directive. Static bug-finding tools, like debuggers, cannot be trivial
extensions of sequential tools: parallel programs have many other issues (e.g., deadlocks and data
races), and familiar issues such as reads from uninitialized variables must be extended carefully
(i.e., without treating an array as one big scalar). Specifically, we make two contributions.

– Static analysis of programs with parallel loops that verifies that parallel loops do not alter
the program semantics, together with precise characterizations of where/when semantics are
violated.

4 See also DDT (http://www.allinea.com/?page=48) and the Sun Thread Analyzer (
http://docs.sun.com/app/docs/doc/820-0619).



– Integration of this analysis and other instance/element wise warnings about the paralleliza-
tion into the Eclipse IDE. In doing this, we are able to provide very precise and specific error
messages, and we also have all the necessary information to provide concrete counterexamples.

The remainder of this paper is organized as follows. Section 2 describes the “polyhedral model”, a
mathematical framework that underlies our analysis. Section 3 motivates our work with a number
of examples. Section 4 presents how polyhedral analysis is used for error detection and correction.
Section 5 describes how we are integrating our analysis into Eclipse, a widely used, open source
IDE. Section 7 contrasts our work with related work. Finally, we conclude with future directions in
Section 8.

2 The Polyhedral Model

Our analysis is based on the polyhedral model, a formalism developed for reasoning about programs
that manipulate dense arrays. This framework lets us reason at an appropriately “fine-grained”
level, i.e., about specific elements of arrays and instances of statements. A detailed review of this
work [3–11] is beyond the scope of this paper, but this section summarizes key, important concepts.
A detailed comparison of the vocabularies and notations is probably the many-authored Wikipedia
page frameworks [12].

2.1 Affine Control Loops

The polyhedral model provides powerful static analysis capabilities for a class of programs called
Affine Control Loops (ACLs, also called Static Control Parts or SCoPs). ACLs include many scientific
codes, such as dense linear algebra and stencil computations, as well as dynamic programming,
and covers most of three of the “Berkeley View motifs” [13] proposed by researchers in multi-core
parallel computation and shares much with a fourth.

Control flow in an ACL can include arbitrary nesting of for loops containing assignment state-
ments; data references can include scalars and arrays. The definition of ACL requires that all loop
step sizes must be known at compile time and all loop bound and subscript expressions must be
affine functions (linear plus a known constant) of the surrounding loop index variables and a set of
symbolic constants.

Fig. 2.1 shows an ACL from dense linear algebra, the forward substitution kernel. The labels S1

etc. in the left margin are for reference and not part of the code itself. Note that the loops are not
perfectly nested, with the outer (i) loop containing simple statements and a loop; The loop bound
expressions and subscripts are not only affine, but very simple, though often symbolic rather than
known constants (e.g., the bounds 0 and N in the outer loop, and 0 and i in the inner loop, as well
as subscripts like i and j, or i-1 and j-1 in a later example).

Our goal is to reason about specific instances (individual executions) of statements in ACLs.
If we were given values for all symbolic constants, we could represent every statement instance
explicitly or draw a diagram like that shown on the right of Fig. 2.1, and it is often easiest to
visualize programs in these terms. To reason about statement instances in the presence of unknown
symbolic constants, we will make use of operations on (potentially infinite) sets, which we will define
in terms of affine constraints and manipulate with the ISL Library [14].



#pragma omp parallel for private(j)
for (i = 0; i < N; i++) {

S1: x[i] = b[i];
for (j = 0; j < i; j++)

S2: x[i] = x[i] - L[i][j]*x[j];
S3: x[i] = x[i]/L[i][i];

}

Fig. 1. Forward Substitution Code, and its Iteration Space for N=6. The parallelization is incorrect, but for now
just think of this as a sequential program.

