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ON 3-DIMENSIONAL ALMOST KENMOTSU MANIFOLDS

ADMITTING CERTAIN NULLITY DISTRIBUTION

K. MANDAL AND U. C. DE

Abstract. The aim of this paper is to characterize 3-dimensional almost Kenmotsu
manifolds with ξ belonging to the (k, µ)′-nullity distribution and h′ 6= 0 satisfying
certain geometric conditions. Finally, we give an example to verify some results.

1. Introduction

The conformal curvature tensor C is invariant under conformal transformations
and vanishes identically for 3-dimensional manifolds. Using this fact, many authors
[4, 6, 7, 14] studied several types of 3-dimensional manifolds.

A Riemannian manifold is called semisymmetric (resp., Ricci semisymmetric)
if R(X,Y ) ·R = 0 (resp. R(X,Y ) · S = 0) [19], where R(X,Y ) is considered as a
field of linear operators acting on R (resp., S).

The notion of k-nullity distribution (k ∈ R) was introduced by Gray [11] and
Tanno [21] in the study of Riemannian manifolds (M, g), which is defined for any
p ∈M and k ∈ R, as follows:

(1.1) Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y,Z)X − g(X,Z)Y ]}
for any X,Y ∈ TpM , where TpM denotes the tangent vector space of M at any
point p ∈M and R denotes the Riemannian curvature tensor of type (1, 3).

Recently, Blair, Koufogiorgos and Papantoniou [3] introduced the (k, µ)-nullity
distribution which is a generalized notion of the k-nullity distribution on a contact
metric manifold (M2n+1, φ, ξ, η, g) and defined for any p ∈ M2n+1 and k, µ ∈ R,
as follows:

(1.2)
Np(k, µ) = {Z ∈ TpM2n+1 : R(X,Y )Z

= k[g(Y, Z)X − g(X,Z)Y ] + µ[g(Y,Z)hX − g(X,Z)hY ]}

for any X,Y ∈ TpM and h = 1
2£ξφ, where £ denotes the Lie differentiation.

Next, Dileo and Pastore [9] introduced another generalized notion of the k-nullity
distribution which is named the (k, µ)′-nullity distribution on an almost Kenmotsu
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manifold (M2n+1, φ, ξ, η, g) and is defined for any p ∈M2n+1 and k, µ ∈ R, as fol-
lows:

(1.3)
Np(k, µ)′ = {Z ∈ TpM2n+1 : R(X,Y )Z

= k[g(Y,Z)X − g(X,Z)Y ] + µ[g(Y, Z)h′X − g(X,Z)h′Y ]},
for any X,Y ∈ TpM and h′ = h ◦ φ.

On the other hand, in 1972, Kenmotsu [15] introduced a special class of almost
contact metric manifolds known as Kenmotsu manifolds nowadays. Recently, Dileo
and Pastore ([8], [9], [10]) and Wang et al. ([22], [23], [24], [25], [26]) studied
almost Kenmotsu manifolds with some nullity distributions and obtained some
classification theorems. In [9], Dileo and Pastore gave some classifications on
3-dimensional almost Kenmotsu manifolds assuming ξ belongs to the (k, µ)′-nullity
distribution. Later, Wang and Liu [26] obtained some theorems on 3-dimensional
almost Kenmotsu manifolds.

Motivated by these circumstances, in this paper, we study some meaningful
geometric conditions in 3-dimensional almost Kenmotsu manifolds such that ξ
belongs to the (k, µ)′-nullity distribution and h′ 6= 0.

The present paper is organized as follows: In Section 2, we give some basic
results on almost Kenmotsu manifolds with ξ belonging to the (k, µ)′-nullity dis-
tribution. Section 3 is devoted to study 3-dimensional Ricci semisymmetric almost
Kenmotsu manifolds with ξ belonging to the (k, µ)′-nullity distribution. Section 4
deals with Codazzi type Ricci tensor with ξ beloning to the (k, µ)′-nullity distribu-
tion. Cyclic parallel Ricci tensor with ξ beloning to the (k, µ)′-nullity distribution
is studied in Section 5. In the next two sections, we consider η-parallel Ricci
tensor and locally φ-Ricci symmetric almost Kenmotsu manifolds of dimension 3
assuming ξ belongs to the (k, µ)′-nullity distribution. Finally, we give an example
to verify some results.

