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ON 3-NONDEGENERATE CR MANIFOLDS IN DIMENSION 7 (I):

THE TRANSITIVE CASE

BORIS KRUGLIKOV, ANDREA SANTI

Abstract. We investigate 3-nondegenerate CR structures in the lowest possible dimension
7, and one of our goals is to prove Beloshapka’s conjecture on the symmetry dimension
bound for hypersurfaces in C4. We claim that 8 is the maximal symmetry dimension of 3-
nondegenerate CR structures in dimension 7, which is achieved on the homogeneous model.
This part (I) is devoted to the homogeneous case: we prove that the model is locally the only
homogeneous 3-nondegenerate CR structure in dimension 7.
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1. Introduction

An almost CR-structure on a connected manifold M is a subbundle D ⊂ TM of the
tangent bundle, called the CR-distribution, endowed with a field of complex structures J ∈
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Γ(End(D)). The complexified CR-distribution splits as the direct sum D⊗C = D10 ⊕D01 of
its holomorphic and antiholomorphic parts, where

D10 = {X − iJX | X ∈ D}, D01 = {X + iJX | X ∈ D}.

The almost CR-structure (M,D,J ) is called integrable, or a CR-structure, if the distribution
D10 (or equivalently the distribution D01 = D10) is involutive. In this paper we consider only
CR-hypersurfaces, i.e., integrable CR manifolds of CR-codimension equal to 1, and denote by
n = 1

2 (dimM− 1) = rankC(D) the CR-dimension.
We are interested in the infinitesimal symmetry algebra g of the CR structure (M,D,J ).

We will work in the analytic category, so all objects are real-analytic, and g can consist of
infinitesimal analytic transformations on the entire M or defined on a fixed domain U ⊂ M,
but it can also be the space of germs around a fixed point x ∈ M of the infinitesimal analytic
automorphisms of this structure. In what follows we can adapt any of these notions, and we
interchangeably use either the notation g = inf(M,D,J ) or g = inf(M,D,J ;x), if we wish
to emphasize locality around x ∈ M. We also remark that (M,D,J ) can be assumed regular,
i.e., the rank of all involved bundles are constant. In fact, they are constant on an open dense
subset of M due to upper-semicontinuity, and we may restrict to it by analyticity. For locally
homogeneous CR manifolds, our results automatically hold in the smooth situation, see §2.1.

The Levi form of a CR-hypersurface is the tensor L : D10 ⊗ D01 −→ νCM, where νCM =
(TM/D)⊗ C is the complexified normal bundle, given by the formula

L (Z,Z ′) = i[Z,Z ′] mod D ⊗ C .

In the case the Levi form is nondegenerate, and identifying locally νM = TM/D with R, this
is a Hermitian form on the CR-distribution defined up to a real scalar multiple at each point.

As shown in classical works [3, 5, 28, 29], the dimension of the symmetry algebra of a Levi-
nondegenerate connected CR-hypersurfaceM of CR-dimension n does not exceed n2+4n+3.
If dim inf(M,D,J ) attains this bound then M is spherical, i.e., locally CR-equivalent to an
open subset of the hyperquadric, which can be written as the tube

Q2n+1
(p) =

{
z = (z0, . . . , zn) ∈ Cn+1 : x = Re(z) satisfies x0 = x21 + · · ·+ x2p− x2p+1 − · · · − x2n

}
,

for some 0 ≤ p ≤ n/2.
In the absence of Levi-nondegeneracy, finding the maximal dimension of the symmetry alge-

bra is much harder. It is known [1, §12.5] that g = inf(M,D,J ) is finite-dimensional provided
that M is holomorphically nondegenerate. Moreover, this is equivalent to k-nondegeneracy
for some 1 ≤ k ≤ n, cf. [1, §11.1-11.3]. (The case k = 1 corresponds to Levi-nondegeneracy.)
We will recall this notion in §2.1 in relation to the Freeman filtration [9], but presently notice
that a Levi-degenerate (M,D,J ) has a Cauchy characteristic distribution Ch(D) ⊂ D that
is independent of J , and that the 2- and higher nondegeneracy conditions measure a failure
of straightening of the distribution Ch(D)10 and its subfiltrands. From 3-nondegeneracy on,
the Freeman sequence relies on the complex structure J .

Regarding the maximal symmetry dimension in CR geometry, the following conjecture is a
variant of Beloshapka’s conjecture, cf. [2, p. 38].

Conjecture 1. For any real-analytic and connected holomorphically nondegenerate CR-hyper-
surface (M,D,J ) of CR-dimension n one has dim g ≤ n2 + 4n + 3, with the maximal value
n2 + 4n+ 3 attained only if on a dense open set M is spherical.

For n = 1 the above conjecture is true since a 3-dimensional holomorphically nondegenerate
CR-hypersurface always has points of Levi-nondegeneracy. For n = 2 the conjecture was



3-NONDEGENERATE CR MANIFOLDS IN DIMENSION 7 (I) 3

established in [12, 20], where the proof relied on the reduction of 5-dimensional uniformly 2-
nondegenerate CR-structures to absolute parallelisms. See also [6, 21]. The most symmetric
CR manifold in such class is the tube over the future light cone

C5 =
{
z = (z0, z1, z2) ∈ C3 : x = Re(z) satisfies x20 = x21 + x22, x0 > 0

}
. (1.1)

Further results in this direction for n = 1 (sphericity of M near x if dim inf(M,D,J ;x) > 5)
and n = 2 (sphericity of M near x if dim inf(M,D,J ;x) > 11) are contained in [13] and [11]
respectively. (For related results in the case n > 2 see [14].)

Our goal is to prove Beloshapka’s conjecture for n = 3. In fact, this was recently done by
V. Beloshapka himself [2], using the homological technique of Poincaré, but our approach is
quite different and it leads to finer results. In particular, we completely answer the questions
on homogeneous 3-nondegenerate CR manifolds in dimension 7 posed by V. Beloshapka to
the second author, during Vitushkin’s seminar at Moscow State University in April 2021.

The proof in [2] goes as follows. If there exists a point x ∈ M of Levi-nondegeneracy on M,
then dim inf(M,D,J ;x) ≤ 24. If M is uniformly Levi-degenerate but 2-nondegenerate then
dim inf(M,D,J ;x) ≤ 17 and, finally, if M is 3-nondegenerate then dim inf(M,D,J ;x) ≤ 20.

In fact, for 2-nondegenerate (M,D,J ) satisfying a constancy assumption on CR-symbols
the situation can be improved due to the results of [23, 27]: a combination of those implies
dim inf(M,D,J ;x) ≤ 16 and this bound is sharp. This includes the classification of CR-
symbols, indeed there are more 2-nondegenerate models than those in dimension 5, i.e., (1.1).

We are going to significantly improve the dimension bound for the 3-nondegenerate CR
structures in dimension 7 from [2]. Namely, the first of our main results is:

Theorem 2. A 3-nondegenerate 7-dimensional CR real-analytic hypersurface has symmetry
dimension dim g ≤ 8 and this bound is sharp.

Our proof uses various techniques from differential geometry, Lie theory, different notions
of Tanaka prolongations, etc. In particular we treat in a completely different manner the cases
where the symmetry algebra g acts locally transitively on M (there exists an open orbit) and
intransitively (there exist local invariants for the action). Due to this reason, we split the
presentation of our results in two separate works, cf. [15]. This part (I) is dedicated to the
locally transitive case. By this we mean that M has an open subset U, where the structure
is locally homogeneous – since restriction to an open subset does not reduce the symmetry
dimension, we lose no generality in assuming M itself to be locally homogeneous.

In [25] several results about homogeneous models for CR manifolds were obtained, in par-
ticular, this concerned 3-nondegenerate CR structures in dimension 7. We will show that the
abstract model derived in loc.cit. is also a tube, namely, it can be realized as follows

R7 =
{
z =(z0, z1, z2, z3) ∈ C4 : x = Re(z) satisfies

x0 = r3u− 3r2st, x1 = r2su+ (r3 – 2rs2)t, x2 = r s2u− (s3 − 2r2s) t, (1.2)

x3 = s3u+ 3rs2t, for real r, s, t, u s.t. (r, s) 6= (0, 0), t 6= 0
}

Note that R7 is not a parametrization, since all fixed u 6= 0 yield the same subset in R4
x,

but we need its entire image including u = 0. A more convenient local parametrization is
given by x0 = r3, x1 = r2(s + t), x2 = r s (s + 2t), x3 = s2(s + 3t), with r, t 6= 0, but for
a global description we would then need to add another chart; one can prove that this CR
manifold coincides with the example from the end of [7, §5.1]. The symmetry algebra of the
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CR hypersurface R7 is generated by the symmetry algebra of the underlying hypersurface in
R4
x and the translations along the subspace R4

y, namely it is gl2(R)⋉R4, where R4 = S3R2.
We can compute the automorphism group as well. Moreover, we will develop further the

technique from [25] and exploit Lie theory to arrive at our second main result, the classification
of 3-nondegenerate locally homogeneous CR manifolds in dimension 7:

Theorem 3. There exists a unique locally homogeneous 3-nondegenerate CR structure in
dimension 7, and it is locally isomorphic to the model R7. Furthermore:

(1) This model is globally homogenous, i.e., the automorphism group G acts transitively,
and G ∼= GL2(R)⋉ S3R2;

(2) Every connected globally homogenous 3-nondegenerate CR manifold in dimension 7
with automorphism group of maximal dimension is isomorphic to a finite or countable
covering of R7. The automorphism group is the universal cover

G̃ ∼= G̃L2(R)⋉ S3R2

of G or a quotient by a subgroup mZ of the discrete normal subgroup Z = π1(G) of G̃.

We note that G is not connected (but it is Zariski connected, and a posteriori we see that
symmetries are algebraic) while R7 is connected, and the action of G on R7 is effective. The
classification of globally homogeneous 3-nondegenerate CR manifolds in dimension 7 is then
finished in [15], see part (1) of Theorem 3 therein.

There is a growing interest in uniformly Levi-degenerate CR structures, in particular, many
recent papers marked progress for 2-nondegenerate ones [10, 23, 27]. In [17] a question was
raised on classifying Levi-degenerate locally homogeneous CR structures in dimension 7, as the
next step after the celebrated article [7]. Theorem 3 finishes this classification problem in the
3-nondegenerate case. In the 2-nondegenerate case, there are nine locally homogeneous models
(w.r.t. the so-called abstract reduced modified symbols), see [26], but there are uncountably
many locally homogeneous CR structures and so far the classification is incomplete.

Structure of the paper. In §2 we recall the notions of the Freeman sequence, CR algebra and
universal CR algebra, and establish some relations of the Freeman filtration with an another
natural filtration on the Lie algebra of infinitesimal CR symmetries. The following §3 deals
with the interplay of the filtrations introduced in §2 and the associated graded Lie algebras.
It is the most general and technical part of the paper, and its results might be of independent
interest. It finishes with a subsection on k-nondegenerate homogeneous models in the sense
of [25]. In §4-5 we specialize to the 7-dimensional case and, with a careful analysis of all
the possibilities for the CR algebra, establish the main results, via Theorem 29 and global
topological considerations. Then in §6 we further describe the maximal symmetric model R7,
provide a characterization of it in terms of the rational normal curve of degree 3, and relate
it to the geometry of 4th order scalar ODEs. We also consider some generalizations.

Notations. For a real vector space V we set V× = {v ∈ V | v 6= 0} and frequently V̂ = V ⊗C;
for a bundle K on M, we denote the space of its sections by K. We decompose any section X

of D̂ = D⊗C into the sum X = X10+X01 of its holomorphic X10 ∈ D10 and antiholomorphic
X01 ∈ D01 components. In §4, we will make contact with the notation in [25] and the symbols
M,N,L, etc., will denote basis elements of Lie algebras as in loc.cit.

Acknowledgments. The research leading to these results has received funding from the Nor-
wegian Financial Mechanism 2014-2021 (project registration number 2019/34/H/ST1/00636)
and the Tromsø Research Foundation (project “Pure Mathematics in Norway”). The second
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2. Freeman filtration and universal CR algebras

2.1. The filtration of Freeman. Let (M,D,J ) be a 2n + 1-dimensional CR manifold of
hypersurface type. The associated Freeman sequence [9] is the decreasing filtration of sheaves
of complex vector fields F −1 ⊃ F 0 ⊃ F 1 ⊃ · · · ⊃ F p−1 ⊃ F p ⊃ F p+1 ⊃ · · · iteratively

defined by F −1 = D̂ and

F p = F p
10 ⊕F p

01 , where F p
01 = F p

10 and

F p
10 =

{
X ∈ F p−1

10 | [X,D 01] = 0 mod F p−1
10 ⊕D 01

}
.

Each term F p of the sequence is a C∞(M)-module and, for p ≥ 0, also a Lie subalgebra of

the Lie algebra T̂M. Clearly F −1 consists of the complexified sections of D whereas F p
10 for

p ≥ 0 coincides with the left kernel of the higher order Levi form

Lp+1 : F p−1
10 ⊗C∞(M) D 01 −→ (F p−2

10 ⊕D 01)/(F
p−1
10 ⊕D 01)

(X,Y ) −→ [X,Y ] mod F p−1
10 ⊕D 01 .

(2.1)

For this definition to work in the case p = 0, we have to understand F p−2
10 ⊕D 01 just as T̂M.

We note that (2.1) is a tensorial map.

Remark 4.

(1) Sometimes it is convenient to extend the domain of definition of (2.1) allowing for two

antiholomorphic entries, that is, to the space of sections
(
F p−1

10 ⊕D 01

)
⊗C∞(M) D 01.

This is the trivial extension, so the resulting map will be denoted by the same symbol.
(2) It is an easy induction to see that [F p−1

10 ⊕D 01,F
0
01] ⊂ F p−1

10 ⊕D 01 for all p ≥ 0, so

we have in fact a map Lp+1 :
(
F p−1

10 ⊕D 01

)
⊗C∞(M) (D 01/F

0
01) −→ F p−2

10 /F p−1
10 .

From now on, we shall assume that (M,D,J ) is regular, i.e., the vector fields in F p
10 are the

sections of an associated distribution Fp
10, and consider the subbundles Fp = Re(Fp

10 ⊕ Fp
01)

of D with complexifications F̂p = Fp
10 ⊕Fp

01. We will also work in the real-analytic category.
The focus of this first part (I) is on homogeneous CR manifolds and our results automati-

cally holds in the smooth situation as well, due to the following well-known facts: If M is a
smooth CR manifold that is locally homogeneous under a finite-dimensional Lie algebra g of
smooth infinitesimal CR automorphisms, then it is regular and there is a real-analytic atlas
on M such that all vector fields in g become real-analytic.

Definition 5. [1, 9] The CR manifold (M,D,J ) is k-nondegenerate at x ∈ M if Fp|x 6= 0
for all −1 ≤ p ≤ k − 2 and Fk−1|x = 0.