2.2 Statement Domains and Order of Execution

We use the term domain to describe the set of iteration points of the loops surrounding the state-
ment. When the identity of the statement is clear from context, each point in this domain is defined
by the values of the loop indices. For Fig. 2.1, if N=6, the domain of S1 is {(0), (1), (2), (3), (4), (5)}, or
more concisely {i|0 ≤ i < 6}. That of S2 is the triangle of red dots, i.e., {i, j|1 ≤ i < 6∧0 < j < i}. Note
that we often name set index variables for the corresponding loop indices, but this is not necessary.

If we wish to identify any statement in a program, we interleave these loop index values with
constants defining the textual order at a given loop level, producing a vector of length 2k + 1 for a
statement inside k nested loops. for example iteration (4) of S1 can be identified (0, 4, 0), meaning
“initial statement (i.e., statement 0) of the program, iteration 4, initial statement therein”. Iteration
(i) of S1 can likewise be identified (0, i, 0), and Iteration (x) of S3 identified (0, x, 2), and Iteration
(i, j) of S2 as (0, i, 1, j, 0).

The latter “2k + 1” notation often contains information that is redundant with the program text:
in this example the leading value will always be 0. However, this notation facilitates reasoning
about the order of execution, as a domain element I is executed before J if and only if I precedes
J in lexicographic (dictionary) order. In the less redundant notation, we cannot reason about the
ordering of points in the space without reference to properties about the program structure, such
as the number of loops surrounding both statements.

As noted above, we reason about sets of unknown size using constraints on symbolic variables,
so the domain of S1 is {(0, i, 0)|0 ≤ i < N} (or {(i)|0 ≤ i < N} if we know from context we refer to S1).
Similarly, Domain(S2) = {(0, i, 1, j, 0)|1 ≤ i < N ∧ 0 < j < i} and Domain(S3) = {(0, i, 2)|0 ≤ i < N}.

2.3 Transforming Order of Execution

Equating execution order with lexicographic order of points in the iteration spaces, creates a simple
mechanism for describing reordering transformations: simply rearrange the points in the iteration
space. For example, if we wish to move S2 to put it after S3, we could replace the constant 1 in S2’s
domain with a 3. More formally, we describe this as applying the Space Time Map ((0, i, 1, j, 0) →
(0, i, 3, j, 0)). Note that some transformations (such as the above) may affect the result, i.e., may be
illegal. The goal of parallelization is usually to improve performance without affecting result, and
the polyhedral model can also be used to reason about legality.

A Space Time Map can be used to reorder iterations of a statement or split iterations into mul-
tiple statements as well as change the order of statements. For example, we could reverse order of



the j loop for S2 with ((0, i, 1, j, 0) → (0, i, 1, i − j, 0) or reverse the order of the i loop by replacing i
with N − i in all three Space Time Maps.

Concurrent execution can be indicated in a number of ways; we choose to simply flag certain di-
mensions of Space Time Maps as parallel (indicated in our documents with underlined dimensions).
Thus, executing Fig. 2.1 in original order but with the outer loop parallel would be described as (we
often use the same number of dimensions for all statements).

S1 : ((0, i, 0, 0, 0)→ (0, i, 0, 0, 0))
S2 : ((0, i, 1, j, 0)→ (0, i, 1, j, 0))
S3 : ((0, i, 2, 0, 0)→ (0, i, 2, 0, 0))

2.4 Memory Maps

We can also describe the relation of statement instances to the memory cells they read or update
with a notation that is similar to that of a Space Time Map. We use the term Memory Maps for
such mappings, and distinguish them visually from Space Time Maps by giving an array name
in the range of the mapping. In Fig. 2.1, the memory maps for the array writes in S1, S2 and S3

are (respectively) ((0, i, 0, 0, 0) → x[i]), ((0, i, 1, j, 0) → x[i]), and ((0, i, 2, 0, 0) → x[i]). Similar maps
can describe reads. Note that, unlike Space Time Maps, Memory Maps are frequently many-to-one
(since many iterations may read from and/or write to the same location). Memory Maps will play a
key role in our detection of data races.

