
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

On 3‑share threshold implementations for 4‑Bit
S‑boxes
Kutzner, Sebastian; Nguyen, Phuong Ha; Poschmann, Axel; Wang, Huaxiong
2013
Kutzner, S., Nguyen, P. H., Poschmann, A., & Wang, H. (2013). On 3‑Share Threshold
Implementations for 4‑Bit S‑boxes. 4th International Workshop, Constructive Side‑Channel
Analysis and Secure Design (COSADE) 2013, 7864, pp.99‑113.
https://hdl.handle.net/10356/99651
https://doi.org/10.1007/978‑3‑642‑40026‑1_7

© 2013 Springer‑Verlag Berlin Heidelberg. This is the author created version of a work that
has been peer reviewed and accepted for publication by 4th International Workshop,
Constructive Side‑Channel Analysis and Secure Design (COSADE) 2013, Springer‑Verlag
Berlin Heidelberg. It incorporates referee’s comments but changes resulting from the
publishing process, such as copyediting, structural formatting, may not be reflected in this
document. The published version is available at:
[http://dx.doi.org/10.1007/978‑3‑642‑40026‑1_7].

Downloaded on 23 Aug 2022 04:23:50 SGT



On 3-share Threshold Implementations

for 4-bit S-boxes

Sebastian Kutzner1,2, Phuong Ha Nguyen1,2

Axel Poschmann1,2 and Huaxiong Wang2

1 PACE Temasek Laboratories,
2 Division of Mathematical Sciences, SPMS,
Nanyang Technological University, Singapore

{skutzner, phuongha, aposchmann, hxwang}@ntu.edu.sg

Abstract. One of the most promising lightweight hardware counter-
measures against SCA attacks is the so-called Threshold Implementa-
tion (TI) [12] countermeasure. In this work we discuss issues towards
its applicability and introduce solutions to boost its implementation ef-
ficiency. In particular, our contribution is three-fold: first we introduce
two methodologies to efficiently implement 3-share TI to a given S-box.
Second, as an example, we successfully apply these methodologies to
PRESENT and are able to decrease the area requirements of its pro-
tected S-box by 37-40%. Third, we present the first successful practical
Mutual Information Attack on the original 3-share TI implementation of
PRESENT and compare it with a correlation-enhanced collision attack
using second-order moments.

1 Introduction

Side Channel Attacks (SCA) [6] were introduced in 1997 by Kocher et al. and ex-
ploit the fact that while a device is processing data, information about this data
is leaked through different channels, e.g., power consumption, electromagnetic
emanation and so forth. DPA [7] is a well known technique analyzing multiple
measurements with statistical methods. It exploits the correlation between inter-
mediate results, which partly depend on a secret, and the power consumption.

Several countermeasures (far too many to address all of them) have been pro-
posed during the last years, for example, to decrease the SNR ratio [9], to balance
the leakage of different values [13] or to break the link between the processed
data and the secret, i.e., masking [9]. Due to the presence of glitches, masked
implementation might still be vulnerable to DPA [9]. A recent countermeasure
against DPA was introduced in 2006 by Nikova et.al. [11] and is called Threshold
Implementation (TI). It is based on secret sharing (or multi-party computation)
techniques and is provable secure against first order DPA even in the presence
of glitches. Furthermore, it can be implemented very efficiently in hardware [14].

The number of shares required for a TI depends on the degree d of the non-
linear function (S-box) and [11,12] have shown that one needs at least d + 1
shares. It implies that the higher the degree of the non-linear function, the more



2 Authors Suppressed Due to Excessive Length

shares are required and the larger the implementation gets. Since a degree of two
is the minimal degree of a non-linear function, the optimal number of shares is
three. Therefore, to apply a 3-share TI to a larger degree function, this function
must be represented as a composition of quadratic functions [14].

In this work we introduce two methodologies to efficiently implement 3-share
the TI countermeasure to an S-box (Section 2). We then successfully apply these
methodologies to the PRESENT S-box, reducing the hardware implementation
costs of the S-box layer by 37 − 40% (Section 3). Last, we investigate the se-
curity of our new design with practical measurements. In addition, we present
a successful practical Mutual Information attack against the original TI imple-
mentation of [14] and compare it with a correlation-enhanced collision attack
using second-order moments [10] (Section 4). Finally, the paper is concluded in
Section 5.