2.2. Locally homogeneous CR manifolds and CR algebras. Let (M,D,J ) be a CR
manifold of hypersurface type, or a germ of it at a fixed point x ∈ M, which is locally homoge-
neous k-nondegenerate, and g the associated Lie algebra of infinitesimal CR automorphisms.
Transitivity of the action amounts to TxM = {evx(ξ) | ξ ∈ g}, where evx : g → TxM is the
evaluation map at x ∈ M. (Sometimes we will use the simpler notation ξ|x instead of evx(ξ).)
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We set

q =
{
ξ ∈ ĝ | evx(ξ) ∈ D10

}

and note that

(i) g is a real Lie algebra;
(ii) q is a complex subalgebra of ĝ, thanks to the integrability condition of CR manifolds;
(iii) the quotient g/stab is finite-dimensional, where

stab = g ∩ q = Re(q ∩ q) =
{
ξ ∈ g | evx(ξ) = 0

}

is the stabilizer subalgebra at x.

The pair (g, q) is called an abstract CR algebra, in the terminology of [19].
Conversely any abstract CR algebra determines a unique germ of a locally homogeneous

CR manifold (M,D,J ;x) with TxM ∼= g/stab and D10|x ∼= q/(q ∩ q̄), see [8, 19] for more
details. The Freeman bundles are locally homogeneous bundles with fiber Fp

10|x
∼= qp/(q∩ q),

where q−1 = q ⊃ q0 ⊃ · · · ⊃ qp−1 ⊃ qp ⊃ qp+1 ⊃ · · · ⊃ q∩ q is the nested sequence of complex
subalgebras of q iteratively defined by (see [8]):

qp =
{
ξ ∈ ĝ | evx(ξ) ∈ Fp

10

}

=
{
ξ ∈ qp−1 | [ξ, q] ⊂ qp−1 + q

}
.

Remark 6.

(1) Parallel to the fact that F p is a Lie subalgebra of T̂M for all p ≥ 0, we have that

Re(qp + qp) =
{
ξ ∈ g | evx(ξ) ∈ Fp

}
is a Lie subalgebra of g for all p ≥ 0.

(2) We stress that the filtration {qp} is not respected by the Lie brackets in general. For
instance [q1, q1] is not included in q2 for the CR algebra (g, q) of Example 10 later on.

One has k-nondegeneracy when qk−2 6= q ∩ q and qk−1 = q ∩ q, as it can be readily seen
from the following simple but useful lemma.

Lemma 7. If ξ ∈ qp−1 + q and η ∈ q, then Lp+1(ξ|x, η|x) = −[ξ, η]|x mod (Fp−1
10 ⊕D01)|x.

Proof. Let X ∈ F p−1
10 and Y,Z ∈ D 01 such that X|x = (ξ|x)10, Y |x = (ξ|x)01, Z|x = η|x, and

compute [ξ−X−Y, η−Z] = [ξ, η]− [ξ, Z]− [X+Y, η]+[X+Y,Z]. Now [ξ−X−Y, η−Z]|x = 0

since both vector fields vanish at x, while [ξ, Z] ∈ D 01 and [X + Y, η] ∈ F p−1
10 ⊕D 01 since ξ

and η are CR symmetries. �

2.3. A filtration on the Lie algebra of infinitesimal CR automorphisms. Following
[25], we now introduce a novel filtration on g, cf. also [18]. It is given by

· · · ⊃ gq−1 ⊃ gq ⊃ gq+1 ⊃ · · · ⊃ g−1 ⊃ g0 ⊃ g1 ⊃ · · · ⊃ gp−1 ⊃ gp ⊃ gp+1 ⊃ · · ·

with
g−1 = {ξ ∈ g | evx(ξ) ∈ D}

gq = gq+1 + [g−1, gq+1]

gp =
{
ξ ∈ gp−1 | [ξ, g−1] ⊂ gp−1

}
(2.2)

for all q ≤ −2, p ≥ 0. We emphasize that (2.2) does not coincide with the traditional filtration
on g introduced by Weisfeiler and independently by Morimoto and Tanaka to study transitive
Lie algebras of vector fields [31, 22, 28]. In general, their terms of non-negative degree do
not coincide with ours, since g0 = stab for them, while g0 =

{
ξ ∈ g−1 | [ξ, g−1] ⊂ g−1

}
for us,
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which is generally bigger. An analogous filtration · · · ⊃ ĝp−1 ⊃ ĝp ⊃ ĝp+1 ⊃ · · · is introduced
on ĝ, and each term ĝp coincides in fact with the complexification of gp. In particular, it is
stable under conjugation.

We note that these filtrations do not use the complex structure J anywhere but only D,
and refer to them as contact filtrations of the CR algebra.

Proposition 8. The filtration (2.2) satisfies the following basic properties

(i) [gp, gq] ⊂ gp+q for all p, q ∈ Z,
(ii) gp =

{
ξ ∈ g0 | [ξ, g−1] ⊂ gp−1

}
=

{
ξ ∈ g−1 | [ξ, g−1] ⊂ gp−1

}
for all p ≥ 0,

(iii) g−2 = g,
(iv) stab ⊂ g0,

and analogous ones hold for the complexified filtration on ĝ. Moreover

(v) ĝp = qp + qp for p = −1, 0,
(vi) ĝp ⊂ qp + qp for all p ≥ 1.

Proof. Properties (i)-(ii) follow by a straightforward induction, which we omit. Now, by k-
nondegeneracy, the Levi form L is not identically zero and, by transitivity and Lemma 7,
there exist ξ ∈ q, η ∈ q such that [ξ, η] /∈ ĝ−1. Since (M,D,J ;x) is of hypersurface type,
ĝ−2 = ĝ, and (iii) holds. Let ξ ∈ stab. For any η ∈ g−1 and X ∈ D with X|x = η|x, we have
[ξ, η]|x = [ξ,X]|x, which is in D|x since ξ is a CR symmetry. Therefore stab ⊂ g0.

Transitivity gives (v) for p = −1. We prove that ĝp ⊂ qp + qp for all p ≥ −1 by induction.
Let ξ ∈ ĝp, p ≥ 0, and first note that ĝp ⊂ ĝp−1 ⊂ qp−1 + qp−1 ⊂ qp−1 + q by the induction
hypothesis; in particular ξ|x = (ξ|x)10 + (ξ|x)01 ∈ Fp−1

10 ⊕ Fp−1
01 . Lemma 7 then says that

[ξ, η]|x mod (Fp−1
10 ⊕ D01)|x = −Lp+1(ξ|x, η|x) for all η ∈ q, but [ξ, η] ∈ ĝp−1 ⊂ qp−1 + qp−1

since ξ ∈ ĝp, so Lp+1(ξ|x, η|x) = 0. By transitivity, this is equivalent to (ξ|x)10 ∈ Fp
10. One

similarly establishes that (ξ|x)01 ∈ Fp
01. Let now ξ′ ∈ qp and ξ′′ ∈ qp such that ξ′|x = (ξ|x)10

and ξ′′|x = (ξ|x)01. Then ξ − (ξ′ + ξ′′) is an element of the complexified stabilizer subalgebra

ŝtab = q ∩ q = qp ∩ qp and the inclusion ĝp ⊂ qp + qp is settled.
To finish the proof of (v)-(vi), it remains to show that q0+q0 ⊂ ĝ0. Let ξ ∈ q0 and η ∈ ĝ−1,

which we may write as η = η′+η′′ for some η′ ∈ q and η′′ ∈ q. Then [ξ, η]|x mod D̂|x = [ξ, η′′]|x
mod D̂|x = −L (ξ|x, η

′′|x) = 0, since q is a subalgebra and where we used Lemma 7 with p = 0.
Since q0 ⊂ ĝ−1, this readily says that q0 ⊂ ĝ0, and by conjugation q0 + q0 ⊂ ĝ0. �

Remark 9.

(1) Property (v) of Proposition 8 does not hold for p ≥ 1 in general. In fact, if ĝp = qp+qp,

then ĝp includes the stabilizer subalgebra ŝtab, which is typically not the case for p ≥ 1.
(2) Property (vi) of Proposition 8 implies that

ĝp + ŝtab ⊂ qp + qp (2.3)

for all p ≥ 1. Requiring the opposite inclusion is equivalent to ask that the evaluation
map evx : ĝp → Fp|x is surjective, and it seems unlikely that this can always be true.
A counterexample in dimension 9 can be found in Example 10.

As a consequence of our classification result in §3-§4, the property ĝp+ŝtab = qp+qp

holds for the full infinitesimal symmetry algebra of all homolorphically nondegenerate
locally homogeneous CR manifolds of hypersurface type up to dimension 7.

Example 10. We consider the homogeneous CR manifold Mk,c := Γ(a)+ iV as in [7, §5] for
k = 4, c = 1. It is the tube over the 4-dimensional group orbit Γ(a) ⊂ V , where V = S4R2

with the action induced by that of Γ = GL+
2 (R) on R2 = 〈u1, u2〉, and a = u42 + u1u

3
2 + u21u

2
2.
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The CR manifold M4,1 is 9-dimensional, 4-nondegenerate, and homogeneous for the action
of the complex affine group G = Γ⋉ iV . The action is almost effective and simply transitive.
We consider x = (a, 0) ∈ M4,1 as base point and let (g, q) be the associated CR algebra.

Abstractly g = gl2(R)⋉ S4R2, and q is the subalgebra of ĝ = gl2(C)⋉ S4C2 generated by

A =

(
1 0
0 0

)
− i

(
u32u1 + 2u22u

2
1

)
,

B =

(
0 1
0 0

)
− i

(
4u32u1 + 3u22u

2
1 + 2u2u

3
1

)
,

C =

(
0 0
1 0

)
− i

(
u42 + 2u32u1

)
,

D =

(
0 0
0 1

)
− i

(
4u42 + 3u32u1 + 2u22u

2
1

)
.

It is isomorphic to gl2(C). We note q+q = gl2(C)⋉〈u42, u
3
2u1, u

2
2u

2
1, u2u

3
1〉 and ĝ/(q+q) ∼= 〈u41〉,

in particular ŝtab = q ∩ q = 0, coherent with the fact that the stabilizer of x in G is

Z2 × Z2 =
{
±

(
1 0
0 1

)
,±

(
1 0
1 −1

)}
,

hence discrete.
The terms of the Freeman sequence are given by

q−1 = q ⊃ q0 = 〈A,C,D〉 ⊃ q1 = 〈A−D,C〉 ⊃ q2 = 〈A−D + C〉 ⊃ q3 = 0 ,

thus decreasing by one dimension at each step, as expected. We then see that

q1 + q1 =
〈(

1 0
1 −1

)
,

(
0 0
1 0

)
, u42, u

3
2u1

〉
,

q2 + q2 =
〈(

1 0
1 −1

)
, u42

〉
.

Now ĝ−1 = q + q, ĝ0 = q0 + q0 =
〈(

1 0
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
, u42, u

3
2u1, u

2
2u

2
1

〉
and ĝ3 = 0

due to Proposition 8, however a direction computation shows that

ĝ1 =
〈(

0 0
1 0

)
, u42, u

3
2u1

〉
,

ĝ2 = 〈u42〉 ,

and (2.3) is a proper inclusion for p = 1, 2.

Remark 11. We recall that a filtered deformation of a graded Lie algebra is a variation of its
structure constants inducing a trivial change at the graded level, see [4]. Such a deformation
g is called trivial if we have an isomorphism of filtered Lie algebras g ∼= gr(g).

We will introduce in §3.2 sufficient conditions for the surjectivity of the map evx : ĝp → Fp|x
in terms of certain kinds of trivial filtered deformations. This result will be crucial for our
main classification in dimension 7 and, before establishing it, we need to recall the notion of
universal CR algebra as introduced in [25].
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2.4. Universal CR algebra. Let c =
⊕

p≥−2 cp be the infinite-dimensional contact algebra,
i.e, the maximal transitive prolongation, in the sense of Tanaka, of the Heisenberg Lie algebra
c− = c−2 ⊕ c−1

∼= R⊕ R2n in dimension n [22]. There are natural identifications

cp ∼= Sp+2(c−1)⊕ Sp(c−1)⊕ · · · ,

where kp = Sp+2(c−1) is the subspace of cp consisting of the elements acting trivially on c−2. In
particular, the zero-degree part is isomorphic to the linear conformal Lie algebra c0 = k0⊕RE,
with k0 ∼= sp(c−1) and E the grading element. Analogous observations are true for ĉ = c⊗C.

Fix a complex structure J on c−1 such that J ∈ k0. Clearly ĉ−1 decomposes into the direct
sum ĉ−1 = c−1(10) ⊕ c−1(01) of its holomorphic and antihomolorphic parts and the action of J
extends to each symmetric power of c−1 via the adjoint action.

For any fixed p ≥ −2, we denote the ad(J)-eigenspace of eigenvalue iℓ in Sk (̂c−1) ⊂ ĉp by

ck(p,ℓ) = S
k+ℓ
2 (c−1(10))⊗ S

k−ℓ
2 (c−1(01))

so that we decompose

ĉp =
⊕

k = p + 2, p, p − 2, . . .

|ℓ| = k, k − 2, k − 4, . . .

ck(p,ℓ) and ĉ =
⊕

p = −2,−1, 0, . . .

k = p + 2, p, p − 2, . . .

|ℓ| = k, k − 2, k − 4, . . .

ck(p,ℓ) .

The lower indices (p, ℓ) in ck(p,ℓ) define a Z-bigrading of the contact algebra ĉ that is compatible

with the Lie algebra structure. The upper index k indicates the symmetric power Sk(̂c−1) ⊂ ĉp.
More is true, however, as it follows directly from the explicit expressions of the Lie brackets

of ĉ as obtained in [25, Prop. 3.2]:

Proposition 12. The inclusion [ck1(p1,ℓ1), c
k2
(p2,ℓ2)

] ⊂ ck1+k2(p1+p2,ℓ1+ℓ2)
⊕ ck1+k2−2

(p1+p2,ℓ1+ℓ2)
holds for all

indices for which the expression makes sense. (The first component on the r.h.s. is absent if
k1 = p1 + 2, k2 = p2 + 2, while the second one is absent if k1 + k2 ≤ 1.)

The first component of the bracket is proportional to the full symmetrization operation
Sk1 (̂c−1)⊗S

k2 (̂c−1) → Sk1+k2 (̂c−1) but the coefficient of proportionality can sometimes vanish
(cf. the coefficients “p2” in equation (3.5) and “α(p, i; q, j)” in equation (3.6) of [25]). On the
other hand, the second component is always a non-zero multiple of the full symmetrization of
the partial contraction Sk1 (̂c−1)⊗ Sk2 (̂c−1) → Sk1−1(̂c−1)⊗ Sk2−1(̂c−1) → Sk1+k2−2(̂c−1) (cf.
“1” in equation (3.5) and “β(i; j)” in equation (3.6) of [25]). We refer the reader to the original
source for more details and only remark here that c = k⊕ z decomposes into the direct sum of
two graded subalgebras k =

⊕
p≥−2 kp and z =

⊕
p≥−1 zp, where zp

∼= Sp(c−1)⊕S
p−2(c−1)⊕· · ·

is the unique k0-submodule that is complementary to kp inside cp.