2.5 Dependences and Legality of Transformation

As noted above, program transformations may or may not affect the program result. The key to
determining whether or not the result has been corrupted is the effect of the transformation on the
program’s dependences. Data dependences are ordering constraints arising from flow of information
and/or reuse of memory. Traditional compilers reason about dependences among statements, but
in the polyhedral model, we reason about dependences among statement instances. The iteration
space diagram in Fig. 2.1 shows the inter-iteration ordering constraints that arise from the flow of
information in the forward substitution code (assuming we do not allow reordering of floating-point
additions).

We represent dependences as relations, for example from a statement instance that reads from
a memory cell to the statement instances that write to that cell. Fig. 2.1, the relation {(0, i, 1, j, 0)→
(0, i′, 0, 0, 0)|i′ < i ∧ j = i′} describes the relation from iteration (i, j) of S2, which reads from x[j],
to those earlier iterations (i′ < i) of S3 that write to the same element of x (as x[i], so (j = i′)).
This corresponds to the vertical arrows in Fig. 2.1.

The polyhedral model can manipulate these memory-aliasing relations to compute the one-to-
one dependence function that gives the source iteration from the domain of the dependence from
the domain of the dependence. For the S2 → S3 example, the dependence function is ((0, i, 1, j, 0)→
(0, j, 0, 0, 0)) and the domain i, j|1 ≤ i < N ∧ 0 < j < i. This framework can also separate simple
memory aliasing from actual flow of values, for example showing only a single chain of arrows in
the horizontal dimension of Fig. 2.1 rather than arrows from each circle to all statement instances
to its left (which all write to the same x[i]).

Table 1 gives the dependence functions and domains for the flow of information in Fig. 2.1 (note
we have omitted the constant levels in dependences to save space). Entry 4 corresponds to the
vertical arrows of Fig. 2.1, and Entries 2 and 3 to the horizontal arrows to the S2 (circle) instances;
Entries 6 and 7 show information flow to S3 (triangles); and Entries 1, 5, and 8 show that all reads



Number Edge/Dependence Dependencefunction Domain

1 S1 → b(input) ((i)→ (i)) {i|0 ≤ i < N}
2 S2 → S1 ((i, j)→ (i)) {i, j|1 ≤ i < N ∧ j = 0}
3 S2 → S2 ((i, j)→ (i, j − 1)) {i, j|1 ≤ j < i < N}
4 S2 → S3 ((i, j)→ (j)) {i, j|0 ≤ j < i < N}
5 S2 → L(input) ((i, j)→ (i, j)) {i, j|0 ≤ j < i < N}
6 S3 → S1 ((i)→ (i)) {i|i = 0}
7 S3 → S2 ((i)→ (i, i− 1)) {i|1 ≤ i < N}
8 S3 → L(input) ((i)→ (i, i)) {i|0 ≤ i < N}

Table 1. Edges ofthe PRDG for the Forward Substitution example of Fig. 2.1

to L and b are upward-exposed past the start of our ACL. This complete description of inter-instance
data flow information is known as a Polyhedral Reduced Dependency Graph or PRDG.

There may be multiple PRDG edges for a single array read expression. For example, the value
of x[i] read in S2 may come from S1 or S2.

A program transformation will preserve the result (hopefully while improving performance) if
it satisfies all dependences. A dependence is considered to be satisfied if the the time stamp of the
producer is before the time stamp of the consumer in the transformed execution order (as it must
have been, by definition, in the original sequential program). While polyhedral dependence analysis
and program transformation were developed for automatic parallelization of sequential codes, these
tools also let us reason about manual parallelization with OpenMP.

3 Motivating Examples

We now present a number of examples were we detect errors related to conflicting access to memory
(data races) in array variables (we consider scalars as special, zero-dimensional arrays). In all the
examples, the explanation is subtle and may require some careful analysis of the program by the
reader.