2 One S-box for all

In this section, we introduce two methodologies to improve the hardware im-
plementation costs for TI. To illustrate our contribution we chose PRESENT
as an example. Figure 1 shows how to apply the TI to a 4-bit S-box: first it is
decomposed into two stages G(·) and F (·) (horizontal), then each stage is shared
(vertical).

Figure 1 also shows that in [14] the authors implemented F (·) and G(·) using
six different 8× 4 vectorial Boolean functions f1, f2, . . . , g3. In the following we
will show how to implement the same functionality with only one 8×4 vectorial
Boolean function, which significantly reduces the area/memory requirement of
the TI S-box layer.

4
g3

g2

g1

y3

y2

y1

f1

f2

f3

4

4

4

4

4

4

4

4

S2 

S3 

S1 

G F
4 44

S
4 4

Fig. 1. Decomposition of an S-box [14]

According to [1], only the 4-bit S-boxes in alternating group A16 can be
decomposed into quadratic permutations. The interested reader is referred to
[1] for more details. [8] proposed a classification of 4-bit S-boxes based on the
following relationship:



On 3-share Threshold Implementations for 4-bit S-boxes 3

Definition 1. [8] Two S-boxes S(x), S
′

(x) are linearly equivalent if and only if
there exist two 4× 4-bit invertible matrices A,B and two 4-bit vectors c, d such
that

S
′

(x) = A(S(Bx⊕ c)⊕ d), ∀x ∈ {0, . . . , 15}

The definition above shows us that we can convert one S-box to another from
the same class simply by using linear transformations. We will use this fact later
for optimizing hardware implementations of a given S-box.

2.1 The horizontal level

In order to apply the 3-share TI to a cubic S-box S(·), first the S-box is de-
composed into a composition of two quadratic permutations F (·) and G(·) (see
Figure 1).

Observation 1 Assume a vectorial Boolean function S(·) = G(G(·)), where
G(·) is a vectorial boolean function. Then the hardware implementation costs of
S(·) may be reduced by reusing the implementation of G(·). Experiments have
shown that the costs for additional logic, e.g., a multiplexer, is less than imple-
menting G(·) twice. Numbers are provided in Section 3.

The main problem of Observation 1 is how to find a suitable G(·) such that
G(G(·)) belongs to the desired class, e.g., class C4

266
for the PRESENT S-box

[1]. We discovered that the only classes reachable by the construction G(G(·))
are C4

150
, C4

151
, C4

168
, C4

214
, C4

215
, C4

233
, C4

234
, C4

236
, C4

238
, C4

243
, C4

244
, C4

259
, C4

260
,

C4

264
, C4

266
, C4

286
, C4

292
, C4

296
, C4

297
from Table 12 in [1].

[14] states that there are around 226 quadratic 4-bit permutations and they
also propose a weighting function to estimate their hardware implementation
costs. We used a computer program to select those quadratic permutations,
which have smaller hardware implementation costs than the F,G used in [14].
We then checked to which class their composition belongs. and, finally, we se-
lected the one combination of A,B, c, d,G with the smallest hardware implemen-
tation. This way we found the following quadratic G(·) such that S

′

(·) = G(G(·))
belongs to class C4

266
:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
G(x) 0 4 1 5 2 F B 6 8 C 9 D E 3 7 A

G(G(x)) 0 2 4 F 1 A D B 8 E C 3 7 5 6 9

Let G(x, y, z, w) = (g3, g2, g1, g0), where x denotes the most significant bit
and w the least significant bit of the input, and g3 denotes the most significant
bit and g0 the least significant bit of the output. Then its Algebraic Normal Form
(ANF) is as follows: g3 = x+ yz + yw, g2 = w + xy, g1 = y and g0 = z + yw.

Using Definition 1 we know that the S-box of PRESENT S(·) is linearly
equivalent to the found S

′

(·) = G(G(·)), i.e

S(x) = A(S
′

(Bx⊕ c)⊕ d) = A(G(G(Bx⊕ c))⊕ d), ∀x ∈ {0, . . . , 15}.



