On C -Regularity of the Gradient of Solutions
of Degenerate Parabolic Systems (*).

MICHAEL WIEGNER

Summary. — We consider weak solutions w & L,([0, T], W)Y\ Lo([0, T1, Ly(2)) of the degen-
erate parabolic (model)-system

ou't ) , ¥ , .

T div (|Vu*2Vu') =0 on QcR¥, 1=si=m with p>2.
By local technigques it is proved, using sequences of time-space cylinders, which are adjusted
lo the alternative whether one is at a point of degeneracy or not, that the spatial gradient of u
is o-Hdoldercontinuous on compact subsets of Q2 x[0, T withisome o which depends only on N
and p.

1. — Introduction.

Let 2 c R¥ be an open set, p > 2, and consider the degenerate parabolic system

out . .
— —div (|Vur:Vui) =0, 1=iZm.

(1.1) =

A vectorfunction w = (u!, ..., u™) defined on Q:= (0, 71X Q with
(1.2) w'e L2([0, T, Ly(Q)) N L,([0, T1, W(R2))
is called & weak solution of (1.1), if

f f (Wi — Va2 Vui Vil de dt = 0 for all e COL(Qy) .
Q7

The aim of this paper is to give a proof, that for such solutions the gradient of
is locally o-Holder continuous, with an exponent «, depending only on N and p
(and not on u,m, or Or).

(*) Entrata in Redazione il 4 luglio 1985,
Indirizzo dell’A.: Institut fiir Mathematik der Universitit Bayreuth, Postfach 3008,
8580 Bayreuth, BRD.
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The corresponding degenerate elliptic- system was first considered by UHLEN-
BECK [10], where the similar conelusion was proved. Extensions, also for p e (1, 2),
were given by ToLkSDORF [9].

The parabolic case appears to be considerably more complicated to treat. In
the case of one equation, ALIKAKOS and EvANs [1] proved just continuity of Vu;
no modulus of continuity was obtained. Now in a recent article DIBENEDETTO and
FRIEDMAN [5] gave a modulus w(g) of continuity for the gradient of solutions of
(1.1) of the complicated form w(g) = (log log 4/0)™° with A and ¢ depending on
and some norm of w.

Inspired by their method we present the following new idea for proving Vu e
€ Ole ' '

One is used to consider balls of volume cp? in the elliptic ease and cylinders of
volume cg¥+2 in the parabolic case for proving (Hélder)-continuity. In the degenerate
case we consider instead sequences of cylinders, whose volumes turn out to behave
like @¥+?, and it might be, that the ratio of height over radius squared approaches
infinity (at points at which the system degenerates), though the sequence of cylinders
keeps nested.

It seems clear to us that this observation and the fechnique presented below
also allows to prove Holder-continuity of solutions of other degenerate problems,
as there is e.g. the temperature in the two-phase Stefan problem [3], or of general
porous medium equations [4]. We will come back to this problems elsewhere.

For more information on degenerate problems consult e.g. the references given
in [2].

We start with the assumption, that for K c Q, we know already a uniform bound
IVl xy< M(K); see [5], Theorem 2.1. Furthermore by [5], Theorem 2.4, we know
that

' mwlw—elpzu;z dz dt < M,(E)
K
the constants M(K), M,(K) depending additionally on the norm of « in the spaces
of (1.2). Then we prove the following
THEOREM (V). — There is an o€ (0,1/(p — 1)), depending only on p and N, such

that for all compact subsets K C Qrp and all solutions w of (1.1) with |Vu|= M on K
we have

[Vu(z, 1) — Vu(a', t')| < C(K, M, p, N)- o

for o = o —a'| + |t — t']7, with y =1)(2 4 (2 — p)a) > }.

(Y After finishing this manuscript we were informed that DIBENEDETTO and FRIEDMAN
have achieved a similar result (with an & depending additionally on K).
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The proof is organized as follows. We will consider the differentiated system

. . 0 .
(1.3) Q-(ug ) — div| Va7 Vul, + — ([Vu]*?) Ve )=0, 1<i<m,
at 4 4 a@'ﬁ
and will apply various testfunetions to it.
The typical cylinders used are defined in (2.0) below. In § 2 we present two
alternatives A and B, and we will derive the theorem from them.