2. Almost Kenmotsu manifolds

Let M be a (2n+ 1)-dimensional differentiable manifold endowed with an almost
contact metric structure (φ, ξ, η, g), where φ, ξ, η are tensor fields on M of types
(1, 1), (1, 0), (0, 1), respectively, and a Riemannian metric g such that

(2.1)
φ2 = −I + η ⊗ ξ, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

where I denotes the identity endomorphism ([1], [2]). Then also φξ = 0 and
η ◦ φ = 0; both can be derived from (2.1).

The fundamental 2-form Φ on an almost contact metric manifold is defined by
Φ(X,Y ) = g(X,φY ) for any vector fields X,Y of TpM

2n+1. An almost Kenmotsu
manifold is defined as an almost contact metric manifold such that dη = 0 and
dΦ = 2η ∧ Φ. An almost contact metric manifold is said to be normal if (1, 2)-
type torsion tensor Nφ vanishes, where Nφ = [φ, φ] + 2dη ⊗ ξ and [φ, φ] is the
Nijenhuis torsion of φ [1]. Obviously, a normal almost Kenmotsu manifold is a
Kenmotsu manifold. Also Kenmotsu manifolds can be characterized by (∇Xφ)Y =
g(φX, Y )ξ − η(Y )φX for any vector fields X,Y . It is well known [15] that a
Kenmotsu manifold M2n+1 is locally a warped product I ×f N2n, where N2n is a
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Kähler manifold, I is an open interval with coordinate t and the warping function
f , defined by f = cet for some positive constant c. Let D be the distribution
orthogonal to ξ and defined by D = Ker(η) = Im(φ). In an almost Kenmotsu
manifold D is an integrable distribution as η is closed. Further, on an almost
Kenmotsu manifold M2n+1, we let the two tensor fields h = 1

2£ξφ and l = R(·, ξ)ξ,
which are symmetric and satisfy the following relations [9, 23]:

hξ = 0, lξ = 0, tr(h) = 0, tr(h′) = 0, hφ+ φh = 0,(2.2)

∇Xξ = − φ2X + h′X (⇒ ∇ξξ = 0),(2.3)

φlφ− l = 2(h2 − φ2),(2.4)

R(X,Y )ξ = η(X)(Y − φhY )− η(Y )(X − φhX) + (∇Y φh)X − (∇Xφh)Y(2.5)

for any vector fields X,Y .
Now we provide some basic results on almost Kenmotsu manifolds with ξ be-

longing to the (k, µ)′-nullity distribution. The (1, 1)-type symmetric tensor field
h′ satisfies h′φ+ φh′ = 0 and h′ξ = 0. Also it is clear that

(2.6) h = 0⇔ h′ = 0, h′2 = (k + 1)φ2 (⇔ h2 = (k + 1)φ2).

For an almost Kenmotsu manifold, we have from (1.3)

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )h′X − η(X)h′Y ],(2.7)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(h′X,Y )ξ − η(Y )h′X],(2.8)

where k, µ ∈ R. Contracting Y in (2.8), we have

(2.9) S(X, ξ) = 2kη(X).

Let X ∈ D be the eigen vector of h′ corresponding to the eigen value λ. It follows
from (2.6) that λ2 = −(k+1), a constant. Therefore, k ≤ −1 and λ = ±

√
−k − 1.

We denote by [λ]′ and [−λ]′ the corresponding eigenspaces associated with h′

corresponding to the non-zero eigen value λ and −λ, respectively. We have the
following lemmas.

Lemma 2.1. ([9, Proposition 4.1]) Let (M2n+1, φ, ξ, η, g) be an almost Ken-
motsu manifold such that ξ belongs to the (k, µ)′-nullity distribution and h′ 6= 0.
Then k < −1, µ = −2 and Spec(h′) = {0, λ,−λ} with 0 as simple eigen value
and λ =

√
−k − 1. The distributions [ξ] ⊕ [λ]′ and [ξ] ⊕ [−λ]′ are integrable with

totally geodesic leaves. The distributions [λ]′ and [−λ]′ are integrable with totally
umbilical leaves.