We have already seen the forward substitution example (Fig. 2.1) where we claimed that the
parallelization specified by the program on the first line was incorrect. The reason for this is that
the reference to x[j] in S2 would read values written by statement S3 in different iteration(s) of
the i loop. Thus, parallel execution of the iterations of the i loop creates a data race.

“Stencil computations” occur in many codes for modeling physical phenomena. The Jacobi stencil
computation uses the values from the previous time step to update the current one. The Gauss-
Seidel method converges faster (and also uses less memory) by storing a single array and using
some values from the current time step. The example in Fig. 2 illustrates a hybrid Jacobi-Gauss-
Seidel 5-pt stencil. The sequential program uses results from the current time step for only one of
the dependences—in standard 5-pt Gauss-Seidel, two points are used from the current time step.

The parallelization shown in Fig. 2 is incorrect, as is evident from the inter-iteration dataflow.
The access to A[i-1][j] in iteration (t, i, j), should read the value placed in element i − 1, j of A
by the write to A[i][j] in iteration (t, i− 1, j). If the i loop is marked as parallel, as in Fig. 2, this
value comes from a different thread, creating a data race. If, instead, the j loop were parallel, these
(and all other) values would flow only within a thread, and the parallelism would be correct. Süß
and Leopold describe such mistakes as the most common and severe form of OpenMP errors [15].



//Initialize B
for (t = 0; t < T; t++)

#pragma omp parallel for private(j)
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
S1: A[i][j] = (B[i][j] +

A[i-1][j] + B[i+1][j] +
B[i][j-1] + B[i][j+1])*0.2;

//Swap A and B

Fig. 2. 5-pt Hybrid Jacobi-Gauss-Seidel stencil computation. The reference A[i-1][j] on the right hand side
reads a memory location that is written by different iterations of the i loop. Hence the parallelization is illegal.

Fig. 3 shows a matrix transpose program with nested parallelism. Here, element-wise depen-
dence analysis reveals that there is no dependence carried by either of the two loops, and thus the
given parallelization is legal.

#pragma omp parallel private(p1,p2,temp)
{
#pragma omp for
for (p1 = 0; p1 < N; p1++)

#pragma omp for
for (p2 = 0; p2 < p1; p2++)

S1: temp = A[p1][p2];
S2: A[p1][p2] = A[p2][p1];
S3: A[p2][p1] = temp;
}

Fig. 3. Matrix transpose with nested parallelism. This parallelism is legal but requires element-wise analysis
to validate.

Another common mistake [15] is forgetting to make variables private. This is a variation of
the data race discussed above, where the access pattern exhibits specific characteristic so that
privatization can be a solution.

Consider Fig. 4, a Jacobi stencil example from the OpenMP website (converted to C and simpli-
fied for brevity). If the private clause was removed, OpenMP treats resid as a shared variable.
Then the value could be overwritten by other threads before it is used in subsequent statements S2

and S3. Similarly, if the reduction clause is removed, the value of error is not guaranteed to be
reflected to other threads until the i loop is fully executed.

Privatization is a well studied concept, and other analyses can also detect variables that need
to be privatized. However, the polyhedral analysis can also detect arrays that must be privatized.
Fig. 5 is an example taken from [16], a 160 line loop from BT in NAS parallel benchmark. The array
TM is written and used by every iteration of the k loop, but in an independent fashion. Thus, it is
legal for the k loop to be parallel if each thread has its own copy of TM.



#pragma omp for private(j, resid) reduction(+:error)
for (i = 1; i < N; i++) {

for (j = 1; j < M; j++) {
S1: resid = (uold[i][j] +

uold[i-1][j] + uold[i+1][j] +
uold[i][j-1] + uold[i][j+1])/b;

S2: u[i][j] = uold[i][j] - omega * resid;
S3: error = error + resid*resid

}
}

Fig. 4. Simplified version of an iteration of Jacobi stencil computation taken from OpenMP website. Removing
private or reduction clause will cause data races for variables resid or error respectively.