Definition 13. [25, §3] The universal CR algebra is the pair (c, u), where u =
⊕

p≥−1 up is

the Z-graded subspace of ĉ with graded component

up = c
p+2
(p,p+2)

⊕

|ℓ| = p, p − 2, p − 4, . . .

c
p+2
(p,ℓ)

⊕

k = p, p − 2, . . .

|ℓ| = k, k − 2, k − 4, . . .

ck(p,ℓ)

given by the direct sum of all ad(J)-eigenspaces in ĉp except the eigenspace of minimal eigen-

value−i(p + 2), namely, cp+2
(p,−p−2)

∼= Sp+2(c−1(01)).
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The name “universal CR algebra” stems from the fact that u is a complex subalgebra of ĉ.
Moreover a pointwise invariant of k-nondegenerate CR manifolds of hypersurface type that
has been first introduced in [25] under the name of “core” (a generalization of the usual CR-
symbol of Levi-nondegenerate CR manifolds) always has a natural injection into u [25, §3.1].

In our locally homogeneous context, this reads as the injection ı : qp/qp+1 −→ c
p+2
(p,−p−2) .

However, as Example 10 demonstrates, the image of ı does not necessarily land in the graded
Lie algebra gr(g) associated to the contact filtration, making it less useful for our purposes.
A more transparent version of this result is then given in Proposition 15 later on.

We note that up is the sum of all ad(J)-eigenspaces in ĉp except that c
p+2
(p,p+2)

∼= Sp+2(c−1(10))

of maximal eigenvalue, and that the intersection u∩u can be regarded as the formal analogue
of the usual complexified stabilizer subalgebra of a finite-dimensional CR algebra.

3. Infinitesimal CR automorphisms of Levi degenerate CR hypersurfaces

3.1. From filtrations to gradings. Let (M,D,J ) be a CR manifold of hypersurface type,
or a germ of it at a fixed point x ∈ M, which is locally homogeneous and k-nondegenerate,
and let g be the associated Lie algebra of infinitesimal CR automorphisms, endowed with the
compatible filtration (2.2). We let

gr(g) =
⊕

p≥−2

gp , gp = gp/gp+1 ,

be the associated graded Lie algebra. The analogous construction clearly holds for ĝ = g⊗C.
By Lemma 7 and (iii) and (v) of Proposition 8, we have:

Lemma 14. The negatively-graded part g− = g−2⊕g−1
∼=

(
TxM/D|x

)
⊕
(
D|x/F

0|x
)
of gr(g)

is isomorphic to the Heisenberg algebra c−. If v ∈ gp, p ≥ 0, satisfies [v, g−1] = 0 then v = 0.

It follows that gr(g) is a graded subalgebra of the contact algebra c. Moreover J |x induces
a complex structure J on c−1 that satisfies [Jv,Jw] = [v,w] for all v,w ∈ c−1; this complex
structure can be used to construct the universal CR algebra (c, u) as in §2.4.

The Lie algebra gr(g) has complexified graded components

ĝp ⊂ ĉp = up ⊕ c
p+2
(p,−p−2)

for all p ≥ −2. Our aim is to constrain it.

Proposition 15. Let ξ ∈ ĝp for some p ≥ −1, with the equivalence class v = JξK ∈ ĝp. Then
ξ ∈ qp + qp and

(i) ξ ∈ qp + qp+1 if and only if v ∈ up;
(ii) ξ ∈ qp+1 + qp+1 if and only if v ∈ up ∩ up.

Proof. We recall that ĝp ⊂ qp+qp always due to (2.3) and set to prove claim (i) by induction.

Case p = −1. First of all ξ ∈ ĝ−1 = q+ q, so we may write ξ = ξ′+ ξ′′ with ξ′ ∈ q and ξ′′ ∈ q.

Let then η ∈ q with equivalence class w = JηK ∈ u−1 = c1(−1,1) and decompose v = v′ + v′′

according to ĝ−1 = u−1 ⊕ u−1 = c1(−1,1) ⊕ c1(−1,−1). By construction

[ξ′′, η] mod ĝ−1 = [ξ, η] mod ĝ−1 = [v,w] = [v′′, w] ,

which vanishes for all η if and only if ξ′′ ∈ q0 or, equivalently, v′′ = 0. The latter condition
just means that v ∈ u−1.

Case p ≥ 0. Let η and w be as above and note that ǫ = [ξ, η] ∈ ĝp−1. We decompose ǫ = ǫ′+ǫ′′

according to ĝp−1 ⊂ qp−1 + qp−1 and let u = JǫK be the class of ǫ in ĝp−1.
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If v ∈ up, then u = [v,w] ∈ [up, u−1] ⊂ up−1 trivially projects to cp+1
(p−1,−p−1) and ǫ ∈ qp−1+qp

by the induction hypothesis. We write ξ = ξ′ + ξ′′ with ξ′ ∈ qp and ξ′′ ∈ qp by Proposition 8,
so that [ξ′′, η] mod q+ qp = ǫ mod q+ qp = 0 and ξ′′ ∈ qp+1. This proves one direction.

Conversely, assume ξ = ξ′ + ξ′′ with ξ′ ∈ qp and ξ′′ ∈ qp+1. If ηk ∈ q with equivalence class
wk = JηkK ∈ ĝ−1, for k = 1, . . . , p+ 2, then

[. . . [[ξ, η1], η2], . . . , ηp+2] ∈ q+ q

so its equivalence class [. . . [[v,w1], w2], . . . , wp+2] in ĝ−2 vanishes. Since all wk ∈ u−1 = c1(−1,1)

and v = v′ + v′′ with v′ ∈ up and v′′ ∈ c
p+2
(p,−p−2), we finally see that

0 = [· · · [[v,w1], w2], · · · , wp+2] = [· · · [[v′′, w1], w2], · · · , wp+2]

as element of ĝ−2. By Proposition 12, each bracket [ck(k−2,−k), c
1
(−1,1)] ⊂ ck−1

(k−3,−k+1) is a non-

zero multiple of full symmetrization of contraction, showing that v′′ = 0.

Claim (i) has been proved. Claim (ii) follows then from (i) and its conjugate statement. �

Corollary 16. Let ξ ∈ qq \ qq+1, q ≥ −1. Then ξ ∈ ĝp for some maximal possible p ≤ q, that
is ξ /∈ ĝq+1, and its equivalence class v = JξK ∈ ĝp is non-trivial and satisfies:

{
v ∈ up \

(
up ∩ up

)
if p = q ,

v ∈ up ∩ up if p < q .

Proof. If ξ were an element of ĝq+1, then ξ ∈ qq+1 + qq+1 thanks to (v)-(vi) of Proposition 8.
Since ξ ∈ q, this implies ξ ∈ qq+1, which is a contradiction. The first claim has been proved.

The second claim follows then immediately from Proposition 15. �

These last two results don’t make use of k-nondegeneracy. The next subsection deals with
the graded case and the stronger results therein rely on k-nondegeneracy.

3.2. Trivial filtered deformations. In this section, we assume that the filtered deformation
g of gr(g) is trivial, in other words, g ∼= gr(g) as filtered algebra with filtrands gp =

⊕
j≥p gj.

We emphasize that while the embedding of q in ĝ and the contact filtration on g are canonical,
the identification g ∼= gr(g) is not.

We fix one identification once and for all and decompose any element ξ ∈ g as ξ =
∑

j≥−2 ξj,
with graded components ξj ∈ gj. The following notions and results also involve the complex
structure, i.e., they depend on the whole CR algebra (g, q). To introduce them, we recall that
the component η−1 of any η =

∑
j≥−1 ηj ∈ q \ q0 is a non-zero element of u−1, thanks to

Corollary 16 and the fact that u−1 ∩ u−1 = 0.

Definition 17. A trivial filtered deformation g is called:

(1) Semi-aligned (w.r.t. q) if there exist elements η(i) ∈ q ∩ u, 1 ≤ i ≤ d = dim(u−1),
decomposed as

η(i) =
∑

j≥−1

η(i)j , η(i)j ∈ uj , (3.1)

such that the set {η(i),−1 : 1 ≤ i ≤ d} is a basis of u−1;

(2) Aligned (w.r.t. q) if u−1 ⊂ q.

We note that an aligned trivial filtered deformation is always semi-aligned, by simply taking
a basis of u−1.
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Example 18. The graded Lie algebras g considered in [25, Examples 4.4, 4.5] are aligned.
An example of a trivial filtered deformation which admits a graded Lie algebra structure that
is not semi-aligned is given by Example 10. In this case, g = g−2 ⊕ · · · ⊕ g+2 as a graded Lie
algebra with components

g−2 = 〈u41〉 , g−1 =
〈(

0 1
0 0

)
, u2u

3
1

〉
,

g0 =
〈(1 0

0 1

)
,

(
1 0
0 −1

)
, u22u

2
1

〉
,

g1 =
〈(

0 0
1 0

)
, u32u1

〉
, g2 = 〈u42〉 ,

and the element B =

(
0 1
0 0

)
− 2iu2u

3
1 − 3iu22u

2
1 − 4iu32u1 ∈ g−1 ⊕ g0 ⊕ g1 is in q \ q0, as is

its sum with any element from q0. However, it is not difficult to check that −3iu22u
2
1 /∈ u0

and that modifying B with elements from q0 just results in adding terms from u0 to −3iu22u
2
1.

This graded Lie algebra structure is therefore not semi-aligned.

For (semi-)aligned trivial filtered deformations, Corollary 16 can be extended to the next
graded components.

Lemma 19. Assume g is a semi-aligned trivial filtered deformation and let ξ =
∑

j≥−1 ξj ∈ ĝ.
If ξ ∈ q then ξj ∈ uj for all j ≥ −1.

Proof. By k-nondegeneracy, the dimension of g is finite, hence there exists ℏ ≥ −1 such that
ĝp = 0 for all p ≥ ℏ+ 1. We write ξ =

∑
µ≤j≤ν ξj ∈ q with −1 ≤ µ ≤ ν ≤ ℏ, ξµ 6= 0, ξν 6= 0,

and assume, by contradiction, that ξq /∈ uq for some minimal integer µ ≤ q ≤ ν.
We decompose ξ = ξ<q+ ξq+ ξ>q, where ξ<q ∈ u, and consider the iterated (q+2)-brackets

ǫ = [. . . [[ξ, η], η], . . . , η], where η denotes, at each step, any of the elements η(1), . . . , η(d) as in

part (1) of Definition 17 (repetitions are allowed). First of all ǫ ∈ q ⊂ ĝ−1, as all η’s are in q.
We then compute

ǫ = [. . . [[ξ<q, η], η], . . . , η] + [. . . [[ξq, η], η], . . . , η] + [. . . [[ξ>q, η], η], . . . , η]

≡ [. . . [[ξq, η], η], . . . , η] + [. . . [[ξ>q, η], η], . . . , η] mod u

≡ [. . . [[ξq, η−1], η−1], . . . , η−1] mod ĝ−1 ,

which is an element of Z-degree −2 and therefore has to vanish. Using Proposition 12 as at
the end of the proof of Proposition 15, we infer ξq ∈ uq, a contradiction. �

Proposition 20. Assume g is an aligned trivial filtered deformation and let ξ =
∑

j≥−1 ξj ∈ ĝ.
Then ξ ∈ q if and only if ξj ∈ uj for all j ≥ −1.

Proof. One direction follows from Lemma 19, we now set to prove the converse direction: we
have that ξ ∈ q, provided all ξj ∈ uj . We write ξ =

∑
µ≤j≤ν ξj as in the proof of Lemma 19

and note that ξ ∈ ĝµ ⊂ qµ + qµ due to Proposition 8. We work by induction on ν ≥ −1 and
we will use that u−1 = q ∩ ĝ−1, since g is aligned.

If ν = −1, then ξ = ξ−1 ∈ u−1 ⊂ q; this is the base of our induction. We assume the claim
holds for all ν ≤ N for some given N ≥ −1 and set to prove the claim for ν = N + 1. Let
ξ =

∑
µ≤j≤N+1 ξj with all ξj ∈ uj and note that the difference ξ−ξN+1 is in q by the induction

hypothesis. Moreover ξN+1 ∈ qN+1+qN+2 by (i) of Proposition 15. Take an arbitrary number
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of elements η(1), . . . , η(n) in q, each of which decomposes as

η(i) =
∑

−1≤j≤ℏ

η(i)j ,

with η(i)j ∈ uj by Lemma 19. We consider the iterated bracket [. . . [[ξN+1, η(1)], η(2)], . . . , η(n)],
which is an element of ĝ ∩ u. Its graded components of degree ≤ N are in q by the induction
hypothesis, while those of degree ≥ N +1 are in qN+1+ qN+2 by Proposition 15. In summary

[· · · [[ξN+1, η(1)], η(2)], · · · , η(n)] ∈ q+ qN+2

and it is straightforward to check that this is equivalent to say that ξN+1 ∈ qN+1 + qN+2+n.
By k-nondegeneracy qN+2+n = q ∩ q for n sufficiently large, so ξN+1 ∈ q and ξ ∈ q too. �

This result can be reformulated in a more suggestive way: if the filtered algebra structure
is aligned, then the complex structure is completely determined:

Corollary 21. If g is an aligned trivial filtered deformation, then q = ĝ ∩ u and

ĝp ∩ (qp+1 + qp+1) = ĝp ∩ ŝtab

for all p ≥ −1.

Proof. The first claim is just a reformulation of Proposition 20. For the second claim, we

start with the obvious inclusion ĝp ∩ ŝtab ⊂ ĝp ∩ (qp+1 + qp+1). On the other hand, if

ξ ∈ ĝp∩ (qp+1+qp+1), then ξ ∈ up∩up by (ii) of Proposition 15 and therefore ξ ∈ ŝtab = q∩q

by Proposition 20. This proves the opposite inclusion. �

Summing up, we are now ready to prove the following. (See also Remark 9.)

Proposition 22. If g is an aligned trivial filtered deformation, then the complexified stabilizer

subalgebra ŝtab = ĝ ∩ u ∩ u is Z-graded and

qp + qp = ĝp + ŝtab

for all p ≥ −1.

Proof. The first claim follows readily by q = ĝ∩u of Corollary 21 and the fact that ŝtab = q∩q.

We already saw that ĝp + ŝtab ⊂ qp + qp and we now establish the opposite inclusion. Let
ξ ∈ qp, which we decompose into ξ =

∑
µ≤j≤ν ξj with −1 ≤ µ ≤ ν ≤ ℏ, ξµ 6= 0, and ξν 6= 0.