Lemma 2.2. ([9, Lemma 4.1]) Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu
manifold with h′ 6= 0 and ξ belonging to the (k,−2)′-nullity distribution. Then for
any X,Y ∈ TpM ,

(2.10) (∇Xh′)Y = −g(h′X + h′2X,Y )ξ − η(Y )(h′X + h′2X).

Takahashi [20] introduced the notion of φ-symmetry in the study of Sasakian
manifolds. Then De and Sarkar [5] introduced a generalized notion of φ-symmetry
called φ-Ricci symmetry in the study of Sasakian manifolds.
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Definition 2.1. An almost Kenmotsu manifold is said to be φ-Ricci symmetric
if it satisfies

(2.11) φ2((∇WQ)Y ) = 0

for any vector fields W,Y ∈ TpM , where Q is the Ricci operator defined by
S(X,Y ) = g(QX,Y ). In addition, if the vector fields W,Y are orthogonal to ξ,
then the manifold is called locally φ-Ricci symmetric manifold.

3. Ricci semisymmetric almost Kenmotsu manifolds

In a 3-dimensional Riemannian manifold, we have [27]

(3.1)

R(X,Y )Z = S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY

− r

2
{g(Y,Z)X − g(X,Z)Y },

where Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ) for all X,Y ∈ TpM
and r is the scalar curvature of the manifold.
Putting Y = Z = ξ in (3.1) and using Lemma 2.1 and (2.9), we obtain

(3.2) QX =
(r

2
− k

)
X −

(r
2
− 3k

)
η(X)ξ − 2h′X,

which is equivalent to

(3.3) S(X,Y ) =
(r

2
− k

)
g(X,Y )−

(r
2
− 3k

)
η(X)η(Y )− 2g(h′X,Y )

for any X,Y ∈ TpM .
With the help of (3.2) and (3.3), it follows from (3.1) that

(3.4)

R(X,Y )Z =
(r

2
− 2k

)
[g(Y,Z)X − g(X,Z)Y ]−

(r
2
− 3k

)
[g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ]− 2g(Y, Z)h′X

+ 2g(X,Z)h′Y − 2g(h′Y, Z)X + 2g(h′X,Z)Y

for any X,Y, Z ∈ TpM .
Now we suppose that the manifold M3 is Ricci semisymmetric, that is,

(3.5) (R(X,Y ) · S)(U, V ) = 0

for all vector fields X,Y, U, V , which implies

(3.6) S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = 0.

Substituting X = U = ξ in (3.6), we get

(3.7) S(R(ξ, Y )ξ, V ) + S(ξ,R(ξ, Y )V ) = 0.

Using (2.9), it follows from (3.7) that

(3.8) S(R(ξ, Y )ξ, V ) + 2kη(R(ξ, Y )V ) = 0.
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Making use of (2.8) and (3.8), we have

(3.9)
2k2η(Y )η(V )− kS(Y, V ) + 2S(h′Y, V )

+ 2k2g(Y, V )− 2k2η(Y )η(V )− 4kg(h′Y, V ) = 0,

which implies

(3.10) kS(Y, V )− 2S(h′Y, V )− 2k2g(Y, V ) + 4kg(h′Y, V ) = 0.

Replacing Y by h′Y in (3.10) and using the fact h′2 = (k + 1)φ2, it yields to

(3.11) kS(h′Y, V ) + 2(k + 1)S(Y, V )− 2k2g(h′Y, V )− 4k(k + 1)g(Y, V ) = 0.

Adding k times of (3.10) and two times of (3.11), we have

(3.12) (k + 2)2[S(Y, V )− 2kg(Y, V )] = 0.

Now we consider the following two cases:
Case 1. k 6= −2. It follows from (3.12) that

S(Y, V ) = 2kg(Y, V ),

which implies that the manifold is an Einstein manifold.

Case 2. k = −2. Then by [9, Corollary 4.1], the manifold is an CR-manifold.
From the above discussions, we have the following theorem.

Theorem 3.1. Let (M3, φ, ξ, η, g) be an almost Kenmotsu manifold such that
ξ belongs to the (k, µ)′-nullity distribution with h′ 6= 0. If M3 is Ricci semisym-
metric, then, either the manifold is

1. an Einstein manifold, or

2. a CR-manifold.