#pragma omp parallel for private(m,n)
for (k = 2; k < NZ; k++) {

for (m = 1; m <= 5; m++)
for (n = 1; n <= 5; n++)

S1: TM[1][m] = ...
S2: TM[2][m] = ...
S3: TM[3][m] = ...
S4: TM[4][m] = ...
S5: TM[5][m] = ...

...
for (m = 1; m <= 5; m++)

for (n = 1; n <= 5; n++)
S6: ... = TM[n][m];
}

Fig. 5. Example taken from [16], originally from BT in NAS parallel benchmark. Array TM must be declared
private for the parallelization to be correct.

4 Analysis

During the initial dependence extraction, the work-sharing directives (i.e., omp for) are ignored,
and the program is assumed to be purely sequential. This gives the analyzer the dependences in
the original program, represented in a PRDG.

Next, we view OpenMP work-sharing directives as prescribing a program transformation that
changes the execution order by assigning new time-stamps to the statement instances in the pro-
gram. The main task of the verifier is to ensure that this transformation does not introduce any
data-races. We address three types of races: (i) causality, i.e., violation of (true) dependences, (ii)
write conflicts, i.e., the same memory location is written “simultaneously” by multiple threads, and
(iii) overwrite conflicts, when a value read from a shared memory location is incorrect because of an
intervening update to that location by an other thread.



Algorithm 1 Detection of dependence violation by parallel loops
Require:

E : edges of the PRDG of a loop nest
P (e, d) : Function to query if a loop is marked as parallel in Space Time Map
{returns true if dth dimension of the domain of the dependence e corresponds to a parallel loop}

Ensure: All dependences in E are satisfied
E′ : list of edges that are violated
De : domain of an edge e (dependence polyhedron)
Ie : dependence function of an edge e

E′ ← ∅
for all e ∈ E do

for d = 1 to max dimension of De do
if P (e, d) then

if ∃z ∈ De, zd 6= Ie(z)d then
dependence is violated
E′ ← E′ + e
proceed to next e

end if
else

if ∀z ∈ De, zd > Ie(z)d then
dependence is satisfied
proceed to next e

end if
end if

end for
end for
return E′

4.1 Causality

Obviously, the sequential program always satisfies all the dependences, because the loops are ex-
ecuted in lexicographic order. With the addition of a work-sharing directive, however, this legality
condition may no longer be true, specifically, if the source of the dependence is from another itera-
tion of the same parallel loop. For each dependence in the PRDG, the analyzer checks this condition
using Algorithm 4.1.

We now illustrate this for the forward substitution example in Fig. 2.1. The edges of its PRDG
are listed in Table 1. The Space Time Maps for each statement in the program are

S1 : ((0, i, 0, 0, 0)→ (0, i, 0, 0, 0))
S2 : ((0, i, 1, j, 0)→ (0, i, 1, j, 0))
S3 : ((0, i, 2, 0, 0)→ (0, i, 2, 0, 0))
To start with, except for dependences where the producer is input, the verifier marks all the

dependences as unsatisfied. In our example, its the edges 1, 5, 8 in Table 1 have producers as inputs
and are excluded. Starting from the outer-most dimension in the space time map, the verifier checks
if any of the dependences satisfy the legality condition. Only dependences that are not satisfied in
the current dimension are further checked in subsequent dimensions.

In our example, in dimension 1, all the dependences have the same statement order value 0,
implying that all statements have a common outer loop, so none of the dependences satisfy the
legality condition. Dimension 2 is annotated as parallel, so according to the legality condition, for



Algorithm 2 Detection of Write Conflicts
Require:

N : nodes in PRDG with a many-to-one function as memory map
T (n, d) : Function to query the annotation of the loop (sequential/parallel/ordering)

Ensure: Multiple points in each node in N are not scheduled at same time
N ′ : list of edges that are violated
Dn : domain of an node