By Proposition 20 and Proposition 15, each component ξj ∈ qj .
If µ ≥ p, there is nothing to prove, since ξ ∈ ĝp automatically. If instead µ < p, then ξµ

has to be in qµ+1 since ξ ∈ qp, hence ξµ ∈ ŝtab by Corollary 21. Iterating the argument we

see that ξi ∈ ŝtab for all µ ≤ j < p, whence ξ ∈ ŝtab+ ĝp. We have shown that qp ⊂ ĝp+ ŝtab

and the desired inclusion follows from conjugation. �

Taking the intersection with q = ĝ∩u immediately yields the following nice characterization
of the q-th term of the Freeman sequence of (g, q), which is in agreement with [25, eq. (4.1)
in the proof of Thm. 4.2]:

Corollary 23. If g is an aligned trivial filtered deformation, then

qq =
⊕

0≤p≤q−1

ŝtabp ⊕
⊕

p≥q
ĝp ∩ up ,

for all q ≥ 0.
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3.3. k-nondegenerate homogeneous models. We conclude this section with the first main
result of this paper. To do so, we first recall the definition of homogeneous model in the sense
of [25, Def. 4.1]. (The definition we give below is slightly reformulated so to make no reference
to the concept of core. Since there exists only one core for 3-nondegenerate 7-dimensional CR
manifolds, this will be enough for our purposes.)

Definition 24. A k-nondegenerate model is the datum of a Z-graded Lie subalgebra

g =
⊕

p∈Z
gp

of the infinite-dimensional contact algebra c satisfying the following properties:

(i) g− = c−;
(ii) the grading element E is in g0;
(iii) ĝp = (ĝp ∩ up) + (ĝp ∩ ūp) for all p ≥ 0;

(iv) ĝp projects to the ad(J)-eigenspace of maximum eigenvalue c
p+2
(p,p+2) non-trivially for

all p ≤ k − 2 and trivially for all p ≥ k − 1.

We refer the interested reader to the original source [25, §4] for more details, in particular
to Theorem 4.2 and Examples 4.4 and 4.5 therein. We now show that the graded Lie algebras
g considered in §3.2 (possibly supplemented by the grading element if this is originally absent)
are in fact models in the sense of Definition 24.

Theorem 25. Let (M,D,J ) be a locally homogeneous and k-nondegenerate CR manifold of
hypersurface type and assume that the Lie algebra g = inf(M,D,J ) of its infinitesimal CR
automorphisms is a trivial filtered deformation w.r.t. the contact filtration (2.2) and that the
identification g ∼= gr(g) can be chosen aligned w.r.t. q in the sense of Definition 17. Then:

(1) The corresponding CR algebra is given by (g, q) = (g, ĝ ∩ u) and it is a Z-graded CR
subalgebra of the universal CR algebra (c, u),

(2) g+ RE =
⊕

p≥−2 gp + RE is a k-nondegenerate model.

Proof. The first claim has been already proved in Corollary 21, so it only remains to establish
properties (iii) and (iv) of Definition 24 for the Lie algebra g+ RE.

Now ĝp ⊂ qp+ qp by Proposition 8, so any ξ ∈ ĝp decomposes into ξ = ξ′+ ξ′′, with ξ′ ∈ qp,
ξ′′ ∈ qp. Writing ξ′ =

∑
j≥−1 ξ

′
j , ξ

′′ =
∑

j≥−1 ξ
′′
j , we note that ξ

′
p ∈ ĝp ∩ up and ξ

′′
p ∈ ĝp∩ up by

Proposition 20. This shows ĝp ⊂ (ĝp ∩ up) + (ĝp ∩ up), and the converse inclusion is obvious.

If q ≤ k− 2, then there exists some ξ ∈ qq \ qq+1. Writing ξ =
∑

j≥−1 ξj, then ξj ∈ ŝtab for

all j ≤ q − 1 and ξq ∈ ĝq ∩ uq \ ŝtabq by Corollary 23. Now ξq ∈ qq and if it were to project

trivially to c
q+2
(q,q+2) then it would be in qq, hence in ŝtab, which is a contradiction. Hence ξq is

the desired element projecting non-trivially to c
q+2
(q,q+2).

Let q ≥ k − 1 and assume that there exists ξ ∈ ĝq with a non-trivial projection to c
q+2
(q,q+2).

By property (iii), we may decompose ξ = ξ′ + ξ′′, where ξ′ ∈ ĝq ∩ uq and ξ
′′ ∈ ĝq ∩ uq. Hence

ξ′ ∈ qq with a non-trivial projection to c
q+2
(q,q+2), so ξ

′ /∈ ŝtab and qq 6= q∩q, a contradiction. �

4. Homogeneous 7-dimensional 3-nondegenerate CR manifolds

Here we classify the locally homogeneous 7-dimensional 3-nondegenerate CR manifolds of
hypersurface type up to local CR equivalence. We will consider global CR equivalence in §5.
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4.1. The maximal symmetric homogeneous space: abstract model. The model we
now describe is realized as a real Lie subalgebra of the complex contact algebra ĉ =

⊕
ĉp with

negatively-graded part ĉ−2 = Ce−2, ĉ−1 = 〈z, z〉, where e−2 is a real generator of c−2 and z a
basis of c1(−1,1). We note that each term of the universal CR algebra

ck(p,ℓ)
∼= Cz

k+ℓ
2 z

k−ℓ
2

is one-dimensional, where we dropped the symbol ⊙ in the expression of symmetric products.
In our conventions the grading element E = −2 ∈ c0(0,0) and J = 2zz̄ ∈ c2(0,0). Furthermore

c1(1,1)
∼= Cz and c1(1,1)

∼= Cz, and we will always make clear from the context if z, z have to be

regarded as elements in degree +1 instead of −1.
Theorem 6.1 of [25] states that there exists a 7-dimensional 3-nondegenerate homogeneous

model g, unique up to isomorphism: it is the 8-dimensional Z-graded Lie subalgebra

g =
⊕

p∈Z
gp

of the real contact algebra c with components

gp =





0 for all p > 1 ,

Re
〈
N,N

〉
for p = 1 ,

Re
〈
E,M,M

〉
for p = 0 ,

cp for p = −2,−1 ,

where M = z2 + zz and N = z3 + 2z2z̄ + zz̄2 − 3iz − 3iz̄. The non-trivial Lie brackets are
given by the obvious action of the grading element and the following relations (together with
their conjugates):

[z, z] = −
i

2
e−2 , [M,z] =

i

2
z , [M,z] = −iz −

i

2
z ,

[M,M ] = −i(M +M) , [N, e−2] = −3i(z + z) , [N, z] = −
i

2
M −

3

4
E ,

[N, z] = −
3

2
iM − 2iM +

3

4
E , [M,N ] = −

i

2
N , [M,N ] =

3

2
iN + iN .

(4.1)

The associated terms of the Freeman sequence are

q−1 = q = 〈z,E,M,N〉 , q0 = 〈E,M,N〉 ,

q1 = 〈E,N〉 , q2 = q ∩ q = 〈E〉 ,

and the contact filtration (2.2) coincides with the natural filtration associated to the grading.
The Lie algebra g0 is the Borel subalgebra of gl(g−1) stabilizing the line z + z in g−1. As

abstract Lie algebra g ∼= gl2(R)⋉S
3R2, with 5-dimensional radical rad(g) = z(gl2(R))⋉S

3R2

and Levi factor sl2(R) as follows:

rad(g) = 〈e−2, z + z,M +M,E − i(M −M), N +N〉 ,

sl2(R) = 〈Ẽ = − i
2(M −M)− 3

2E,X = − i√
2
(z − z), Y = − i√

2
(N −N)〉 .

Here the element E − i(M −M ) ∼= diag(−2/3,−2/3) generates the center z(gl2(R)) of gl2(R)
whereas E ∼= diag(−2/3, 1/3) the stabilizer subalgebra.

We summarize the Lie algebra structure and grading corresponding to the contact filtration
in the following root diagram of g (as usual, nontrivial brackets of root vectors correspond
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to nontrivial sums of roots), where we also indicated generators of graded components and
circled the stabilizer subalgebra:

g−1 g0 g1

g−2 g−1 g0 g1

Im(z) E , Im(M) Im(N)

e−2 Re(z) Re(M) Re(N)

For an explicit coordinate embedding in C4 of this model, see §6. It is a refinement of that
found at the end of [7, §5.1] – our proposed geometric interpretation in terms of the rational
normal curve of degree 3 is also amenable to generalizations, see again §6.

4.2. The maximal symmetric homogeneous space in disguise. In this auxiliary section,
we present some locally homogeneous 7-dimensional 3-nondegenerate CR manifolds relevant
for the proof of our local classification result in §4.3. They are given in terms of their CR
algebras (s, p), where, in all cases, s is a subalgebra of the 8-dimensional Lie algebra g of §4.1
but p is not readily related to q. A posteriori, it turns out that all these examples are (locally)
geometrically equivalent to the maximally symmetric model.

Example 26. The locally homogeneous model (g, q) of §4.1 admits a 1-parameter family of
deformations (st, pt), t ∈ C, defined as follows: st = g for all t ∈ C, whereas pt is generated by

η = z + tM − t2N ,

ǫ =M + tN ,

ξ = N ,

Eo = E − 2
3 itN + 2

3 itN .

It is straightforward to see that pt is a complex subalgebra of ŝt = ĝ and that the associated
terms of the Freeman sequence are

p−1
t = pt = 〈η, ǫ, ξ, Eo〉 , p0t = 〈ǫ, ξ, Eo〉 ,

p1t = 〈ξ,Eo〉 , p2t = pt ∩ pt = 〈Eo〉 .

However, this is just the maximally symmetric homogeneous space (g, q) in disguise. In fact,
the CR algebra (st, pt) = eadX · (g, q) for X = 2

3 i
(
tN − tN

)
∈ g1 and the 1-parameter family

of deformations consists of CR algebras that are all isomorphic.

Example 27. Consider the 7-dimensional graded subalgebra s of g with components

sp =





0 for all p > 1 ,

Re
〈
N,N

〉
for p = 1 ,

Re
〈
L,L

〉
for p = 0 ,

cp for p = −2,−1 ,

where L = 2iM + 3E. It is isomorphic to sl2(R) ⋉ S3R2 and its brackets are given in (4.18)
later on. If we endow it with the complex subalgebra p = q ∩ ŝ = 〈z, L,N〉 of ŝ, we just get a
simply transitive CR subalgebra (s, p) of the maximally symmetric homogeneous space (g, q).
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We define the 1-parameter family of deformations (st, pt), t ∈ C, as follows: st = s for all
parameters, and pt is generated by

η = z + tL+ 8t2N ,

ǫ = L+ 8tN ,

ξ = N .

The latter is a complex subalgebra of ŝt = ŝ and the associated terms of the Freeman sequence
are

p−1
t = pt = 〈η, ǫ, ξ〉 , p0t = 〈ǫ, ξ〉 ,

p1t = 〈ξ〉 , p2t = pt ∩ pt = 0 .

In this case (st, pt) = eadX · (s, p) for X = −4
3

(
tN + tN

)
∈ s1 and the 1-parameter family of

deformations consists of isomorphic CR algebras. Again, this is just the maximally symmetric
homogeneous model in disguise.

Example 28. Finally we consider the 7-dimensional graded subalgebra s of g with compo-
nents

sp =





0 for all p > 1 ,

Re
〈
Ξ := N +N

〉
for p = 1 ,

Re
〈
E,M,M

〉
for p = 0 ,

cp for p = −2,−1 ,

together with the complex subalgebra pt of ŝ generated by

η = z + tM − t2Ξ ,

ǫ =M + tΞ ,

ξ = E + 2
3 itΞ .

Again we set st = s for all t ∈ C and we obtain the 1-parameter family of CR algebras (st, pt).
We also let p = p|t=0 = 〈z,M,E〉 and note that pt = eadXt · p for Xt = −2

3 itΞ ∈ ŝ1.

If t ∈ iR is purely imaginary, then Xt ∈ s1 is real and the CR algebra (st, pt) = eadXt · (s, p)
is isomorphic to (s, p). The complexified stabilizer pt ∩ pt = 〈ξ〉 is non-trivial, in fact we get a
6-dimensional locally homogeneous CR manifold of CR-dimension 2 and CR-codimension 2.
(One may show that this can be realized as an hypersurface inside the maximally symmetric
homogenoeus model, but we won’t need this fact.)

If t /∈ iR, we write Xt = XRe(t) +XiIm(t), so pt = e
adXiIm(t) · e

adX
Re(t) · p = e

adXiIm(t) · pRe(t),
and

(st, pt) = e
adXiIm(t) · (s, pRe(t))

∼= (s, pRe(t))

as CR algebras. We may then restrict to the case where the parameter t is real and non-zero.
We have a simply transitive action on a 7-dimensional CR manifold of hypersurface type,
with associated terms of the Freeman sequence

p−1
t = pt = 〈η, ǫ, ξ〉 , p0t = 〈ǫ, ξ〉 ,

p1t = 〈ξ〉 , p2t = pt ∩ pt = 0 .

It is therefore 3-nondegenerate.
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However, this is again geometrically equivalent to the maximally symmetric homogeneous
model. In fact, the CR algebra (st, pt) can be embedded in (g, q) as follows:

e−2 7→ e−2 − 4t(z + z) + 16
3 t

2(M +M)− 64
27 t

3Ξ ,

z + z 7→ z + z − 8
3t(M +M) + 16

9 t
2Ξ ,

z − z 7→ z − z + 2itE − 2
3t(M −M )− 8

9t
2(N −N) ,

E 7→ E + 2
3 it(N −N) ,

M +M 7→M +M − 4
3 tΞ ,

M −M 7→M −M + 2
3 t(N −N) ,

Ξ 7→ Ξ .

(4.2)

The explicit verification that (4.2) defines an injection of real Lie algebras from st to g, whose
complex-linear extension sends pt into q, can be found in the Maple supplement accompanying
the arXiv posting of this article.

4.3. Proof of the main results: local theory. Our aim here is to prove the local homoge-
neous claim of Theorem 2, namely the part of Theorem 3 concerning infinitesimal symmetry.

Let g = inf(M,D,J ) be the Lie algebra of infinitesimal CR automorphisms of a locally
homogeneous 7-dimensional 3-nondegenerate CR manifold (M,D,J ) of hypersurface type,
with the contact filtration (2.2) and the sequence of Freeman subalgebras q ⊃ q0 ⊃ q1 ⊃ q∩ q

of the complexification ĝ = g⊗C. By the results of §2, we have the inclusion ĝ1 ⊂ q1+q1 ⊂ ĝ0,
and we also note that dim q1/(q∩q) = 1 and dimF1|x = 2 by obvious reasons. The evaluation
map

evx : ĝ1 → F1|x ∼=
(
q1 + q1

)
/q ∩ q (4.3)

at a fixed point x ∈ M can therefore be the zero map, have rank 1, or be surjective.

Theorem 29. Every locally homogeneous 7-dimensional 3-nondegenerate CR manifold of
hypersurface type (M,D,J ) is locally CR diffeomorphic to the homogeneous model of §4.1.