Also Ricci symmetric manifold (∇S=0) implies Ricci semisymmetric (R·S=0),
therefore we can state the following:

Corollary 3.1. Let (M3, φ, ξ, η, g) be an almost Kenmotsu manifold such that
ξ belongs to the (k, µ)′-nullity distribution with h′ 6= 0. If M3 is Ricci symmetric,
then either the manifold is

1. an Einstein manifold or

2. a CR-manifold.

A Riemannian manifold is said to be Ricci-recurrent [18] if the Ricci tensor S
is non-zero and satisfies the condition

(∇XS)(Y, Z) = A(X)S(Y,Z),

where X,Y, Z ∈ TpM and A is a non-zero 1-form.
In [13], Jun et al proved that a Ricci-recurrent Riemannian manifold is Ricci

semisymmetric.
Hence we can state the following corollary.
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Corollary 3.2. Let (M3, φ, ξ, η, g) be an almost Kenmotsu manifold such that
ξ belongs to the (k, µ)′-nullity distribution with h′ 6= 0. If M3 is Ricci-recurrent,
then either the manifold is

1. an Einstein manifold or

2. a CR-manifold.

4. Codazzi type Ricci tensor

In this section, we assume that the manifold under consideration satisfies Codazzi
type [12] of Ricci tensor, then the Ricci tensor S satisfies

(4.1) (∇XS)(Y,Z) = (∇Y S)(X,Z).

Taking the covariant derivative of (3.3) along arbitrary vector field Y and using
(2.3), we have

(4.2)

(∇Y S)(X,Z) =
dr(Y )

2
[g(X,Z)− η(X)η(Z)]−

(r
2
− 3k

)
[g(X,Y )η(Z)

+ g(h′Y,X)η(Z) + g(Y,Z)η(X) + g(h′Y,Z)η(X)

− 2η(X)η(Y )η(Z)]− 2g((∇Y h′)X,Z).

Interchanging X and Y in (4.2), we get

(4.3)

(∇XS)(Y,Z) =
dr(X)

2
[g(Y, Z)− η(Y )η(Z)]−

(r
2
− 3k

)
[g(X,Y )η(Z)

+ g(h′X,Y )η(Z) + g(X,Z)η(Y ) + g(h′X,Z)η(Y )

− 2η(Y )η(X)η(Z)]− 2g((∇Xh′)Y,Z).

Making use of (4.2) and (4.3) in (4.1) yields to

(4.4)

dr(X)

2
[g(Y,Z)− η(Y )η(Z)]− dr(Y )

2
[g(X,Z)− η(X)η(Z)]

−2g((∇Xh′)Y,Z) + 2g((∇Y h′)X,Z)−
(r

2
−3k

)
[g(X,Z)η(Y )

+g(h′X,Z)η(Y )−g(Y, Z)η(X)−g(h′Y, Z)η(X)] = 0.

It is known [16] that Cartan hypersurfaces are manifolds with non-parallel Ricci
tensor satisfying (4.1). From (4.1), it follows that r = constant. Then (4.4) implies

(4.5)

(r
2
− 3k

)
[g(X,Z)η(Y ) + g(h′X,Z)η(Y )− g(Y,Z)η(X)

−g(h′Y,Z)η(X)] + 2g((∇Xh′)Y,Z)− 2g[(∇Y h′)X,Z] = 0.

Making use of (2.10) and (2.3), we have

(4.6) (∇Y h′)X−(∇Xh′)Y = η(Y )h′X−η(X)h′Y −(k+1)η(Y )X+(k+1)η(X)Y.

In view of (4.5) and (4.6), it follows that

(4.7)

(r
2
− 3k

)
[g(X,Z)η(Y ) + g(h′X,Z)η(Y )− g(Y,Z)η(X)

−g(h′Y,Z)η(X)] + 2[(k + 1)[g(X,Z)η(Y )− g(Y, Z)η(X)]

−g(h′X,Z)η(Y ) + g(h′Y, Z)η(X)] = 0.
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Substituting X = ξ in (4.7) gives

(4.8)
(r − 6k) [g(Y,Z) + g(h′Y,Z)− η(Y )η(Z)]

+4[(k + 1)g(Y,Z)− (k + 1)η(Y )η(Z)− g(h′Y,Z)] = 0.