4 Authors Suppressed Due to Excessive Length

It can be constructed with the following 4 × 4-bit matrices A, B and 4-bit
constants c, d:

A =









1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1









, B =









1 1 0 0
0 1 1 0
0 0 1 0
0 1 0 1









, c = (0001)2 = 1, d = (0101)2 = 5.

Generally, the quadratic permutation G should be chosen as follows: 1) its
G(G(·)) must be in the same linearly equivalent class as the given S-box S;
then the minimal hardware implementation for A, B, c, d and G should be
selected.

2.2 The vertical level

In the second step G(·) has to be divided into three 8 × 4 vectorial Boolean
functionsG1(·),G2(·) andG3(·). In practice, all these vectorial Boolean functions
are implemented separately. We can reduce the implementation costs by using
the following observation:

Observation 2 The vectorial Boolean functions of G1(·), G2(·) and G3(·) are
equal, except for the indices of the inputs and the existence of constants.

The observation is derived from the construction of the vectorial Boolean func-
tions G1(·), G2(·) and G3(·). Again, the left most bit of Gi represents the most
significant bit and the right most bit represents the least significant bit, respec-
tively. If we take the latter constructed G(·), then:

G1(x2, y2, z2, w2, x3, y3, z3, w3) = (g13, g12, g11, g10)

g13 = x2 + y2z2 + y2z3 + y3z2 + y2w2 + y2w3 + y3w2

g12 = w2 + x2y2 + x2y3 + x3y2

g11 = y2

g10 = z2 + y2w2 + y2w3 + y3w2

G2(x1, y1, z1, w1, x3, y3, z3, w3) = (g23, g22, g21, g20)

g23 = x3 + y3z3 + y1z3 + y3z1 + y3w3 + y1w3 + y3w1

g22 = w3 + x3y3 + x1y3 + x3y1

g21 = y3

g20 = z3 + y3w3 + y1w3 + y3w1

G3(x1, y1, z1, w1, x2, y2, z2, w2) = (g33, g32, g31, g30)

g33 = x1 + y1z1 + y1z2 + y2z1 + y1w1 + y1w2 + y2w1

g32 = w1 + x1y1 + x1y2 + x2y1

g31 = y1

g30 = z1 + y1w1 + y1w2 + y2w1



On 3-share Threshold Implementations for 4-bit S-boxes 5

Therefore, we only need to implement G1(·) and then reuse it for G2(·) and
G3(·) by re-arranging the inputs accordingly. Please note that this observation
can also be applied to ANFs containing constants, e.g., the ANFs of the G

function specified in the appendix of [14]. In those cases, it is easy to see, that
constants can be added to those two shares which initially did not contain a
constant to yield three equal vectorial Boolean functions.

Note 1. G(·) is a 4-bit permutation and its 3-shared version, which is the 12-
bit vector (g10, g11, g12, g13, g20, g21, g22, g23, g30, g31, g32, g33), is a 12-bit
permutation. Therefore, the uniformity property is satisfied.

Assume that the given function G(·) is protected by using a k-share TI and
G1(·), · · · , Gk(·) are its shared functions. Based on the same observation given
above, the hardware implementation of Gi(·), 1 ≤ i ≤ k, can be reused. It should
be noted that the shared version of G(·) = (G1(·),· · · , Gk(·)) may not satisfy the
uniformity property, e.g., (G1(·), G2(·), G3(·)) = (g10, g11, g12, g13, g20, g21, g22,
g23, g30, g31, g32, g33) may not be a 12-bit permutation. In this case, we have to
use the re-masking method [12] to fulfill this property. Therefore, our technique
can be applied not only for this special case but also in general whenever a
function is shared.