N ′ ← ∅
for all n ∈ N, ∃ z, z′ ∈ Dn ∧ z 6= z′ ∧M(z) = M(z′) do

for d = 1 to max dimension of Dn do
if T (n, d) = SEQUENTIAL then

if zd 6= z′
d then

there are no write conflict
N ← N − n

end if
else if T (n, d) = PARALLEL then

if zd 6= z′
d then

there is a write conflict
N ′ ← N ′ + n

end if
end if

end for
end for
return N ′

all the dependences, the producer and consumer should not cross processor boundaries, and in our
case except for edge 4, all the other dependences satisfy this legality condition. For dependence
4 : S2 → S3, it can be observed that from the constraint j < i in the domain of the dependence
that producer of x[j] is not from the same iteration of the loop i which is marked as parallel. So
edge 4 is added to the violated dependences list, and all the other dependence have to be checked
in subsequent dimensions of space time maps. In Dimension 3, edges 2, 6, 7 satisfy the legality
condition as in loop i, the producers in each of these dependences appears before the consumer in
textual order. Only remaining to be satisfied is edge 3. This dependence is satisfied in dimension 4
of the space time map, as the producer is the previous iteration of the sequential loop j of S2.

4.2 Write Conflicts with Shared Variables

ompVerify checks that whenever multiple statement instances write into the same memory
location, the execution of these instances cannot happen at a same time (in parallel). Consider the
example in Fig. 5, where array TM is not declared as private. The memory mapping function for S1

is ((0, k, 0, m, 0, n) → TM [1, m]). So we consider two distinct points in the program that write into
the same memory location. In this example this will correspond to points from different iterations
of the k loop but with the same m. Because loop k is parallel, multiple iterations of this loop will
independently write into TM , which results in data race. ompVerify uses Algorithm 2 to perform
this check.



4.3 Over-Write Conflicts with Shared Variables

Consider the simple example below:

#pragma omp parallel for private(j)
for (i = 0; i < N; i++)

for (j = 0; j < i; j++) {
S1: A[j] = a[i,j];
S2: B[i,j] = A[j];

}

In this example, all dependences are satisfied within an instance of the loop j , i.e. there are no
loop carried dependences, so parallelization of the loop i does not violate any of the dependences.
However, since array A is shared by all iterations of loop i, there will be a data race involving A.
Specifically, values of A[j] read in S2 may not be correct. For all the dependences where the producer
has a many-to-one memory map, ompVerify checks that the time-stamp of consumer is no later
than any of the over-writes to those memory locations. If the over-writes happen from multiple
iterations of a parallel loop, then the above condition cannot be guaranteed, so ompVerify flags
this as over-write conflict.

5 Integrating our Analysis

We now describe our prototype tool, its integration into the Eclipse IDE, and provide timing infor-
mation to illustrate its run-time overhead.

We believe that IDEs will play a significant role in the adoption of multi-core programming. It
is highly unlikely for parallel programming to become widely adopted without insightful program-
ming environments. The Eclipse CDT/CODAN framework and the Parallel Tool Platform (PTP)
project [17] are very interesting and promising initiatives in this direction.

CDT and CODAN together provides a light-weight static analysis framework, easing integration
of our tool. PTP is a set of plug-ins for Eclipse with the goal of providing parallel programming
environment. However, its support for OpenMP programs are still very limited. We see PTP as a
perfect platform to integrate our analysis.

ompVerify builds on CDT, and utilizes two research compilers, GeCoS and AlphaZ, as back-end
to perform the analysis. These results are returned to the user through CODAN.

5.1 Implementation of ompVerify

The flow of our prototype implementation5 is depicted in Fig. 6. GeCoS [18] serves as the front-
end that builds polyhedral intermediate representation (IR) from C programs. AlphaZ takes the IR
and performs polyhedral analysis to detect errors that are reported to the user through CODAN.
Internally, both GeCoS and AlphaZ utilize a number of existing tools for polyhedral analysis to
extract ACLs and detect errors.