§ 3 contains the proof of alternative A—in fact, it is similar to a lemma, already
used by the author in proving regularity results for elliptic systems (see [11], Lem-
ma 4, p. 371 or [12]). It roughly states, that if |Vu|=< (1 — o) sup [Vu| on a fixed
portion of a eylinder, then sup [Vu| is smaller by a fixed amount on some smaller
cylinder. o

§ 4 is devoted to the proof of alternative B, which is in the spirit of the ita,lia.n
school (see e.g. [6]), and we conclude with some remarks in § 5.

We restrict to the case p > 2, because there are (some more) technical difficulties
in the case p € (2N/(N + 2),2). Furthermore only the model-problem is consider-
ed—it is easily possible to generalize to systems of the form

ou’ . .
= div (A(t, @, [Vul)Vu’) = f,

with certain conditions concerning A and f.

Last, the letter ¢ will denote various constants, which may differ from line to
line, but will depend only on N and p; and we use the summation convention
throughout.

2. — The two alternatives and the proof of the theorem.

Note first that we may assume that |Vu| < } on Qr—otherwise consider 4(z, f) =
= o 'u(w, «*?1) for « large which solves the same equation on @, ...
Let us define for (x,,1,) € Qr

(2.0) Q% = Qx(wo, 1) = Ba(xy) X [to— ur R 1] = By X Ij

and consider only those R, u < %, such that Q4(w,, &) C 25.

We will show, that there are constants f,, 6, o, 6, o € (0, 1), depending only on N
and p, such that the following alternatives hold:

Suppose [Vu|< u on Qf(wy, t).

ALTERNATIVE A. — If meas {(#,1) € Qi »(@,, to,)|[Vuf*< (1 — @)p®} = QIQ§(1+G)|
then |Vu|< (1—B)p on Q4% Pz, t,) for all e (0, By).
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ALTERNATIVE B. - If meas {(x, 1) € Q% o0r(%, )| [V < (1 — 0)4*} < 0/@%+ o)
then

:‘::’: [Vu(w, ) — (V)2 deds = 0 ff [Vu(z, s) — (Vu),|? dx ds
Qisx Q )
for i € N, with Q,= Q%x and

(Vu) = JCJC Vu(w, s) dz ds =

l—Qljl fVu(:c, 8) dw ds .
Q Qi

Concerning the constants, 6 can be choosen arbitrarily, while o and ¢ are determined
in Lemma 4.5 and f, and ¢ at the end of § 3.

Let us now prove the theorem, assuming that A and B are correct.

Define

=%, M=%1—p", R,=06"R,.

Consider first two points (@, £,) and (,, t,) with the same time-coordinate, |, — @,| =
= o < Ry/2, and we will assume, that

Qz3,(%;, 1) C Q, fori=0,1.

Then for both points there are numbers n,= n:(®;, %) € NU {oo}, ¢ = 0,1 such
that (by alternative 4)

(2.1) V| =S g on Q4 (z;,4) for j=0,..,m
and (by alternative B)

(2.2) JC |Vau(z, 8) — (Vi) |2 dw ds < 40°u;,,  for je N,
Q3,4
with

Qss = Qrmis?(iy ho) (V’u,)m=3c Vu(wz, s) de ds .

Q.0

Here n; = co means, that A holds for all R,, hence (2.1) for all j € N,.
First of all, (2.2) implies, that (Vu),; is a Cauchy-sequence for ¢ = 0, 1, because

[(Vtt) 131, — (Vo),,4* = 2|Vu(@, 8) — (V)04 + 2|Vu(, 5) — (V)]
and integrating over @, gives

(VU)gya,:— (V) 4P = 4(5“”"%’/;& )
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Therefore (Vu),. converges to Vu(z;, %) (for almost all points) and
(2.3) IVa(@;, to) — (Vu), P < e(0)5~ 262, for je N,.
We consider three different cases.

Case I. - n, < my< oo 2nd 2|w, — | = 20 = R, < B, .
Then there is a number j,& N, such that

(2.4) Boysn<20= By,
and we estimate
(2.5) [Va(z,, ty) — V“(wu ) [P 3|Vl £) — (Var);, ol? -+ 3[Vau(wy, o) — (Vat); ]2+

+ 31(Vu)s,0— (Va)yaP = o070 + 0723) 4 3|(Var); 0— (V)5 a°

with the number j, e N still to choose. The last term in (2.5) can be estimated by
the usual trick:

[(Va)j,0— (V) 0[P = 2|Vula, 8) — (V) of* + 2Vau(@, 5) — (Va);,q*

and integrating over @, N Q, ; gives

950l

‘Qjmoi i 2
2. e Ly / L - —
(2.6) (V)0 — (V) 1 [2< 8 Hrul + 8 TN

Orul. .
Q0,00 Q.1 #

Now we choose j,& N, such that the two terms on the right hand side are equal
in size. We note that
@;,.010% p}, = ey P(87FEYetmo RIYE o= o[ (1 — B) PTGV HOT R .
Let
2.m a:= (1 —p)ré¥2<1, b:i=4d*"<a.