Putting Y = h′Y in (4.8) and applying h′2 = (k + 1)φ2 yield to

(4.9)
(r − 6k)[g(h′Y, Z)− (k + 1)g(Y, Z) + (k + 1)η(Y )η(Z)]

+4(k + 1)[g(Y,Z)− η(Y )η(Z) + g(h′Y,Z)] = 0.

Subtracting (4.9) from (4.8), we have

(4.10) (r − 6k)(k + 2)[g(Y,Z)− η(Y )η(Z)]− 4(k + 2)g(h′Y,Z) = 0.

From (4.10), it follows that either k = −2 or

(4.11) g(h′Y,Z) =
r − 6k

4
[g(Y,Z)− η(Y )η(Z)].

Making use of (3.3) and (4.11), we obtain

S(Y,Z) = 2kg(Y,Z),

that is, the manifold is an Einstein manifold.
Hence by the similar argument as in Section 3, we can state the following.

Theorem 4.1. Let (M3, φ, ξ, η, g) be an almost Kenmotsu manifold such that
ξ belongs to the (k, µ)′-nullity distribution with h′ 6= 0. If M3 admits Codazzi type
Ricci tensor, then either the manifold is

1. an Einstein manifold or

2. a CR-manifold.

5. Cyclic parallel Ricci tensor

This section is devoted to study cyclic parallel Ricci tensor in almost Kenmotsu
manifolds with ξ belonging to the (k, µ)′-nullity distribution and h′ 6= 0 of dimen-
sion 3. Suppose the manifold under consideration satisfies cyclic parallel Ricci
tensor [12], then the Ricci tensor S satisfies

(5.1) (∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0.

Taking the covariant derivative of (3.3) along arbitrary vector field Z and using
(2.3), we have

(5.2)

(∇ZS)(X,Y ) =
dr(Z)

2
[g(X,Y )− η(X)η(Y )]−

(r
2
− 3k

)
[g(X,Z)η(Y )

+ g(Y,Z)η(X) + g(h′X,Z)η(Y ) + g(h′Y, Z)η(X)

− 2η(X)η(Y )η(Z)[−2g((∇Zh′)X,Y ).

Similarly,

(5.3)

(∇XS)(Y, Z) =
dr(X)

2
[g(Y, Z)− η(Y )η(Z)]−

(r
2
− 3k

)
[g(X,Y )η(Z)

+ g(X,Z)η(Y ) + g(h′X,Y )η(Z) + g(h′X,Z)η(Y )

− 2η(X)η(Y )η(Z)]− 2g((∇Xh′)Y,Z),
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and

(5.4)

(∇Y S)(Z,X) =
dr(Y )

2
[g(Z,X)− η(Z)η(X)]−

(r
2
− 3k

)
[g(Y,Z)η(X)

+ g(Y,X)η(Z) + g(h′Y, Z)η(X) + g(h′Y,X)η(Z)

− 2η(X)η(Y )η(Z)]− 2g((∇Y h′)Z,X).

It is known [16] that Cartan hypersurfaces are manifolds with non-parallel Ricci
tensor satisfying (5.1). From (5.1), it follows that r = constant. Making use of
(5.2)–(5.4) in (5.1), we have

(5.5)

(r − 6k) [g(X,Y )η(Z) + g(Y,Z)η(X) + g(X,Z)η(Y ) + g(h′X,Y )η(Z)

+g(h′Y,Z)η(X) + g(h′X,Z)η(Y )− 3η(X)η(Y )η(Z)]

+2g((∇Zh′)X,Y ) + 2g((∇Xh′)Y, Z) + 2g((∇Y h′)Z,X) = 0.

Using (2.10) and (2.3), we obtain

(5.6)

g((∇Zh′)X,Y ) + g((∇Xh′)Y,Z) + g((∇Y h′)Z,X)

= 2[(k + 1)[g(X,Y )η(Z) + g(Y,Z)η(X) + g(X,Z)η(Y )]

− 3η(X)η(Y )η(Z)− g(h′X,Y )η(Z)− g(h′Y, Z)η(X)− g(h′X,Z)η(Y )].

In account of (5.5) and (5.6), we get
(5.7)

(r − 6k) [g(X,Y )η(Z) + g(Y,Z)η(X) + g(X,Z)η(Y )

+g(h′X,Y )η(Z) + g(h′Y,Z)η(X) + g(h′X,Z)η(Y )− 3η(X)η(Y )η(Z)]

+4[(k + 1)[g(X,Y )η(Z) + g(Y,Z)η(X) + g(X,Z)η(Y )− 3η(X)η(Y )η(Z)]

−g(h′X,Y )η(Z)− g(h′Y,Z)η(X)− g(h′X,Z)η(Y )] = 0.