3 Hardware implementation

In this section we will describe hardware implementations of PRESENT pro-
tected with the TI countermeasure with a shared data path and an unshared
key schedule that is similar to profile 2 described in [14]. This profile is cho-
sen because our approach allows dramatic area savings –up to 57%– within the
S-box module at the expense of a slight area increase in the storage modules.
Thus to allow a fair assessment of the overall area savings, we did not focus on
the S-box module, but instead implemented a whole PRESENT. Note that we
deliberately chose to not share the key schedule for two reasons: first the S-box
used would be the same, and second, to focus on the main contribution of this
paper – a new methodology to reduce the area cost of a 4-bit S-box. First we
introduce the design flow used before we detail the hardware architectures and
finally summarize the implementation results.

3.1 Design flow

For the hardware implementation in VHDL, we used the Boolean minimization
tool BOOM II [3,2] to obtain the four ANFs of G. For functional simulation we
used Mentor Graphics ModelSimXE 6.4b and Synopsys DesignCompiler version
E-2010.12-SP2 was used to synthesize the designs to the Virtual Silicon (VST)
standard cell library UMCL18G212T3, which is based on the UMC L180 0.18µm
1P6M logic process and has a typical voltage of 1.8 Volt [5].

For synthesis we advised the compiler to keep the hierarchy and use a clock
frequency of 100 KHz.



6 Authors Suppressed Due to Excessive Length

3.2 Serialized architecture

Figure 2 depicts our architecture. The main differences between our design and
profile 2 in [14] are the S-box module and a part of the storage modules for the
shared data path. The three shares of the data path are stored in three identical
replications of the storage module denoted by State, md1 and md2. Each of them
comprises of 60 flip-flops that can act as a normal 60-bit wide register (vertical
shifting direction) or as a 4-bit wide 15 stages shift register (horizontal). The
remaining 4 bits are stored in a similar way (denoted with I, II and III in Fig. 2)
but with two additional 2-to-1 input MUXes (one for each shifting direction).
Those 4 bits act as a shift register in a vertical way, allowing to change the input
to G. The parallel 60-bit wide output is concatenated with the output of the
4-bit wide register and is transformed by the P-layer of PRESENT. The Key

module stores the key state and performs the PRESENT key schedule.

Fig. 2. Architecture of a serialized TI-PRESENT-80 using our new optimization
techniques.

The S-box module comprises of only one 8 × 4 vectorial Boolean function
G (47 GE) that is used for all three shares and for both stages instead of six
as used in [14]. Recall, that we implement the PRESENT S-box as S(x) =
A(G(G(Bx⊕ c))⊕ d). Therefore, the inputs to G (II and III) are transformed
by Bx+c (two times 7 GE) and its output is temporarily stored for two clock cycles
in two consecutive 4-bit flip-flops (48 GE). In order to process all shares re-using
the same combinational logic, I, II and III are rotated vertically. Suppose
the content of I, II and III are denoted a, b, and c, respectively, and the
content of the 4 MSB of Key is denoted k. Then in the first clock cycle (b, c) are



On 3-share Threshold Implementations for 4-bit S-boxes 7

processed yielding t1, in the second (a ⊕ k, b) yielding t2, and finally (c, a ⊕ k)
yielding t3. Since, for the second stage, we do not need to process the input to
G by Bx+c, we transform all three intermediate results t1, t2, t3 by B−1(x+c)

(21 GE)1 and store the results G1, G2, G3 in I, II and III. The aforementioned
procedure –computing t1, t2, t3 by rotating I, II and III– repeats for another
three clock cycles, after which the second stage is completed. This time the three
intermediate results t1, t2, t3 are transformed by Ax+d (18 GE) and stored in the
shift registers State, md1 and md2, which are shifting horizontally, and the next
4-bit nibbles are ready to be processed.

The FSM module comprises of one initial state, six states for the S-box, one
state for the permutation layer that is used instead of the sixth S-box state at
the end of each round, a finished state that sets the done signal to high, and a
done state. The output is gated by an AND-gate that only lets data pass to the
final output XOR after 31 rounds have been processed.

It takes in total 6 ∗ 16 = 96 clock cycles for one round, hence the output is
ready after 2976 clock cycles. During the 16 clock cycles required to output the
result nibble-wise, the next message and key can be loaded, which takes 20 clock
cycles. Thus in total our architecture requires 2996 clock cycles to process one
message, compared to 578 clock cycles reported in [14], which is an overhead of
a factor of around 5.2.