Eclipse CDT Framework

CDT parser CODAN CDT editorC/C++
AST

C/C++
AST

Polyhedral
RepresentationDependence Analysis

ACL extraction

GeCoS

Normalize

Verification

AlphaZ
AST result

Fig. 6. Flow of ompVerify. C programs are parsed by CDT, sent to GeCoS for extracting polyhedral regions,
and then analyzed by AlphaZ for its validity.

Time (s) CDT ACL Dependence Normalization Verification
Front End Extraction Analysis

ProdMat 0.80 0.16 0.59 1.23 1.92
Gauss 0.76 0.31 1.26 0.66 0.77

Examples 0.89 1.20 1.38 17.34 6.10(Fig 1 to4)
SOR 2D 0.78 0.44 1.62 198.25 7.76

Table 2. ompVerify overhead

5.2 Evaluation of Overhead

For best user experience, it is important that the analysis remains fast enough so that the user is not
inconvenienced. Polyhedral operations are known to be expensive (most of them are NP complete),
and thus understanding the overhead of our analysis is important.

Table 2 shows the execution time of various components of our analysis for several examples,
including those from Section 3. Our prototype implementation provides nearly instantaneous re-
sponse for small examples, but gets somewhat slow as the input program becomes complicated. The
breakdown shows that the bottleneck is in Normalization and Verification.

Normalization is a pre-processing step that repeatedly updates the IR using local rewrite rules.
We have not optimized this, and there are significant savings to be achieved as we go beyond re-
search prototypes. For instance, our IR is currently in a form that needs many passes of tree re-
writing. With some effort, it can be incrementally closer to normal form during its construction.

The verification also takes some time with large programs, but is also in very early stage of de-
velopment. The verifier engine that we currently use is designed for a more general need—verifying
proposed parallelizations of equational programs, and could be specialized to ompVerify.

5 ompVerify is not yet integrated to the PTP static analysis framework.



Fig. 7. Screenshot of ompVerify detecting incorrect parallelization of forward substitution (Fig. 2.1). We are
working on providing more precise information found by our analysis to CODAN.

6 Discussion, Limitations and Extensions

We have presented an analysis that statically detects parallelism violations and data races in
OpenMP programs. We believe that statically detecting data races are important and it would
greatly help OpenMP programmers, even though our analysis is limited to SCoPs. If the user was
willing to see warnings rather than just errors, our analysis could also be easily adapted to ap-
proximate information produced by recently proposed extension to the polyhedral model [19,20] to
handle richer set of programs.

In addition to extending the scope of our analysis to larger class of programs, there are a number
of simple extensions to the types of OpenMP directives that can be handled. These include the
nowait option, explicit synchronization directives such as barrier and variations of private
such as firstprivate or lastprivate. We are actively working on these.

We have explored one bug finding tool based on the polyhedral framework, but others, such as
straightforward extensions of many scalar warnings, are also possible. Wonnacott [21] described
instance-wise extensions of a number of standard scalar analyses such as dead-code elimination.
This work did not demonstrate any value of these optimizations in practice; Wonnacott later sur-
mised that no significant optimization would be useful on existing codes, as dead array elements (for



example) would likely be so costly that the programmer would have avoided them in the original
code.

This supposition presumes the programmer has an accurate understanding of the code; the very
presence of dead array elements suggests otherwise. Dead array element (or dead loop iteration)
analysis could provide a potentially useful analog of the scalar “unused variable” or “potential un-
used variable” warnings. These can be identified with the full analysis suggested in [21], or (more
quickly but perhaps almost as accurately) by simply flagging any statement for which any element
of the iteration domain is not the source of any dependence. Analogously, “array element may be
used before set” warnings can be produced for any statement in which any element of the iteration
domain includes an iteration that is not the sink of any dependence for every variable read there.

We have not implemented these warnings or measured their value, but believe a user interface
for it could be analogous to our work described above. We believe such tests would flag as prob-
lematic some, but not all, of the erroneous codes of Section 3. For example, Figure 2 should exhibit
these warnings, since A[i][j] may go unused in some circumstances, and A[i-1][j] may be used
before it is set.