Setting Z = ξ in (5.7) yields to

(5.8)
(r − 6k)[g(X,Y ) + g(h′X,Y )− η(X)η(Y )]

+4[(k + 1)g(X,Y )− (k + 1)η(X)η(Y )− g(h′X,Y )] = 0.

Replacing X by h′X in (5.8) and applying h′2 = (k + 1)φ2, it implies

(5.9)
(r − 6k)[g(h′X,Y )− (k + 1)g(X,Y ) + (k + 1)η(X)η(Y )]

+4(k + 1){g(X,Y )− η(X)η(Y ) + g(h′X,Y )} = 0.

Subtracting (5.9) from (5.8), we have

(5.10) (r − 6k)(k + 2)[g(X,Y )− η(X)η(Y )]− 4(k + 2)g(h′X,Y ) = 0.

From (5.10), we see that either k = −2 or

(5.11) g(h′X,Y ) =
r − 6k

4
[g(X,Y )− η(X)η(Y )].

With the help of (3.3) and (5.11), we get

S(X,Y ) = 2kg(X,Y ),

that is, the manifold is an Einstein manifold.
Therefore, by the similar argument as in Section 3, we have the following the-

orem.
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Theorem 5.1. Let (M3, φ, ξ, η, g) be an almost Kenmotsu manifold such that ξ
belongs to the (k, µ)′-nullity distribution with h′ 6= 0. If M3 admits cyclic parallel
Ricci tensor, then, either the manifold is

1. an Einstein manifold, or

2. a CR-manifold.

6. η-parallel Ricci tensor

Definition 6.1. The Ricci tensor S of an almost Kenmotsu manifold M is
called η-parallel if it satisfies

(6.1) (∇XS)(φY, φZ) = 0

for all vector fields X,Y and Z.

The notion of η-parallel Ricci tensor for Sasakian manifolds was given by Kon
[17]. From (3.3), we have

(6.2) S(φX, φY ) =
(r

2
− k

)
g(φX, φY )− 2g(h′φX, φY ).

Taking covariant derivative of (6.2) along any vector field Z we get

(6.3) (∇ZS)(φX, φY ) =
dr(Z)

2
g(φX, φY )− 2g((∇Zh′)φX, φY ).

Using (2.10), we obtain

(6.4) g((∇Zh′)φX, φY ) = 0.

Taking account of (6.4), from (6.3), we get

(6.5) (∇ZS)(φX, φY ) =
dr(Z)

2
g(φX, φY ).

In view of (6.1) and (6.5), we have

(6.6)
dr(Z)

2
g(φX, φY ) = 0,

that is, r = constant.
Conversely, if r= constant, then it can be easily shown that

(∇XS)(φY, φZ) = 0

for all vector fields X,Y and Z.
Hence we can state the following theorem.

Theorem 6.1. The Ricci tensor of an almost Kenmotsu manifold M of dimen-
sion 3 with ξ belonging to the (k, µ)′-nullity distribution and h′ 6= 0 is η-parallel if
and only if the scalar curvature r is constant.

7. Locally φ-Ricci symmetric almost Kenmotsu manifolds

In this section, we study locally φ-Ricci symmetric almost Kenmotsu manifolds of
dimension 3 with ξ belonging to the (k, µ)′-nullity distribution and h′ 6= 0.
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Taking covariant derivative of (3.2) along any vector field X, we have

(7.1)
(∇XQ)Y =

dr(X)

2
[Y − η(Y )ξ]−

(r
2
− 3k

)
[(∇Xη)Y ξ + η(Y )∇Xξ]

− 2(∇Xh′)Y.
Applying φ2 on both sides of (7.1) and using (2.3) yield to

(7.2)
φ2((∇XQ)Y ) =

dr(X)

2
[−Y + η(Y )ξ]−

(r
2
− 3k

)
η(Y )φ2(∇Xξ)

− 2φ2((∇Xh′)Y ).