3.3 Round-based architecture

Based on the serialized implementation we estimate figures for round-based TI
PRESENT-80 implementations using the normal TI S-boxes as used in [14] and
using our new approach (see Table 1). The top-level glue logic consists mostly
of XOR and AND gates that scale linearly with the data path width, hence we
multiplied it by 16. All storage modules (Key, State, md1, md2) save around 9
GE for a 4-bit MUX that is only required for serialized implementations. The
FSM now only consists of a round counter and some simple combinational logic,
which we estimate to be around 50 GE. Our approach requires slightly more
complex control logic, so we add 50% to be on the safe side. Compared to the
normal TI implementation we require two additional 64-bit MUXes (298 GE)
for each of the three shares, to allow the shares to be horizontally rotated. The
major area increment occurs in the S-boxes module, which consists of 16 S-
boxes. Due to the pipelining stage in its S-box module, the normal TI based
implementation requires 2 clock cycles per round, so in total 2 ∗ 31 = 62 clock
cycles. Our approach would require in total 6 ∗ 31 = 186 clock cycles, which is a
timing overhead of only a factor 3.

3.4 Discussion

Our main goal is to investigate the savings that one can achieve using our new
optimization technique, hence we compare our core to profile 2 as published

1 Compared to using two MUXes (19 GE), this approach has the advantage of a
simpler control logic at roughly the same area requirements.



8 Authors Suppressed Due to Excessive Length

Table 1. Breakdown comparison of the post-synthesis implementation results
of a serialized PRESENT-80 are shown in the upper half and estimates for a
round-based implementation are shown in the lower half. For each architecture
two different memory strategies are shown: D-flip-flops with enable (D-FF + en),
and scan-flip-flops with clock gating (s-FF + cg). All figures are Gate Equivalents
(GE) and estimated figures are indicated with an ∗.

Serialized Architecture

Arch. Etc. Key FSM State md1 md2 S-box Sum

D-FF+en
[14] 58 778 139 587 587 587 351 3087

this work 58 778 146 608 608 608 151 2957
Difference 0 0 +7 +21 +21 +21 -200 -130

s-FF+cg
[14] 58 520 139 389 389 389 351 2235

this work∗ 58 520 146 410 410 410 151 2105
Difference 0 0 +7 +21 +21 +21 -200 -130

Round-based Architecture

Arch. Etc. Key FSM State md1 md2 S-box Sum

D-FF+en
based on [14]∗ 928 769 50 576 576 576 5616 9091

this work∗ 928 769 75 874 874 874 2416 6810
Difference 0 0 +25 +298 +298 +298 -3200 -2281

s-FF+cg
based on [14]∗ 928 511 50 389 389 389 351 2235

this work∗ 928 511 75 687 687 687 2416 5991
Difference 0 0 +25 +298 +298 +298 -200 -2281

in [14]. However, there the authors use a combination of clock-gating and scan-
flip-flops (s-FF+cg), which results in storing costs of 6 GE per bit (plus a neg-
ligible overhead for clock gating logic). For ASIC prototyping it is sometimes
not desirable to use clock gating, thus we decided to use D-flip-flops with enable
signal (D-FF+en), which results in storage costs of 9 GE per bit.

In order to have a fairer comparison between our results and [14], we also
report post-synthesis figures for a modified variant of their source code where
we replaced the clock gating and scan-flip-flops with D-flip-flops with enable (9
GE) (see Table 1) We have also estimated the area requirements of our imple-
mentation using 6 GE scan-flip-flops in combination with clock gating.

Please note that the area of 387 GE for the S-box module in [14] comprises of
both the shared S-box (359 GE) for the data path and the unshared S-box (28
GE) for the Key schedule. Thanks to a more optimized representation [4], the
unshared PRESENT S-box we used only takes 22 GE, and since the unshared
S-box is only used in the Key Schedule module we account its area share there.
Though our post-synthesis results are smaller for the S-box, FSM, and top level
glue logic (etc.), we have taken the figures from [14] to ensure a fair comparison.