The proof of this result splits in three parts. In the first part, we show that (M,D,J ) is either
locally CR diffeomorphic to the homogeneous model or its symmetry algebra g = inf(M,D,J )
is a filtered deformation of sl2(R) ⋉ S3R2. In the second part, we prove filtration rigidity,
i.e., no such non-trivial deformations are possible. In the last part, we show that such trivial
deformations are simply-transitive subalgebras of the symmetry algebra of the maximally
symmetric homogeneous model.

First part of the proof.

The map (4.3) has rank 0.We know that the evaluation map evx : ĝ0 → F0|x ∼=
(
q0+q0

)
/q∩q

is surjective, thanks to (v) of Proposition 8. If (4.3) is the trivial map, we may quotient by
ĝ1 and the map evx : ĝ0/ĝ1 → F0|x ∼=

(
q0 + q0

)
/q ∩ q is still surjective, so ĝ0 ∼= ĝ0/ĝ1 has

dimension at least 4. Since ĉ0 ∼= gl2(C) and ĝ0 ⊂ ĉ0, we see that ĝ0 = ĉ0, g0 = c0, hence gr(g)
contains the grading element E. By a classical result of Singer–Sternberg and Kac (see, e.g.,
[4, Corollary 2.2]), the Lie algebra g ∼= gr(g) is a trivial filtered deformation. Moreover, since
g is finite-dimensional, a classical result [22, Proposition 3.2] of Morimoto and Tanaka implies
that either g = g−2 ⊕ g−1 ⊕ g0 or g is isomorphic to the projective contact algebra sp4(R).
In the first case g is simply transitive, whereas g = g−2 ⊕ · · · ⊕ g+2 for the projective contact
algebra with stab = g1 = g1 ⊕ g2 (since (4.3) is the trivial map and by dimensional reasons).
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We now deal with the two cases simultaneously, with the understanding that the components
of positive degree are absent in the simply transitive case.

By 3-nondegeneracy assumption we can choose (unique up to a triangular transformation)

elements η ∈ q \ q0, ǫ ∈ q0 \ q1, ξ ∈ q1 \ ŝtab, where ŝtab = q ∩ q is the complexified stabilizer
as usual, and write them as η =

∑
−1≤p≤2 ηp, ǫ =

∑
0≤p≤2 ǫp, and ξ =

∑
0≤p≤2 ξp. By

appropriately substracting elements from

ŝtab = ĝ1 = ĝ1 ⊕ ĝ2 ,

we may assume w.l.o.g. that η = η−1 + η0, ǫ = ǫ0, and ξ = ξ0. Corollary 16 then tells us that

η = z + η0 , ǫ = z2 + γzz + δE , ξ = ρzz + τE , (4.4)

by possibly rescaling η and ǫ. Here γ, δ, ρ, τ ∈ C, with at least one of ρ and τ non-zero. Since

ξ = ρzz+τE ∈ q1 \ ŝtab is not parallel to ξ, we see Im(ρτ) 6= 0 and both ρ and τ are non-zero.
We may assume that η0 ∈ 〈z2, E〉 by substracting appropriate multiples of ǫ and ξ to η, and
that γ = 0 by substracting an appropriate multiple of ξ to ǫ. We normalize ξ with ρ = 1. In
summary, we arrive at

η = z + αz2 + βE , ǫ = z2 + δE , ξ = zz + τE , (4.5)

where α, β, δ, τ ∈ C, and Im(τ) 6= 0.
We now exploit that q is a subalgebra of ĝ, by the integrability condition of CR manifolds.

The bracket [η, ǫ] = δ[z,E] + α[z2, z2] = δz + 2iαzz is in q and it has graded components of
degree −1 and 0. It can then be written as a linear combination of η, ǫ and ξ, and this readily
implies the conditions

αδ = 0 ,

βδ + 2iατ = 0 .
(4.6)

Similarly [η, ξ] = [z, zz] + τ [z,E] +α[z2, zz] =
(
τ − i

2

)
z + iαz2 and [ǫ, ξ] = [z2, zz] = −iz2 are

elements in q, which says (
τ − i

2

)
α = iα ,

(
τ − i

2

)
β = 0 ,

δ = 0 .

(4.7)

Since τ 6= 0, the system (4.6)-(4.7) is equivalent to δ = α =
(
τ− i

2

)
β = 0. In particular, we see

that η = η−1 + η0 = z + βE, where η0 = βE ∈ u0. This is the semi-aligned constraint, which

in this case contradicts 3-nondegeneracy: the iterated bracket [[[ξ, η], η], η] = −
(
τ + i

2

)
β
2
z

belongs to ĝ−1 = q+ q, so ξ ∈ q2 = q ∩ q = ŝtab. In summary, this case cannot happen.

The map (4.3) has rank 1. There exists an element Ξ ∈ ĝ1, with non-zero value evx(Ξ) ∈ F1|x,

such that evx(Ξ) and evx(Ξ) are linearly dependent. In particular Ξ ∈ q1 + q1 but it is not in

q1 or in q1. We may then write it as the sum Ξ = Ξ10+Ξ01, Ξ10 ∈ q1\ ŝtab and Ξ01 ∈ q1\ ŝtab,
with

evx
(
Ξ01

)
= λ · evx(Ξ10) ,

evx
(
Ξ10

)
= λ · evx(Ξ01) .

(4.8)

It is easy to see that λ = eiθ for some θ ∈ [0, 2π). We also note that Ξ10 ∈ ĝ0 \ ĝ1 (otherwise
the map (4.3) would be surjective), and similarly Ξ01 ∈ ĝ0 \ ĝ1.
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The class JΞK ∈ ĝ1 is not in u1 or u1 by Proposition 15 applied with q2 = q ∩ q = ŝtab, in
particular this class is non-trivial. Finally, we emphasize that

ĝ2 ⊂ q2 + q2 = q ∩ q = ŝtab ,

ĝ1 ⊂ 〈Ξ〉 ⊕ ŝtab ,
(4.9)

by 3-nondegeneracy and, respectively, since the map (4.3) has rank 1.

We consider any ǫ ∈ q0 \q1 and ξ ∈ q1 \ ŝtab. We note that ǫ, ξ ∈ ĝ0, and that ǫ /∈ ĝ1 due to
Proposition 8 and ξ /∈ ĝ1 too (otherwise (4.3) would be surjective). We claim 3 ≤ dim ĝ0 ≤ 4,
with the equivalence classes JξK, JǫK, JǫK in ĝ0 ∼= ĝ0/ĝ1 linearly independent. Let us assume
that λ1JξK+λ2JǫK+λ3JǫK = 0, i.e., λ1ξ+λ2ǫ+λ3ǫ ∈ ĝ1 and let us apply (4.3) so to get the value
λ1evx(ξ) + λ2evx(ǫ) + λ3evx(ǫ) ∈ F1|x. Since evx(ξ) ∈ F1

10|x, we have that λ2evx(ǫ) ∈ F1
10|x

and λ3evx(ǫ) ∈ F1
01|x. It then follows from ǫ /∈ q1 that λ2 = λ3 = 0 and we finally infer that

λ1 = 0 as well, since λ1JξK = 0 and ξ /∈ ĝ1. This proves 3 ≤ dim ĝ0 ≤ 4.

If dim ĝ0 = 4, then g ∼= gr(g) is a trivial filtered deformation, with ĝp = ĉp for p = −2,−1, 0.
Moreover ĝ1 6= 0, since the class JΞK is non-trivial, so g = g−2 ⊕ · · · ⊕ g+2 is isomorphic to the
projective contact algebra by [22, Proposition 3.2]. However g1 = z1 ∼= S1(c−1) is the unique
k0-submodule that is complementary to k1 inside c1 (see the discussion before Definition 13
and [22, Proposition 3.2]), so that JΞK ∈ ĝ1 = ẑ1 ⊂ u1 ∩ u1. This is a contradiction.

Therefore the classes JξK, JǫK, JǫK in ĝ0 are linearly independent, generate ĝ0, and dim ĝ0 is
exactly 3. In this case, Corollary 16 tells us that

JξK = αzz + βE ,

JǫK = z2 + γzz + δE ,
(4.10)

by possibly rescaling ǫ. Here α, β, γ, δ ∈ C, with at least α or β different from zero. If α 6= 0,
then [JξK, JǫK] = [αzz, z2] = iαz2 and [z2, z2] = −2izz, so that ĝ0 = 〈z2, z2, zz〉 ∼= sl2(C).
Again [22, Proposition 3.2] tells us that gr(ĝ) = ĝ−2⊕ ĝ−1⊕ ĝ0. Thus dim(ĝ) = dim(gr ĝ) = 6,
which is a contradiction.

We have thus shown that α = 0, ĝ0 = 〈E, z2 + γzz, z2 + γzz〉 and g is a trivial filtered
deformation. Now [z2+γzz, z2+γzz] = −2izz− iγz2− iγz2 ∈ ĝ0, so that 2i(‖γ‖2−1)zz ∈ ĝ0.
Since dim ĝ0 = 3, we have that ‖γ‖2 = 1, γ = eiϑ for some ϑ ∈ [0, 2π), and ĝ0 equals the Borel
subalgebra of ĉ0 ∼= gl2(C) given by

bϑ =
〈
E, z2 + eiϑzz̄, z̄2 + e−iϑzz̄

〉
.

In this case [22, Proposition 3.2] does not apply and we need much finer arguments, which we

split in different claims. We preliminary note that, by rescaling z to e−iϑ/2z, we may assume
w.l.o.g. that ϑ = 0 and that

ĝ0 =
〈
E,M,M

〉

is the Borel subalgebra stabilizing the line of z + z in ĝ−1.

First claim: the stabilizer subalgebra is graded in positive degrees.

By appropriately subtracting elements from ĝ2 ⊂ ŝtab, we may take Ξ10 and Ξ01 in ĝ0⊕ ĝ1.
Hence Ξ = Ξ10 + Ξ01 ∈ ĝ1, and

ĝ1 = 〈Ξ〉 ⊕
(
ŝtab ∩ ĝ1

)
.
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By simple dimensional reasons, we arrive at ŝtab =
(
ŝtab∩ ĝ1

)
⊕ ĝ2. In particular the stabilizer

subalgebra is graded. (Since the grading element is not in the stabilizer subalgebra, this claim
is not immediate.)

Second claim: the a priori estimate 1 ≤ dim ĝ1 ≤ 3.

We now make use of some results from [25, Step 2, proof Thm. 6.1]. Clearly, the space ĝ1
is a non-trivial ĝ0-submodule of the first prolongation

g̃1 =
{
X ∈ ĉ1 | [X, ĉ−1] ⊂ ĝ0

}
(4.11)

of the Borel subalgebra ĝ0. The space (4.11) is 4-dimensional, more precisely, it is generated

by the elements
{
N,N, V,W

}
, where

V = z2z̄ + zz̄2 +
i

2
z −

i

2
z̄ ,

W = z + z̄ ,

N = z3 + 2z2z̄ + zz̄2 − 3iz − 3iz̄ .

We note that V = V , W = W . The element N has already appeared in §4.1, and it is
characterized by the following property: it is the unique non-trivial element in g̃1 ∩ (u1 \ u1)
which commutes with its conjugate. The adjoint action of ĝ0 on g̃1 is given by the obvious
action of the grading element and the following formulae, together with their conjugates:

[M,N ] = −1
2 iN ,

[M,N ] = 3
2 iN + iN ,

[M,V ] = −iN + i
2V + 5

2W ,

[M,W ] = − i
2W .

(4.12)

By (ii) of Proposition 15 and 3-nondegeneracy, we get the following chain of inclusions

ŝtab ∩ ĝ1 ⊂
(
u1 ∩ u1

)
∩ ĝ1

⊂
(
u1 ∩ u1

)
∩ g̃1 = 〈V,W 〉

and the a priori estimate 1 ≤ dim ĝ1 ≤ 3.

Third claim: the element Ξ = N +N .

Since Ξ = JΞK is not in u1 or in u1, we may write it as Ξ = aN + bV + cW + dN , for some

a, b, c, d ∈ C with a, d non-zero. As already advertised below (4.8), we have Ξ− eiθΞ ∈ ŝtab ,
and this translates in the condition d = eiθa. Normalizing Ξ so that a = 1, we finally arrive
at

Ξ = N + bV + cW + e−iθN .

A direct computation then gives

[M,Ξ] ≡ −i
(
1
2 + b+ e−iθ

)
z3 − 3

2 ie
−iθz3 mod 〈z2z, zz2, z, z〉 ,

[M,Ξ] ≡ 3
2 iz

3 + i
(
1 + b+ 1

2e
−iθ)z3 mod 〈z2z, zz2, z, z〉 ,

and both terms have to be proportional to Ξ mod 〈z2z, zz2, z, z〉 = z3+e−iθz3, since the map
(4.3) has rank 1. This leads to b = 1 − e−iθ and b = e−iθ − 1, that is, b = 0 and e−iθ = 1.
Thus Ξ = N + cW + N and we then observe that [M,Ξ] + 3

2 iΞ = icW ∈ ĝ1. If c = 0, then
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Ξ = N +N . If c 6= 0, then W ∈ ĝ1, so that W ∈ ŝtab ∩ ĝ1 thanks to Proposition 15 applied

with q2 = ŝtab, and once more we may assume that Ξ = N +N .

Fourth claim: the refined estimate 1 ≤ dim ĝ1 ≤ 2.

We established the chain of inclusions

〈Ξ〉 ⊂ ĝ1 = 〈Ξ〉 ⊕
(
ŝtab ∩ ĝ1

)
⊂ 〈Ξ, V,W 〉 , (4.13)

where Ξ = N +N . If an element of the form V + δW ∈ ĝ1, we may bracket it with M and,
using (4.12), get an element that contradicts the last inclusion in (4.13). In summary

ŝtab ∩ ĝ1 ⊂ 〈W 〉 and ĝ1 ⊂ 〈Ξ,W 〉 .

Using (4.12), we see that the lines of Ξ and W are both ĝ0-stable.

Fifth and last claim: the spaces ĝ1 = 〈Ξ〉 and ĝ2 = 0.

By the discussion below (4.10) on the equivalence classes of ǫ ∈ q0 \ q1 and ξ ∈ q1 \ ŝtab,

and by subtracting appropriate elements from ŝtab, we may write

ǫ = ǫ0 + ǫ1 =
(
M + δE

)
+ τΞ ,

ξ = ξ0 + ξ1 = E + ρΞ ,
(4.14)

by possibly rescaling ξ. Here δ, τ, ρ ∈ C and, by subtracting a multiple of ξ to ǫ, we set δ = 0.
Finally, we may choose η ∈ q \ q0 of the form

η = η−1 + η0 + η1 = z + µM + νΞ , (4.15)

for some µ, ν ∈ C. Since q = 〈η, ǫ, ξ〉 ⊕
(
ŝtab ∩ ĝ1

)
is a subalgebra and the components of

degree 1 of the brackets of elements in 〈η, ǫ, ξ〉 are always parallel to Ξ, we see that in fact
〈η, ǫ, ξ〉 is a subalgebra. A straightforward computation shows that this condition is equivalent
to the following system of equations

µ = τ ,

2ν = 3iρµ ,

τ = −i32ρ .