Making use of (2.10), the above equation implies

(7.3)
φ2((∇XQ)Y ) =

dr(X)

2
[−Y + η(Y )ξ]−

(r
2
− 3k

)
η(Y )φ2(∇Xξ)

+ 2η(Y )φ2(h′X + h′2X).

In view of (2.11) and (7.3), we have

dr(X)

2
Y = 0,

that is, r = constant.
Conversely, if r is constant, then the manifold is locally φ-Ricci symmetric.

Thus we have the following theorem.

Theorem 7.1. An almost Kenmotsu manifold M of dimension 3 with ξ be-
longing to the (k, µ)′-nullity distribution and h′ 6= 0 is locally φ-Ricci symmetric
if and only if the scalar curvature r is a constant, provided the scalar curvature r
is invariant under ξ.

Hence from Theorem 6.1 and Theorem 7.1, we have the following corollary.

Corollary 7.1. In an almost Kenmotsu manifold M of dimension 3 with ξ
belonging to the (k, µ)′-nullity distribution and h′ 6= 0, the following statements
are equivalent:

1. Ricci tensor is η-parallel;

2. manifold is locally φ-Ricci symmetric;

3. scalar curvature r is a constant, provided the scalar curvature r is invariant
under ξ.

8. Example of a 3-dimensional almost Kenmotsu manifold

We consider 3-dimensional manifold M = {(x, y, z) ∈ R3}, where (x, y, z) are
the standard coordinates in R3. Let ξ, e2, e3 are three vector fields in R3 which
satisfy [9]

[e2, e3] = 0, [ξ, e2] = −e2 − e3, [ξ, e3] = −e2 − e3.
Let g be the Riemannian metric defined by

g(ξ, ξ) = g(e2, e2) = g(e3, e3) = 1,

g(ξ, e2) = g(ξ, e3) = g(e2, e3) = 0.
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Let η be the 1-form defined by η(Z) = g(Z, ξ) for any Z ∈ T (M). Let φ be the
(1, 1) tensor field defined by

φ(ξ) = 0, φ(e2) = e3, φ(e3) = −e2.
Using the linearity of φ and g, we have η(ξ) = 1, φ2X = −X + η(X)ξ, and
g(φX, φY ) = g(X,Y ) − η(X)η(Y ) for any X,Y ∈ χ(M). Thus the structure
(φ, ξ, η, g) is an almost contact structure. Also we have

h′ξ = 0, h′(e2) = e3, h′(e3) = e2.

The Riemannian connection ∇ of the metric g is given by the Koszul’s formula

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Using the Koszul’s formula, we obtain

∇ξξ = 0, ∇ξe2 = 0, ∇ξe3 = 0,

∇e2ξ = e2 + e3, ∇e2e2 = −ξ, ∇e2e3 = −ξ,
∇e3ξ = e2 + e3, ∇e3e2 = −ξ, ∇e3e3 = −ξ.

In view of the above relations, we get

∇Xξ = −φ2X + h′X

for any X ∈ χ(M). Therefore, the structure (φ, ξ, η, g) is an almost contact metric
structure such that dη = 0 and dΦ = 2η ∧ Φ, so that M is an almost Kenmotsu
manifold.

By the above results, we can easily obtain the components of the curvature
tensor R as follows:

R(ξ, e2)ξ = 2(e2 + e3), R(ξ, e2)e2 = −2ξ, R(ξ, e2)e3 = −2ξ,

R(e2, e3)ξ = R(e2, e3)e2 = R(e2, e3)e3 = 0,

R(ξ, e3)ξ = 2(e2 + e3), R(ξ, e3)e2 = −2ξ, R(ξ, e3)e3 = −2ξ.

With the help of the expressions of the curvature tensor, we conclude that the
characteristic vector field ξ belongs to the (k, µ)′-nullity distribution with k = −2
and µ = −2.

Using the expressions of the curvature tensor, we find the values of the Ricci
tensor S as follows:

S(ξ, ξ) = −4, S(e2, e2) = −2, S(e3, e3) = −2.

Therefore, the scalar curvature r = S(ξ, ξ)+S(e2, e2)+S(e3, e3) = −8, a constant.
Hence, Theorem 6.1 and Theorem 7.1 are verified.

Acknowledgment. The authors are thankful to the referee for his/her valu-
able suggestions towards the improvement of the paper.
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