On 3-share Threshold Implementations for 4-bit S-boxes 9

As one can see, for the serialized architecture, the top level glue logic and the
Key module are identical, while the control logic (FSM) is slightly more complex
for our approach. Compared to [14] our approach requires six additional 4-bit
wide 2-to-1 MUXes, which increase the area requirements of the storage compo-
nents by 21 GE each. In total it is possible to save 130 GE, or around 37-40%
of the area of the S-box by using our new approach. The overall savings are
determined by the area share of the S-box module, which is dependent on the
implementation strategy. For the serialized implementation described above, due
to the minor contribution of the S-box module to the overall area requirements
of only around 11-16%, in the end we achieve savings of only around 4-6%, while
our estimates for a round-based implementation, where the area share of the
S-box module is 62-68%, indicate overall savings of 25-27%. Table 2 summa-
rizes these facts, and highlights that our new approach is more rewarding for
architectures with a larger area share of the S-box module.

Table 2. Area savings for different implementation strategies.

Architecture S-box Storage S-box Overall
Strategy Savings Strategy Area share Savings

serial -37.0%
D-FF + en 11.4% -4.2%
s-FF + cg 15.7% -5.8%

round-based -40.6%
D-FF + en 61.8% -25.1%
s-FF + cg 67.9% -27.6%

4 Experimental results

We analyzed power consumption traces obtained from a SASEBO G-II in order
to evaluate the security of our new design. First, the measurement setup is
introduced and a classical DPA analysis is performed to compare the results with
[14] and prove that our implementation offers the same security level. Second,
we demonstrate that the implementation of [14] is vulnerable against Mutual
Information Analysis (MIA) in practice (as theoretically shown in [12]) and
compare the strength of this attack with the correlation-enhanced collision attack
targeting higher order moments as described in [10]. Last, we shortly revisit
Wagner’s attack in the context of three-share Threshold Implementations.

4.1 Measurement setup

The SASEBO G-II hosts two FPGAs, i.e., a control FPGA (Xilinx XC3S400A-
4FTG256, Spartan-3A series) and a cryptographic FPGA (Xilinx XC5VLX50-
1FFG324, Virtex-5 series) which is decoupled from the rest of the board in order



10 Authors Suppressed Due to Excessive Length

to minimize electronic noise from the surrounding components. It is supplied
with a voltage of 1V by an external stabilized power supply as well as with
a 3MHz clock (from an on-board clock oscillator). The power consumption is
measured over a 1Ω resistor inserted in the VDD line by using a differential
probe. All power traces are collected with a LeCroy WR610Zi-s-32 oscilloscope
at a sampling rate of 1GS/s.

4.2 Side-channel resistance

We will now show that our implementation, which was presented in the pre-
vious section, has the same security level against the classical attacks as the
implementation described in [14].

(a) First round (b) Zoomed extract

Fig. 3. Exemplary power trace of serialized implementation.

Figure 3 shows an exemplary power trace of the first round of an encryption
run as well as a zoomed extract. The high peaks in the power consumption on
the left side of Figure 3(a) are caused by the loading procedure of the plaintext
and key to the cryptographic FPGA. The encryption starts at sample 8500 - for
our analyses we omit these first 8500 samples. In Figure 3(b) one can clearly
identify the peaks in the power consumption for every single clock cycle (333
samples between the peaks equal 3 MHz).

We conducted our evaluation based on 5,000,000 power traces. As in [14] we
considered three different attack models for the DPA attack: Hamming Weight
(HW) of one nibble of the S-box input, HW of one nibble of the S-box output and
the Hamming Distance (HD) between two nibbles of consecutive S-box states.
Since all attacks targeted 4 bits, 16 key guesses had to be analyzed. The results
of the DPA attack for the three models are depicted in Figure 4. One can observe
from the plots –as intuitively expected– that none of the attack models reveals
the correct key hypothesis. Hence we can conclude that our implementation has
no first order leakage.