(4.16)

Its solution is given by τ = µ, ν = −µ2, ρ = 2
3 iµ.

We now claim that ŝtab = 0. First of all, using the explicit expressions of the Lie brackets
of ĝ1 with ĝ−1 in [25, Step 2, proof Thm. 6.1], we see that

[W,η] = [W, z] + µ[W,M ]− µ2[W,Ξ] ≡ [W, z] mod ŝtab

= 1
2M − 1

4 iE

= 1
2ǫ+

1
4 iξ −

1
2 iξ

does not belong to q. This contradicts W ∈ ĝ1, from which ĝ1 = 〈Ξ〉. Since its prolongation in

degree ≥ 2 is trivial by [25, Step 3, proof Thm. 6.1], we finally see that ĝ2 = 0 and ŝtab = 0.
In summary, we have arrived to the CR algebras of Example 28. Those corresponding to

7-dimensional manifolds are geometrically equivalent to the maximally homogeneous model.

The map (4.3) has rank 2. We are left to study the case where (4.3) is surjective. In this case,

there exist η ∈ q\q0, ǫ ∈ q0 \q1 and ξ ∈ ĝ1∩q1 such that evx(ξ) 6= 0. (In particular evx(ξ) and
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evx(ξ) span the image of (4.3).) Their equivalence classes JηK ∈ ĝ−1, JǫK ∈ ĝ0 and JξK ∈ ĝ1
are in u but not in u, by Corollary 16. Moreover

ĝ2 ⊂ q2 + q2 = q ∩ q = ŝtab ,

so that ĝp ⊂ up ∩ up for all p ≥ 2.

If E ∈ gr(g), then one verifies directly that gr(g) is a 3-nondegenerate 7-dimensional ho-
mogeneous model in the sense of Definition 24 and [25, Theorem 6.1] says that there is only
one such model, up to isomorphism. Since E ∈ gr(g), the Lie algebra g is a trivial filtered
deformation, so g ∼= gr(g) is the graded Lie algebra described in §4.1. If there is an identifica-
tion g ∼= gr(g) that is aligned, then q = ĝ ∩ u by Corollary 21, i.e., we obtain the CR algebra
(g, q) of the homogeneous model of §4.1. In general, via appropriate normalizations as usual,
we may write

η = z + βE + µM + νN ,

ǫ =M + δE + τN ,

ξ = N ,

where β, µ, ν, δ, τ ∈ C. The complexified stabilizer ŝtab is 1-dimensional and generated by a
non-zero element of the form λ1E + λ2N + λ3N , thanks to Proposition 15. Clearly λ1 6= 0,
again by Proposition 15 and the fact that ĝ1 ∩ u1 ∩ u1 = 0. We normalize λ1 = 1 and, since
the complexified stabilizer is stable by conjugation, we finally see that

ŝtab = 〈Eo := E + λ2N + λ2N〉 ,

where λ2 ∈ C. In particular, we may substract appropriate multiples of Eo and ξ to η and ǫ
so to arrange for β = δ = 0.

We now compute

[Eo, ǫ] = τN + λ2[N,M ] + λ2[N,M ]

=
(
λ2

i
2 + iλ2

)
N +

(
τ + 3

2 iλ2
)
N ,

which has to be an element of q. Hence τ + 3
2 iλ2 = 0. If λ2 = 0, then ŝtab = 〈E〉. Since q is

stable under the adjoint action of the stabilizer, it is Z-graded and equal to 〈z,E,M,N〉; i.e.,
µ = ν = τ = 0, and this is, again, our homogeneous model of §4.1. If µ = ν = 0, then g is
aligned in the sense of Definition 17, τ = 0 by Lemma 19 and then λ2 = 0 again.

We are then led to study the case where q is generated by

η = z + µM + νN ,

ǫ =M − 3
2 iλ2N ,

ξ = N ,

Eo = E + λ2N + λ2N ,

with λ2 6= 0 and at least one of µ and ν non-zero as well. Using the Lie brackets (4.1), the
fact that q is a subalgebra turns out to be equivalent to the following system of equations:

µ = −3
2 iλ2 ,

− i
2µτ + 2iν + 3

4τλ2 + 2iτ2 = 0 .

We omit the somewhat long but straightforward check. It solution is µ = τ = −3
2iλ2, ν = −τ2;

in other words, we obtained the 1-parameter family described in Example 26. As explained
there, this is nothing but the maximally symmetric homogeneous model in disguise.
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If E /∈ gr(g), then a = gr(g)⋊RE is a 3-nondegenerate 7-dimensional homogeneous model in
the sense of Definition (24) and again we may apply [25, Theorem 6.1]. In this case dim a = 8
and dim(gr g) = 7. Clearly e−2, z, z ∈ gr(ĝ) and N,N too, since JξK, JξK ∈ ĝ1 and dim a1 = 2.
Since

[N, z] = −
i

2
M −

3

4
E , [N, z] =

i

2
M −

3

4
E ,

[N, z] = −
3

2
iM − 2iM +

3

4
E , [N, z] =

3

2
iM + 2iM +

3

4
E ,

(4.17)

we have ĝ0 =
〈
2iM + 3E, 2iM − 3E

〉
and gr(g) ∼= sl2(R)⋉ S3R2 as an abstract Lie algebra.

We will now turn to show that the graded Lie algebra gr(g) is filtration rigid, i.e., g ∼= gr(g)
as filtered Lie algebra with filtrands gp =

⊕
j≥p gj.

Second part of the proof.

We now study the remaining simply-transitive case in more detail. The graded Lie algebra
gr(g) ∼= sl2(R)⋉ S3R2 has components

gp =





0 for all p > 1 ,

Re
〈
N,N

〉
for p = 1 ,

Re
〈
L,L

〉
for p = 0 ,

cp for p = −2,−1 ,

where L = 2iM + 3E, and the following formulae (together with their conjugates) give the
non-trivial structure relations of this Lie algebra:

[z, z] = −
i

2
e−2 , [L, z] = −4z , [L, z] = 2z − 2z , [L, e−2] = −6e−2 ,

[L,L] = −2L+ 2L , [N, e−2] = −3i(z + z) , [N, z] = −
1

4
L ,

[N, z] = −
3

4
L+ L , [L,N ] = 4N , [L,N ] = 6N + 2N .

(4.18)

Infinitesimal filtered deformations are governed by Spencer cohomology groupsHd,2(g−, gr(g))
in positive degrees d. The following two results come by direct computations, which we omit.

Lemma 30. The group Hd,2(g−, gr(g)) vanishes for d = 1 and all d > 4. On the other hand,
we have:

(i) H2,2(g−, gr(g)) is 1-dimensional and it is generated by the map ψ2 : g−2 ⊗ g−1 → g−1

given by

ψ2(e−2, z) = i(z − z) , ψ2(e−2, z) = i(z − z) . (4.19)

(ii) H3,2(g−, gr(g)) is 2-dimensional and it is generated by the maps ψ3
i : g−2 ⊗ g−1 → g0,

i = 1, 2, given by

ψ3
1(e−2, z) = L , ψ3

1(e−2, z) = −L ,

ψ3
2(e−2, z) = L+ L , ψ3

2(e−2, z) = L+ L .
(4.20)

(iii) H4,2(g−, gr(g)) is 2-dimensional and it is generated by the maps ψ4
i : g−2 ⊗ g−1 → g1,

i = 1, 2, given by

ψ4
1(e−2, z) = N + 7N , ψ4

1(e−2, z) = 7N +N ,

ψ4
2(e−2, z) = N +N , ψ4

2(e−2, z) = −(N +N) .
(4.21)



3-NONDEGENERATE CR MANIFOLDS IN DIMENSION 7 (I) 25

Lemma 31. The spectrum of the adjoint action of the element Ẽ = −1
4

(
L+ L) on gr(g) is

as follows:

e−2 z + z z − z L+ L L− L N +N N −N

3 1 2 0 −1 −3 −2
(4.22)

It then follows that all the cocycles displayed in Lemma 30 are rescaled by the action of Ẽ,
and the rescaling is never trivial (the eigenvalues are −2, −5, −4, −7, and −8, respectively).
Using Lemmas 30-31, we now set to prove the following.

Proposition 32. The graded Lie algebra gr(g) ∼= sl2(R)⋉ S3R2 is filtration rigid.

By the first part of the proof, we need to consider filtered deformations of gr(g) ∼= sl2(R)⋉
S3R2. We first note that gr(g) is an almost full prolongation (of degree 1) in the sense of [4].
In fact

Homt

(
Hd,1(g−, gr(g)), g1) = 0 for all d ≥ 1 ,

where t = 〈Ẽ〉 is the maximal reductive subalgebra of g0. We omit the straightforward check,

which uses the eigenvalues of Ẽ on Spencer cochains and the brackets 4.18.
Now, it is well-known that the restriction to g− of the first non-zero contribution of a filtered

deformation is a cohomology class in positive degree which is g0-invariant (see [4, Prop. 2.2])
and that, in case of a coboundary, this can be absorbed via redefinition of the complementary
subspaces in the chain of filtrands (see [4, Prop. 2.3]). By Lemmas 30-31, this is our case.
Being an almost full deformation, the same is true for all the contributions: we may apply [4,
Cor. 2.3] and infer that gr(g) ∼= sl2(R) ⋉ S3R2 has no non-trivial filtered deformations. The
reader interested in more explicit details for these last steps may use the following argument.

LetX, Ẽ, Y be the standard basis of the Levi factor sl2(R) of gr(g) as in §4.1 and v0, v1, v2, v3
the basis of the 4-dimensional radical corresponding to the elements x3, x2y, xy2, y3 in S3R2.
In this basis the contact filtration is the following:

g−2 = g, g−1 = sl2(R)⋉ 〈v1, v2, v3〉, g
0 = 〈Ẽ, Y, v2, v3〉, g

1 = 〈Y, v3〉.

In a filtered deformation of gr(g), we are allowed to modify the brackets [ξ, η] for ξ ∈ gi, η ∈ gj

by terms from gi+j+1. We can modify ξ by gi+1 and η by gj+1, and if this restores the graded
brackets, then the algebra is filtration rigid.

Since Ẽ has a simple spectrum, the filtered deformation can be assumed to be compatible
with it via a redefinition of the complementary subspaces in the chain of filtrands. In order
to preserve the Jacobi Identities, the deformations of the brackets should not only respect the

filtration but also the grading w.r.t. the adjoint action of Ẽ. With these restrictions, one can
directly see that no deformation terms exist for the Lie brackets of sl2(R) with itself as well as
with S3R2, i.e., both the Levi factor and its representation are filtration rigid. On the other
hand, the Lie brackets of S3R2 with itself do admit possible non-trivial deformations terms,
which are indicated by the real parameters λi in the last line:

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H,

[H, v0] = 3v0, [H, v1] = v1, [H, v2] = −v2, [H, v3] = −3v3,

[X, v1] = v0, [X, v2] = 2v1, [X, v3] = 3v2, [Y, v0] = 3v1, [Y, v1] = 2v2, [Y, v2] = v3,

[v0, v2] = λ0X, [v0, v3] = λ1H, [v1, v2] = λ2H, [v1, v3] = λ3Y.
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It turns out that the Jacobi Identities rule out all of them, that is, λi = 0 for all i = 1, . . . 3 —
the computation has been done using the symbolic package Maple and it can be found in the
supplement accompanying the arXiv posting of this article. Again, gr(g) is filtration rigid.

Third and last part of the proof.

If there exists an identification g ∼= gr(g) that is aligned in the sense of Definition 17, then
the complex structure is completely determined by Corollary 21: we have a simply-transitive
subalgebra of the full CR algebra of infinitesimal automorphisms of the maximally symmetric
homogeneous model.

Otherwise we consider η ∈ q \ q0, ǫ ∈ q0 \ q1 and ξ ∈ ĝ1 ∩ q1 such that evx(ξ) 6= 0. Their
equivalence classes JηK ∈ ĝ−1, JǫK ∈ ĝ0 and JξK ∈ ĝ1 are in u but not in u, by Corollary 16.
Via appropriate normalizations, we may write

η = z + µL+ νN ,

ǫ = L+ τN ,

ξ = N ,

for some µ, ν, τ ∈ C. Since ŝtab = 0 by dimensional reasons, these three vectors generate q.
Using (4.18), we see that q is a subalgebra if and only if τ = 8µ and 2µτ − 10ν + τ2 = 0, i.e.,
τ = 8µ and ν = 8µ2. In other words, we obtained the 1-parameter family of Example 27 and
it was shown in §4.2 that this is the maximally symmetric homogeneous model.

End of the proof.

5. Global models

We now complete the proof of the second part of Theorem 3 concerning the global behaviour
of the model. We need the universal cover of the automorphism group, but since universal
covers of disconnected groups are not well-known, we will first discuss them here.

5.1. The universal cover of GL2(R). For any Lie group G, its connected component Go of
the unity E is a normal subgroup, so π0(G) = G/Go can be considered as a discrete group.
Moreover, the fundamental group π1(G

o) is Abelian, so we will use additive notation for it.
In what follows, we are going to relax the connectedness assumption for the universal cover.

The universal cover of SL2(R) is well-known, it is a non-algebraic simple Lie group with
Lie algebra sl2(R). In the same vein, we define the universal cover of the connected Lie group
GL+

2 (R) = {A ∈ End(R2) : detA > 0} ∼= SL2(R)×R+: it is the collection

G̃L+
2 (R) =

{
[γ] | γ : [0, 1] → GL+

2 (R) s.t. γ(0) = E
}

of continuous path in GL+
2 (R) with starting point the unity, up to homotopy with both ends

fixed. The group structure is given by the pointwise multiplication of paths [γ1]·[γ2] = [γ1 ·γ2],
with (γ1 · γ2)(t) = γ1(t) · γ2(t) for all t ∈ [0, 1].

To extend this construction toGL2(R) = GL+
2 (R)⊔GL

−
2 (R), we defineE1 = E = diag(1, 1),

E−1 = diag(1,−1), and note that we have a group homomorphism

π0(GL2(R)) ∼= Z2 = {±1} → GL2(R)

given by ǫ 7→ Eǫ. We can then perform the universal cover G̃L2(R) = G̃L+
2 (R) ⊔ G̃L

−
2 (R) for

the two connected components and lift the multiplication operations. Explicitly
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G̃L−
2 (R) =

{
[γ] : γ : [0, 1] → GL−

2 (R) s.t. γ(0) = E−1

}

and the group structure for G̃L2(R) is again given by the pointwise multiplication of paths.
(We note that it is well-defined since E−1 squares to E).

Remark 33.