7 Related Work

There is a long history of research on the polyhedral model [3–7,10], including work on foundations,
scheduling, memory analysis and code generation. The model is now finding its way into production
compilers, both commercial [22] and open source [23]. Nevertheless, automatic parallelization is
very difficult, and progress is slow. Our work therefore complements these efforts, since explicit,
hand parallelization is still the preferred option for most programmers.

Since OpenMP is not a language, there has been relatively little work on analyzing OpenMP
programs. Satoh et. al [24] were the first to address this. In the context of developing an OpenMP
compiler, they showed how to extend many compiler optimizations and analyses to explicitly paral-
lel programs. They addressed “cross-loop” data dependences but this analysis appears to be limited
to sequences of perfectly nested loops. Moreover, they state that, “Parallel loops in OpenMP pro-
grams are doall type loops, i.e., there are no loop-carried data dependencies without explicit syn-
chronization. Therefore, data dependence analysis within a single parallel loop is not so important.”
Strictly speaking, this is true —such a program is incorrect, and the compiler is free to do whatever
it wants. However, it is equally, if not more, important to report such errors to the user. This is
what ompVerify seeks to do, and that too, using the most advanced compilations and dependence
extraction techniques available.

Lin [25] describes techniques to perform non-concurrency analysis of OpenMP programs, i.e.,
to detect when statements in a program with OpenMP pragmas must be executed serially. The
analysis is for “scalar” programs in the sense that even if an instance-wise, element-wise analysis
could be provably race-free the analysis may flag a potential race. Huang et. al [26] also present
a compiler framework for, again scalar, static analysis of OpenMP. The approach can be used for
dead-code and barrier elimination.

Basumallik and Eigenmann [27] describe how OpenMP’s memory consistency model can be in-
corporated into conventional data-flow analysis. This again provides an important bridge between
traditional and parallel analyses, and is complementary to our work. Similarly, Liao et. al [28] de-
scribe how the Rose system was extended to handle OpenMP programs. Again, this complements
our work. Some authors have discussed common mistakes in OpenMP programs [15, 29]. Most of
these are either syntactic errors (e.g., missing/miss-spelling directives), or relatively easy to flag



(e.g., shared loop iterators). We focus on errors that are non-trivial to Other errors are detected only
after the program has executed, through an analysis of the execution trace [15].

Many tools have been proposed to debug and analyze parallel programs, but mostly targeted to
HPC and restricted to distributed memory (MPI).

8 Conclusions

Polyhedral analysis and parallelization methods have an important contribution to parallel compu-
tation. In the past,the effort has always been on automatic parallelization. In this paper, we have
shown that with a slight change in perspective much of the powerful machinery can be channeled
towards (i) static analysis to validate parallelization, (ii) provide debugging/analysis feedback to
the programmer, and (iii) even as a pedagogical tool.

We showed that the analysis for automatic parallelization can also be used for static analysis
of OpenMP programs, and in pragmatic terms, this may be even more important. Although auto-
matic parallelization is powerful and advancing, it has not yet been adopted by the mainstream
programmers, but OpenMP provides methods for incremental parallelization of existing code, and
has a much wider user base. It is clear, even from OpenMP compilation efforts that the program di-
rected approach provides a lot of leeway (rope) to the user, and it may result in either very powerful
results (rope tricks) or disaster (programmer tripping up). Since such errors are difficult to detect,
we believe that it is crucially important to develop tools like ours that verify the correctness of a
given OpenMP parallelization.

There are a number of open problems and ways in which our tools can be improved. We have
already indicated some of the standard ones: incorporating a wider class of programs by sacrificing
precision (warnings rather than errors), simple extensions to the class of programs described here,
etc. In the future, we are also planning to extend the analysis to other OpenMP constructs such as
barriers, critical sections etc.
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