In [14] the authors chose the HD of two consecutive state nibbles as the
most promising leakage model. We found that attacking the HD between two



On 3-share Threshold Implementations for 4-bit S-boxes 11

(a) HW of the S-box output (b) HD of subsequent state nibbles

(c) HW of S-box input

Fig. 4. DPA on sequential TI countermeasure implementation.

consecutive nibbles of the G-stage output (see Figure 1) shows higher leakage.
Figure 5 shows exemplary correlation results (using known masks) comparing
said models. When using the HD of two consecutive state nibbles as the model,
one can nicely determine the repeating peaks caused by the shift to update the
state, but the correlation coefficient is approximately five times lower than for
the attack using our proposed model. We can only assume that this behavior is
caused by a higher load of the output flip-flops of the G-stage, since the number
of bits attacked and the number of bits which flip at the attacked point in time
are the same for both. Hence, we chose the output of the G-stage as the target
for our subsequent attacks. In addition, Figure 5 shows how many traces are
needed until the correct key hypothesis is revealed. The original model needs
approximately 2000 where as our proposed model needs only 500 traces.

As already mentioned we now want to investigate the resistance of the TI
countermeasure against more sophisticated attacks. In [12] the authors showed,
based on simulations, that it is possible to attack a Noekeon S-box secured by
TI with MIA when all shares are processed in parallel. Unfortunately, a practical
evaluation is still missing. Therefore, we can not say how efficient the attack is
or if it works at all in practice, i.e., in the presence of noise. In [10] the author
mounted a correlation-enhanced collision attack on the parallel implementation
described in [14] and demonstrated that it can be practically broken targeting



12 Authors Suppressed Due to Excessive Length

(a) HD of subsequent S-box states (b) HD of subsequent intermediate G
states

(c) Number of traces at sample 1606 (d) Number of traces at sample 607

Fig. 5.DPA results analysing 200,000 traces comparing two models, over number
of traces (with known masks).



On 3-share Threshold Implementations for 4-bit S-boxes 13

higher-order moments. We measured 10,000,000 traces of this implementation
and mounted both attacks targeting the HD of consecutive outputs of the G-
stage as described above (see Figure 6).

(a) Mutual information analysis
(Samples 550-800)

(b) Correlation-enhanced collision
attack using 2nd-order moments

Fig. 6. Advanced attacks on parallel implementation of the TI countermeasure.

To the best of our knowledge this is the first successful practical attack of MIA
targeting the TI countermeasure (see Figure 6(a)). Roughly 9,000,000 measure-
ments are required until the correct key nibble is revealed. Figure 6(b) shows the
result of a correlation-enhanced collision attack targeting second-order moments.
With this attack the correct key nibble is already revealed after approximately
6,000,000 measurements which proves that this attack is more powerful than
MIA in this scenario. We repeated both attacks against our implementation.
Figure 7 depicts the results of both attacks, none of them succeeded. This is
not a surprising result as our proposed model does not fit the implementation
anymore. It should be noted though that while our S-box is serialized, there
are still sources for univariate leakage in our implementation, e.g. the state up-
date, which might be exploited with more appropriate models. To secure the
implementation against these kind of attacks the whole implementation must be
carefully serialized for every clock cycle, which is ongoing work.

Last, we want to revisit Wagner’s zero-offset attack described in [15]. The
paper shows that it is theoretically possible to attack implementations where
masks and masked values are processed in parallel, as it is the case for the
parallel implementation of [14] which was attacked above. We performed the
zero-offset attack against said implementation without success. Subsequently,
we performed simulations of the zero-offset attack against TI with three shares
and a classical masking scheme with two shares. As it turned out, the attack
works against the two-share masking scheme (albeit it is very sensitive to noise)
but it does not work against masking schemes utilizing three shares like TI.
To be able to attack three shares one has to modify the attack, i.e., by raising
the mean-free measurement values to the power of three instead of squaring.



14 Authors Suppressed Due to Excessive Length

(a) Mutual information analysis
(Samples 10500-10600)

(b) Correlation-enhanced collision
attack using 2nd-order moments

Fig. 7. Advanced attacks on serialized implementation of the TI countermeasure.

However, for the attack to work we had to analyze 100 times more simulated
power traces than for a MIA, which shows how sensitive this attack is against
noise and why it does not work in practice.