(1) Obstructions controlling the existence of a group structure on the universal cover for
disconnected groups G rely on the fact that one has to specify multiplication of paths
living on different connected components. The obstructions are due to the work [30]
by R. L. Taylor and belong to Hk(π0(G), π1(G

o)) for k = 3. See also [24]. In our case
G = GL2(R), we have that π1(G

o) ∼= Z is the nontrivial representation of π0(G) ∼= Z2,
and one can compute that the above cohomology groups vanish for k even and are
isomorphic to Z2 for k odd. In particular the group H3(π0(G), π1(G

o)) is non-trivial,
yet the obstruction class is trivial, since we made explicit its group structure. On a
more general level, whenever the natural exact sequence 1 → Go → G → π0(G) → 1
admits a splitting of groups, such an obstruction vanishes.

(2) According to [30, (6.5)] the cohomology group H2(π0(G), π1(G
o)) acts simply transi-

tively on the space of group coverings, therefore the covering is unique forG = GL2(R).

We have an epimorphism p : G̃L2(R) → GL2(R), [γ] 7→ γ(1). This is a covering map with
deck transformation group

p−1(E) = π1(GL
+
2 (R))

∼= Z , (5.23)

a discrete normal subgroup of G̃L2(R). The generators of (5.23) are given by the fundamental
group of SO(2) = U(1), i.e., p−1(E) = {[γk]} with paths γk(t) = e2πkit, t ∈ [0, 1], for all k ∈ Z.
(Every time we write a complex 1× 1 matrix we mean the corresponding real 2× 2 matrix.)
As explained later, the deck transformation group p−1(E) is not central in the universal cover
group.

In summary, the space G̃L2(R) has two connected components, both simply connected:

π0(G̃L2(R)) ∼= Z2, π1(G̃L
+
2 (R), E1) = 0, π1(G̃L

−
2 (R), E−1) = 0 , (5.24)

where we identified E±1 with the corresponding constant paths. We have the following exact
sequence of group homomorphisms

1 −→ Z −→ G̃L2(R) −→ GL2(R) −→ 1 (5.25)

and similarly for GL+
2 (R). The sequence does not split, by the above (5.24) on π0(G̃L2(R)).

Sequence (5.25) has the following retract

1 −→ Z −→ Õ(2) −→ O(2) −→ 1. (5.26)

Here O(2) = S1
+⊔S1

− is the non-Abelian 1-dimensional group with two connected components

and group operation (eiϕ1 , ǫ1) · (e
iϕ2 , ǫ2) = (ei(ϕ1+ǫ1ϕ2), ǫ1ǫ2). (The sign in S1

ǫ is, of course,

nothing but the determinant.) Its universal cover is Õ(2) = R1
+⊔R1

− with the group operation

(ϕ1, ǫ1) · (ϕ2, ǫ2) = (ϕ1 + ǫ1ϕ2, ǫ1ǫ2) and we again have π0(Õ(2)) = π0(O(2)) ∼= Z2.
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The center of GL2(R) is Z = {diag(a, a) : a ∈ R×} ⊂ GL+
2 (R), and its preimage via the

covering map is the subgroup Z̃ = {[γak ] : a 6= 0, k ∈ Z} of G̃L+
2 (R), where the paths are

γak(t) =

{
e2πkit+t ln(a) for a > 0,

e2π(k+
1
2)it+t ln(−a) for a < 0.

Consequently, Z̃ is central in G̃L+
2 (R) but due to

E−1γ
a
kE−1 = γa−k for a > 0 ,

E−1γ
a
kE−1 = γa−k−1 for a < 0 ,

it is only normal in G̃L2(R). In particular, the action of π0(GL2(R)) ∼= Z2 on π1(GL
+
2 (R))

∼= Z

is non-trivial and the deck transformation group is not central. (In fact, it is actually easy to
see that the center of the universal cover is formed by the paths [γak ] with a > 0 and k = 0.)

We conclude this section with the following crucial observation on 1-dimensional subgroups.
The subgroup H = {diag(a2, 1/a) : a ∈ R×} = {diag(e2λ, ǫe−λ) : λ ∈ R, ǫ = ±1} ∼= R+ × Z2

determines the following subsequence of (5.25):

1 −→ Z −→ H̃ −→ H −→ 1 , (5.27)

where H̃ = p−1(H) = {[γλ,ǫ,k(t) := γk(t) ·diag(e
2λt, ǫe−λt)] : λ ∈ R, ǫ = ±1, k ∈ Z} ⊂ G̃L2(R).

This subsequence splits, using the above formula for the paths γλ,ǫ,k(t) with k = 0, thus

H̃ ∼= H × Z ∼= R+ × Z2 × Z

as a Lie group. Since π0(H) ∼= Z2, we get π0(H̃) ∼= Z2×Z, with the natural component group

homomorphism H̃ → πo(H̃) simply given by [γλ,ǫ,k(t)] 7→ (ǫ, k).

5.2. Proof of the main results: global models. Let us now integrate the Lie algebra of
infinitesimal CR automorphisms g = gl2(R) ⋉ R4, R4 ∼= S3R2, to the connected Lie group
Go = GL+

2 (R) ⋉ R4, and the stabilizer subalgebra h = stab = 〈diag(−2/3, 1/3)〉 ⊂ gl2(R) to
the closed connected subgroupHo = {diag(a2, 1/a) : a ∈ R+}. Let us first note that the center
of g is trivial and that the group of inner automorphisms of g is precisely Go = GL+

2 (R)⋉R4.
In particular any other connected Lie group with Lie algebra g covers Go and it is a quotient

of the universal cover G̃o of Go by a discrete central subgroup. The Zariski closure yields
G = GL2(R) ⋉ R4 and H = {diag(a2, 1/a) : a ∈ R×} – the quotient is the same manifold
M7 = G/H = Go/Ho, with the action of the full G that is still effective (since GL2(R) acts
effectively on R4 ∼= S3R2). Passing to G/Ho yields a disconnected manifold, which we do not
allow in our analytic setup.

Since the model is locally unique, all other global models are obtained by coverings and by
quotients. The quotient of G by a discrete normal subgroup is in fact not possible because
such a subgroup would project along the nilradical to a discrete normal subgroup in GL2(R),
which is central, and so is Z2 = {±E}. It is then easy to see that the unique discrete normal
subgroup of G is the unity subgroup. On the other hand, H is a maximal subgroup in G with
Lie algebra h ⊂ g. In summary M7 ∼= G/H cannot be quotiented.

Now we shall pass to the automorphism group G = GL2(R)⋉R4. It also has two connected
components, π0(G) = Z2, so G = G+ ⊔ G− according to the determinant of the reductive
part. Each component is not simply connected, namely, we have the same retracts as in §5.1:
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π1(G
+, E1) ∼= Z and π1(G

−, E−1) ∼= Z. The passage to the universal cover is similar to (5.25):
we get the short exact sequence

1 −→ Z −→ G̃ −→ G −→ 1 , (5.28)

where G̃ = G̃L2(R) ⋉ R4. The group structure of G̃L2(R) is as in §5.1 and G̃L2(R) acts on
R4 ∼= S3R2 by factorization through GL2(R). We note that

G̃ = G̃+ ⊔ G̃− ,

with simply-connected components G̃± = G̃L±
2 (R)⋉R4.

The retract (5.26) and the subsequence (5.27) hold for the sequence (5.28) as well. In this

case the center Z of G is trivial, yet its preimage Z̃ = {[γk] : k ∈ Z} via the covering map is

central only in G̃+, and it is normal in G̃ (by the same reasons as in §5.1). The group Z̃ is

the maximal discrete normal subgroup in G̃.

Using that the sequence (5.27) splits, so that H̃ ∼= H × Z̃ ∼= H × Z as groups, we may
obtain all the homogeneous models as quotients

M̃m =
(
G̃/mZ

)
/H ∼= G̃/

(
H ×mZ

)

by a subgroupmZ of Z̃ ∼= Z, for m ≥ 0. Clearly M̃m is an Zm-covering of M = G/H ∼= G̃/H̃.
(If m = 1 we get back our initial manifold M7, if m = 0 we get the universal cover of M7.)

Each of the models M̃m has the structure of a 3-nondegenerate CR manifold of hypersurface

type and its automorphism group is G̃/mZ.

6. The maximal symmetric model: CR realization and beyond

Here we will provide a realization M7 ⊂ C4 as a real hypersurface in C4 and give a local
coordinate expression for the homogeneous model G/H of §4.1, where G = GL2(R) ⋉ S3R2

and H = {diag(a, 1/a2) : a 6= 0}. (For simplicity of exposition in this section, the stabilizer is
conjugated to that of §4.1, namely h = Lie(H) is generated by diag(1/3,−2/3) here.)

6.1. Tube realization. To realize it we note that the Abelian part R4 ∼= S3R2 acts by
translations on itself, which we denote R4

y, and the reductive part GL2(R) acts on R4
x
∼= S3R2

with the minimal orbit in the projectivization given by the degree 3 rational normal curve
{[1 : λ : λ2 : λ3] | λ ∈ RP1} ⊂ RP3

x. Let R = {(r3, r2s, rs2, s3) | r, s ∈ R} ⊂ R4
x be the

cone over it, which we refer to as the rational normal cone in R4
x. It is given by the relations

d1 := x0x2 − x21 = 0, d2 := x0x3 − x1x2 = 0, d3 := x1x3 − x22 = 0, where (x0, x1, x2, x3) are
the coordinates of R4

x. Note that the syzgies between the generators of the ideal 〈d1, d2, d3〉
defining the rational normal cone are x3d1 − x2d2 + x1d3 = 0, x2d1 − x1d2 + x0d3 = 0.

We let TR ⊂ R4
x be the tangent variety to the rational normal cone, which is locally

parametrized as x0 = r3, x1 = r2(s + t), x2 = rs(s + 2t), x3 = s2(s + 3t), where r, s, t ∈ R.
Note that not only t = 0 but also r = 0 is in the singular locus, so we may either require an
additional chart like x0 = r2(r−3t), x1 = rs(r−t), x2 = s2(r−t), x3 = s3, or have a surjective
map as in (1.2) in the Introduction. With any approach, eliminating the parameters, one gets
the following global defining equations

TR =
{
x ∈ R4

x | x20x
2
3 − 6x0x1x2x3 + 4x0x

3
2 + 4x31x3 − 3x21x

2
2 = 0

}
,

which are in agreement with and give a geometric interpretation to the equations in [7, §5.1].
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We note that a matrix

(
a b
c d

)
in GL2(R) acts on R4

x via the matrix representation




a3 3a2b 3ab2 b3

a2c a2d+ 2abc 2abd+ b2c b2d
ac2 bc2 + 2acd 2bcd + ad2 bd2

c3 3c2d 3cd2 d3




and that the GL2(R)-orbit through the point p1 = (1, 0, 0, 0) is R \ 0. On the other hand,
the orbit through the point p2 = (0, 1, 0, 0) ∈ TR \ R is the full complement TR \ R. The
stabilizers of those points in GL2(R) are the 2-dimensional solvable group

Stabp1 =







1 b

0 d


 : d 6= 0





∼= Sol(2) , (6.29)

and the subgroups

H = Stabp2 =







a 0

0
1

a2


 : a 6= 0





. (6.30)

We note that the stabilizer Stabp2 is the subgroup H of GL2(R) from §5. We set Σ := TR\R.

Proposition 34. The orbit Σ is diffeomorphic to S1 × R2.

Proof. Consider the map Ψ : (R1 mod 2πZ)× R× R −→ R4
x given by

(φ, b, t) 7→ (b cos3 φ− 3t cos2 φ sinφ, b cos2 φ sinφ+ t(cos3 φ− 2 cosφ sin2 φ),

b cosφ sin2 φ− t(sin3 φ− 2 cos2 φ sinφ), b sin3 φ+ 3t cosφ sin2 φ).

We claim that the restriction of Ψ to (R1mod 2πZ)×R×R+ is injective, with the image Σ.
Indeed, the above map has the form Ψ(φ, b, t) = bγ(φ)+ tγ′(φ) and one easily checks that the
4×2 matrix [γ(φ), γ′(φ)] has rank 2 for any fixed parameter φ, so any half-plane parametrized
by (b, t) ∈ R×R+ is embedded. We also note that the boundary (R1 mod 2πZ)×R×{t = 0}
corresponds to the rational normal cone R.

Consequently the image Ψ
(
(R1 mod 2πZ)×R×R+

)
is fibered by half-planes parametrized

by (b, t) ∈ R×R+ over the rational normal curve Ψ
(
(R1 mod 2πZ)×{b = 1}×{t = 0}

)
⊂ S3;

note that the parametrization of the rational normal curve is injective. This proves injectivity
of our map.

The change φ 7→ φ+ π results in the reflection (b, t) 7→ (−b,−t) and therefore interchanges
the half-planes {b ∈ R, t > 0} and {b ∈ R, t < 0}. This implies the claim about the image. �

Remark 35. The projective version PΣ gives the Möbius band, as it is a line bundle over
PR with connected complement to the (central) rational normal curve RP1.

We define the tube TR×R4 ⊂ C4
z = R4

x ×R4
y, where the coordinates zk = xk + iyk specify

the standard complex structure J of C4
z, namely, J∂xk = ∂yk for all 0 ≤ k ≤ 3. Now the group

GL2(R) acts diagonally on C4
z and it preserves J , since it is in fact a subgroup of GL2(C).

Thus G = GL2(R) ⋉ S3R2 is a group of complex affine transformations of the CR manifold
(TR×R4,D,J ), with D the maximal J-complex subbundle of the tangent bundle of TR×R4

and J the restriction of J to D.
Note that the 7-dimensional manifold TR×R4 is not homogeneous for the action of G, as

there are three orbits: two orbits in R×R4
y (determined by the punctured rational normal cone
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and, respectively, its vertex), and the open orbit Σ×R4
y that is complementary to R×R4

y. The
3-nondegenerate 7-dimensional CR homogeneous model is the latter orbit, which we denoted
R7 in the Introduction.

Theorem 36. The above 7-dimensional CR manifold M7 = Σ× R4
y is 3-nondegenerate and

it is diffeomorphic to S1 × R6. Its automorphism group is G, which acts transitively, and
M7 ∼= G/H, where the stabilizer subgroup is as in (6.30).

We present here a straightforward coordinate computation. Another argument, adaptable
to higher dimensions, will be given in §6.4.

Proof. The claim on the diffeomorphism type of M7 follows immediately by Proposition 34.
The CR-distribution D is generated by the vector fields

X1 = x0∂x0 + x1∂x1 + x2∂x2 + x3∂x3 ,

X2 = 4d21∂x1 + 4d1d2∂x2 + 3d22∂x3 ,

X3 = 2d1∂x1 + d2∂x2 ,

and Y1 = JX1, Y2 = JX2, Y3 = JX3. Using the local parametrization x0 = r3, x1 = r2(s+ t),
x2 = rs(s+ 2t), x3 = s2(s + 3t) of TR, we get more symmetric formulae

−
1

2r3t2
X3 = r∂x1 + s∂x2

and
〈X1,X2〉 = 〈3r2∂x0 + 2rs∂x1 + s2∂x2 , r

2∂x1 + 2rs∂x1 + 3s2∂x3〉.