5 Conclusion

In this paper we introduced two methodologies to efficiently implement 3-share
TI to a given S-box. Applying these methodologies to the PRESENT S-box we
were able to reduce its area requirement by 37-40% (130 GE), resulting in the
smallest implementation of a protected PRESENT known in literature so far
(2105 GE). Due to the small area share of the S-box in a serialized implementa-
tion, the overall savings were only around 4-6% at a timing overhead of a factor
of 5.2. However, different implementation strategies, like round-based architec-
tures, promise greater savings of more than 25% while having a smaller timing
overhead of only 3.

We have practically shown that our approach achieves a similar security level
as previously introduced implementations. In addition, we presented the first
practical MIA against a parallel implementation of the TI and demonstrated
that it is inferior to a correlation-enhanced collision attack using second-order
moments.

It is also noteworthy to point out that our contribution allows to reduce the
memory requirements of software implementations of S-boxes protected by the
TI countermeasure by a factor of six. Future work will include investigations in
this direction.

References

1. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz. Threshold Imple-
mentations of All 3×3 and 4×4 S-Boxes. In E. Prouff and P. Schaumont, edi-



On 3-share Threshold Implementations for 4-bit S-boxes 15

tors, CHES2012, volume 7428 of Lecture Notes in Computer Science, pages 76-91.
Springer-Verlag, 2012.

2. P. Fiser and J. Hlavicka. Two-Level Boolean Minimizer BOOM-II. In IWSBP2004,
pages 221-228, 2004.

3. P. Fiser and J. Hlavicka. BOOM - A Heuristic Boolean Minimizer. Computers and
Informatics , 22(1):19-51, 2003.

4. J. Guo, T. Peyrin, A. Poschmann, and M.J.B. Robshaw. The LED Block Cipher.
In B. Preneel and T. Takagi, editors, CHES2011, volume 6917 of Lecture Notes in
Computer Science, pages 326-341. Springer-Verlag, 2011.

5. Virtual Silicon Inc. 0.18 µm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology:
0.18µm.

6. P.C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In N. Koblitz, editor, CRYPTO1996, volume 1109 of Lecture
Notes in Computer Science, pages 104-113. Springer-Verlag, 1996.

7. P.C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M.J. Weiner,
editor, CRYPTO1999, volume 1666 of Lecture Notes in Computer Science, pages
388-397. Springer-Verlag, 1999.

8. G. Leander and A. Poschmann. On the Classification of 4 Bit S-Boxes. In C. Carlet
and B. Sunar, editors, WAIFI2007, volume 4547 of Lecture Notes in Computer
Science, pages 159-167. Springer-Verlag, 2007.

9. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards (Advances in Information Security). Springer-Verlag, 2007.

10. A. Moradi. Statistical Tools Flavor Side-Channel Collision Attacks. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT2012, volume 7237 of
Lecture Notes in Computer Science, pages 428-445. Springer-Verlag, 2012.

11. S. Nikova, C. Rechberger, and V. Rijmen. Threshold Implementations Against
Side-Channel Attacks and Glitches. In P. Ning, S. Quing, and N. Li, editors,
ICICS2006, volume 4307 of Lecture Notes in Computer Science, pages 529-545.
Springer-Verlag, 2006.

12. S. Nikova, V. Rijmen, and M. Schlaffer. Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. Journal of Cryptology, 24(2):292-321,
2011.

13. T. Popp and S. Mangard. Masked Dual-Rail Pre-charge Logic: DPA-Resistance
Without Routing Constraints. In J.R. Rao and B. Sunar, editors, CHES2005,
volume 3659 of Lecture Notes in Computer Science, pages 172-186. Springer-Verlag,
2005.

14. A. Poschmann, A. Moradi, K. Khoo, C. Lim, C. Wee, H. Wang, and S. Ling.
Side-Channel Resistant Crypto for Less than 2,300 GE. Journal of Cryptology ,
24(2):322-345, 2011.

15. J. Waddle and D. Wagner. Towards Efficient Second-Order Power Analysis. In
M. Joye and J.J. Quisquater, editors, CHES2004, volume 3156 of Lecture Notes in
Computer Science, pages 1-15. Springer-Verlag, 2004.