Hence D10 is generated by

Z1 = x0∂z0 + x1∂z1 + x2∂z2 + x3∂z3 ,

Z2 = 4d21∂z1 + 4d1d2∂z2 + 3d22∂z3 ,

Z3 = 2d1∂z1 + d2∂z2 ,

where ∂zk = 1
2

(
∂xk − i∂yk

)
as usual, and D01 is generated by Z̄1, Z̄2, Z̄3.

The following commutation relations hold modulo D01 on M7 = Σ× R4
y:

[Z̄1, Z1] =
1

2
Z1, [Z̄1, Z2] = 2Z2, [Z̄1, Z3] = Z3,

[Z̄2, Z1] =
1

2
Z2, [Z̄2, Z2] =

8d1(x0d3 − x2d1)

d2
Z2, [Z̄2, Z3] = 2(x0d2 − 2x1d1)Z3,

[Z̄3, Z1] =
1

2
Z3, [Z̄3, Z2] = −

2x2d1 + x1d2
d2

Z2 +
2d1(x0d3 − x2d1)

d2
Z3,

[Z̄3, Z3] = −
2x2d1 + x1d2

2d2
Z3 +

d1(x0d3 − x2d1)

d2
∂z1 6∈ D.

Therefore we have F0
10 = 〈Z1, Z2〉 and the next term of the Freeman sequence is F1

10 = 〈Z〉,
for the vector field 4x0Z = 4d1(x0d3 − x2d1)Z1 − d2Z2. We can simplify this vector field as

Z = d1(x0d3 − x2d1)∂z0 − d1(x1d3 − x3d1)∂z1 − d3(x0d3 − x2d1)∂z2 − d3(x1d3 − x3d1)∂z3 ,

and in the local parametrization, we get the simpler expression

−
1

2r6t5s
Z = r3∂z0 + r2s∂z1 + rs2∂z2 + s3∂z3 .

Finally F2
10 = 0, and this finishes the proof of 3-nondegeneracy.
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By our classification of locally homogeneous 3-nondegenerate 7-dimensional CR manifolds,
the dimension of G is the upper bound for the dimension of the automorphism group of such
a structure. The affine automorphism group is exactly G, since GL2(R) is known to be the
affine automorphism group of the rational normal cone and its tangent variety. The fact that
the entire automorphism group is G follows since any discrete extension of G acts linearly on
the radical R4

y, therefore it normalizes the action of GL2(R), it preserves the minimal orbit
(the rational normal curve), and it factors through the action of GL2(R). In §5, we proved
that any non-trivial cover of G acts non-effectively on M7 ∼= G/H, whence the claim. �

6.2. Tube over rational normal cone. The G-orbit N 6 = (R\0)×R4
y can be interpreted in

its own right as a CR manifold of CR-dimension 2 and CR-codimension 2, and it also satisfies
the Hörmander condition, i.e., the corresponding CR-distribution D is bracket generating.
We remark that the Freeman filtration and the notion of k-nondegeneracy equally apply to
higher CR-codimensions.

Theorem 37. The above 6-dimensional CR manifold N 6 = (R \ 0)×R4
y is 2-nondegenerate

and it is diffeomorphic to S1 ×R5. Its automorphism group is G, which acts transitively, and
N 6 ∼= G/Sol(2), where the stabilizer subgroup is as in (6.29).

Proof. The claim on the diffeomorphism type of M7 follows by the proof of Proposition 34.
In the standard parametrization of R \ 0 given by x0 = r3, x1 = r2s, x2 = rs2, x3 = s3,
(r, s) 6= (0, 0), the CR-distribution D is generated by the vector fields

X1 = 3r2∂x0 + 2rs∂x1 + s2∂x2 ,

X2 = r2∂x1 + 2rs∂x2 + 3s2∂x3 ,

together with Y1 = JX1, Y2 = JX2.
The Hörmander condition then follows from

Y3 = [X1, Y2] = [X2, Y1] = r∂y1 + s∂y2 , [X1, Y3] = ∂y1 , [X2, Y3] = ∂y2 ,

while the Cauchy characteristic space is easily seen to be generated by

X0 =
1
3(rX1 + sX2) = r3∂x0 + r2s∂x1 + rs2∂x2 + s3∂x3 ,

Y0 =
1
3(rY1 + sY2) = r3∂y0 + r2s∂y1 + rs2∂y2 + s3∂y3 .

The distribution D10 is generated by the vector fields Z1 =
1
2(X1 − iY1), Z2 =

1
2(X2 − iY2).

We then have F0
10 = 〈Z0〉, where Z0 =

1
3(rZ1 + sZ2), while the next term F1

10 of the Freeman
sequence is trivial. This proves 2-nondegeneracy.

The symmetry algebra is obtained by a somewhat tedious but straightforward computation,
which we omit and make available in Maple supplement to the arXiv version of this paper.
The claim on the automorphism group follows by applying Lie theoretic arguments as in the
end of the proof of Theorem 36. �

6.3. Relation to other geometries. Here we describe the maximal symmetric CR model
M7 and some related geometries in the spirit of Klein’s Erlangen program. The automorphism
group for all of them is G = GL2(R)⋉R4, the models are all homogeneous and the stabilizer
subgroup is the subgroup of GL2(R) indicated on the edges of the diagram below (for edges
not emanating from G the meaning of the label is a fiber, a subgroup that has to be added to
the one above it to generate the desired stabilizer). All maps in the diagram are G-equivariant,
except for the dashed horizontal arrow that represents a natural fibration, which is not a group
quotient (note that Sol(2) does not include H as a subgroup).



3-NONDEGENERATE CR MANIFOLDS IN DIMENSION 7 (I) 33

This contributes to the Segre correspondence between CR manifolds and related finite type
differential equations, well developed for Levi-nondegenerate case, in our degenerate situation.

G8

L6 M7 N 6

E5

Cartan H Sol(2)

diag

nilp diag

Borel

We have already discussed the M7 and N 6 nodes in §6.1 and §6.2. The bottom node E5 is
the forth order trivial ODE yiv(x) = 0 considered as a submanifold in jets

E5 = {y4 = 0} ⊂ J4(R,R) ∼= R6(x, y0, y1, y2, y3, y4) .

Its symmetry algebra is known to be g = Lie(G), but in order to make the automorphism group
precisely G one has to assume the independent variable x ∈ S1 = R modπZ to be periodic, so
that actually E5 ∼= S1×R4 (instead of E5 ∼= R5). In this case the stabilizer group is the Borel
subgroup B of GL2(R) and the periodicity is due to the fact that GL2(R)/B = RP1 ∼= S1.

This quotient E5 = G/B can be conveniently represented by the root diagram of g below,
compare to that of §4.1. The stabilizer subalgebra corresponds to g0 ⊕ g1 – for the moment,
ignore the circle around the first component as well as the integral sign above the second. The
grading corresponds to the Tanaka prolongation of the negatively graded part g−4⊕· · ·⊕g−1,
which is the symbol of the Cartan distribution of the equation E . We also indicate generators
for the weak derived flag of vector distributions corresponding to the graded components of
negative degree, where Dx = ∂x + y1∂y0 + y2∂y1 + y3∂y2 is the truncated total derivative.

g−1 g0 g1

g−4 g−3 g−2 g−1

Dx Cartan
∫
x

∂y0 ∂y1 ∂y2 ∂y3

The final node of the diagram is the quotient L6 = G/G0, with G0 the completely non-
compact Cartan subgroup of GL2(R) given by the invertible diagonal matrices. This node is
intermediate between M7 and E5, and it can be described as follows.

First of all note that GL2(R)/G0 = SL2(R)/
(
G0∩SL2(R)

)
is an adjoint orbit, in particular

it has a naturally associated symplectic form up to homothety (we will not make use of it,
however). There are three types of non-zero orbits on sl2(R), ours is diffeomorphic to T ∗S1

and it is the orbit that admits a Lorentzian metric of constant curvature w.r.t. the Killing
form. Thus L6 ∼= T ∗S1 × R4 ∼= S1 × R5.
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Next, the quotient L6 = G/G0 can be again represented by the root diagram of g, as L6 is
a line bundle over E5. In fact, the stabilizer reduces from the Borel subgroup B to the Cartan
subgroup G0 and we indicate the changes on the above diagram: the stabilizer subalgebra g0
is circled and the fiber of the line bundle is g1. The latter is generated by the symbol

∫
x above

the top right node, which is an “algebraic” integration (a differential operator inverse to Dx

in the sense that it acts in the opposite direction for the corresponding vector distributions).
We stress that the Cartan subalgebra g0 acts as a bigrading on the root spaces of g, thus L6

is line-parallelizable, in the sense that each root space gives rise to a 1-dimensional subbundle
of TL6. Consequently we have many canonical vector distributions.

More explicitly
∫
x and Dx form a pair of raising and lowering operators

[−Dx, ·] : 〈∂yk〉 7→ 〈∂yk−1
〉 mod〈Dx, ∂yk〉 , [

∫
x, ·] : 〈∂yk〉 7→ 〈∂yk+1

〉 mod〈
∫
x, ∂yk〉 ,

where the formulae have to be understood with the agreement that 〈∂y−1〉 = 〈∂y4〉 = 0. Denot-
ing X = 〈Dx〉, I = 〈

∫
x〉, and Yk = 〈∂yk〉, we get the following integrable vector distributions

XI, XY0, XY0Y1, XY0Y1Y2, XY0Y1Y2Y3,

Y0Y1Y2Y3, IY3, IY3Y2, IY3Y2Y1, IY3Y2Y1Y0 ,

where we omitted the direct sum symbol. Thus the invariant geometric structure on L consists
of a line-parallelization satisfying the above integrability constraints.

Finally, we can write this structure in local coordinates. We use the coordinates x, y0, . . . , y3
on E5 lifted to L6, keep the same expressions for the generators Dx, ∂yk and add a coordinate
t and the generator

∫

x
= ∂t + x2∂x + 3xy0∂y0 + (3y0 + xy1)∂y1 + (4y1 − xy2)∂y2 + 3(y2 − xy3)∂y3 .

A straightforward computation in Maple then shows that the symmetry algebra of the above
line-parallelism is precisely g = gl2(R)⋉R4.

6.4. Higher dimensional generalizations. For CR-codimension 1 and CR-dimension k >
2 we have the following constructions in Ck+1. Consider the rational normal cone R in Rk+1

x

as the cone over the degree k rational normal curve {[1 : λ : · · · : λk]} ⊂ RPkx. Its subsequent
tangent varieties T qR for q = 1, . . . , k − 2 are obtained by uniting the osculating spaces at
any fixed point (for q = k − 1 we simply have T k−1R = Rk+1).

We consider T k−2R and the tube T k−2R×Rk+1
y ⊂ Ck+1

z = Rk+1
x ×Rk+1

y , which inherits a
natural CR-distribution D with complex structure J . It turns out that the non-singular part

M2k+1 = Σ× Rk+1
y

is holomorphically nondegenerate. Here and in the following Σ := T k−2R \ T k−3R.

Proposition 38. The Freeman sequence of (M2k+1,D,J ) decreases by one dimension at
each step, so this CR structure is k-nondegenerate.

Proof. We use local coordinates where γ : λ 7→ (1, λ, . . . , λk) is a curve in Rk+1
x so that the

rational normal cone R is parametrized as (λ, t0) 7→ t0γ(λ). Then the tangent variety T qR is
parametrized as

ψ : τ = (λ, t0, t1, . . . , tq) 7→ t0γ(λ) + t1γ
′(λ) + · · ·+ tqγ

(q)(λ) ,

which we will consider for q = k − 2. This parametrization covers only a proper open dense
subset of T k−2R, but this is sufficient due to GL2(R)-equivariancy.
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Note that at nonsingular points Σ = T k−2R \ T k−3R we have

Tψ(τ)Σ = 〈γ, γ′, . . . , γ(k−1)〉.

The first (k−1) terms correspond to ψ∗∂t0 , . . . , ψ∗∂tk−2
, whereas the last term is a combination

of them and ψ∗∂λ. Note that γ is a radial vector field for R parallelly translated along T k−2R.
The other generators are also ts-independent, i.e., they are constant along the foliation of Σ
by (k − 1)-planes. In particular, for the standard affine connection ∇ on Rk+1 we have

∇ψ∗∂tsγ
(r) = 0 while ∇ψ∗∂λγ

(r) = γ(r+1) ,

for all 0 ≤ s ≤ k − 2. The CR-distribution D is generated by the vectors X ∈ TΣ ⊂ Rk+1
x

and their counterparts JX ∈ Rk+1
y , which respectively have the form

X =
∑

aji (x)∂xj and JX =
∑

aji (x)∂yj .

Therefore the commutator of such vector fields X and Y is ∇XY ∈ Rk+1
y for the above trivial

affine connection ∇. This allows to easily compute the terms of the Freeman filtration.
Let us denote

Zs =
1

2
(γ(s)x − iγ(s)y )

for all 0 ≤ s ≤ k − 1, where the subscripts x, y indicate to which of the two components in
Ck+1
z = Rk+1

x × Rk+1
y the vector belongs. Then

Fs
10 = 〈Z0, Z1, . . . , Zk−s−2〉 ,

so that Fk−2
10 6= 0 and Fk−1

10 = 0. �

Furthermore the affine automorphism group of M2k+1 is clearly G = GL2(R)⋉ SkR2 and
we expect that this is equal to the entire automorphism group, namely

Aut
(
M2k+1,D,J

)
= GL2(R)⋉ SkR2. (6.31)

It is important here that k > 2. In fact, for k = 2, the rational normal cone is a quadric, the
null cone for a Lorentzian 3-dimensional metric, and this results in a bigger automorphism
group, the conformal group SO(2, 3) acting on the tube over the future light cone, see [12, 20].
If the above conjecture (6.31) is true then the model will be almost simply transitive for k = 4
and inhomogeneous for k ≥ 5. (We remark that for k = 4 our model here is locally equivalent
to that of Example 10. Indeed, identifying points in R5 = S4R2 with the coefficients of a
quartic, one can show that the second tangent of the rational normal curve passes through
the point (1, 1, 1, 0, 0), which lies on the sameGL2(R)-orbit as (0, 0, 1, 1, 1).) For a construction
of homogeneous k-nondegenerate CR manifolds in dimension 2k + 3, we refer to [16, 18].

Relations to other geometries, like higher codimension CR tubes and higher order ODEs
also generalize. In particular, g = gl2(R)⋉ SkR2 is the symmetry algebra of the trivial ODE

y(k+1)(x) = 0. Again the case k = 2 is special: the symmetry algebra is sp4(R) = so(2, 3).
Thus we have an affine bundle M2k+1 → Ek+2 of rank (k − 1) over the equation manifold of
the trivial ODE for every k ≥ 2, and the action of g is projectable.
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