Then we choose §, such that a™bo= a™b", which means

2.8 o 1y = K (i — i it _nb_ .
(2.8) Ng— My K(yl jo)y  with K lna>1

In order to estimate |Q, .M Q, .|, We note that

((1 —_ ﬂ)2—y)no(62)nq+h§ ((1 — ﬁ)2-p)n1(62)n1+51
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iff
(2.9) (1 — y>(e") 5= 1
and

By = Bays, s
because

Mo+ o= 1y + G
by (2.8).

Hence by (2.4)
@100 ol Z o2y oo(L — ) B
CoHecting all estimates gives
[Va(s, ) — Vaa(my, 1) PS5 o (1 — B)2eBin 4 (1 — B)2m67) .
As (1 — B)ymbi:< (1 — p)imbie, if
(2.10) 1—prRoEz=1

we finally get

(211)  [Valy, t) — Valey, 1) < o{1 — BP9 ol — fyswtivs “(%)a

]
with

_In(1—§)
=Ty
Case II. ~ 20> R, , Ny = Mg<< oo,
Then RBy,,< 2¢ < R, for some k € {0, ..., no— 1}, (&1, t) € Q4 (%, %), and therefore

(Va(ay, t) — Vu(zy, 1) [ £ 2 sup  |[Vau| S 2= o(1 — )< c(}%—)a .

—
ngz;c(ﬂ?u sto) o

Case III. — 1If n,= oo, then |Vu| = u, on Qf(2,, %), n € N. Choose fipe N with
B; ;<20 = R; and the same reasoning as in case II yields the result.

Next consider two points of the form (z,, %), (%, #;) and let g?= [t,— 1} Then
case I is given, if i '

205 B (1L — BB R
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and j, is deﬁermined by

< 4P RIH((1 — By 267 1.
The same reasoning as above leads to

[V (@,, §,) — Vu(w,, 1) < (1 — B)rehil2,
Take ay<<1 with (1 — ) = ((1 — f)*-rd%)%, which is possible, if
(2.12) (1—py1> 62,

We may also assume, that §*< 6%, from which we get

(2.13) - [Vae(y, o) — Vit(o, 1)) < (Itol—g' tx!)a‘

2
0

and the same estimate holds in the eorresponding cases IT and III. Combining (2.11)
and (2.13), we see thatb

[Va(a, t) — Vu(a', )] < o(K) o*
for o = |z —2'| 4 Jt — t'|v with
1 @ —p)

"Sireope M T T

dependjng only on N, p, on compact subsets K c (0, T) X 2. ¢(K) depends also on
sup |Vul.

It remains to check the conditions (2.7), (2.9), (2.10), (2.12), which are easily
seen to be fulfilled for # small enough. ' - '
3. — Proof of alternative A.

A similar gtatement in the context of elliptic systems was given by us in [11],

Lemma 4, p. 371—in fact, the method relies on an old device by Moser., Let ¢ < g
and

(3.1) Ve=—In(1— [Vufpp2+e) +Ing.
With B,= (1 + o)R < §R we have by assumption

(3.2) [V, = 0} 0 Qi | = 0104
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and the trivial estimate V= In (g/e) on @5, The aim is to give a better estimate
on some smaller cylinder @% , which will be achieved in three steps.

StEp 1. ~ We have
(3.3) H IVV.[* do ds < cur~»RY (1 + m%)
an v
PROOF OF (3.3). — Take 2uu} (1 — )Vu]z;fﬂ + 5)415 with £= 0 as a test-func-
tion in (1.3). As V, = u2(|Va]?), (1 — |Vulu~2+ &), we get
(3.4) f f (V-2 (VV (2 do ds + f j’mg dw ds + f f Vulp-2 V, &, dods +

4 (p — Z)fiju]”“u;au;an&'m deds<0.

Let #(w,t) denote the usual cutoff function on Qf, with respect to @4y and insert
&= in (3.4). Then by standard estimations

ff [Vulz-3|VV 2 de ds < cff [Val»-2|Vp|2 do ds + fo[V[lni[ dx ds
abr

G%‘R Qgg
+f [V(2;1)] do < ORN(l 4+l (%))

Bin
As |Val2= (1 — g)u? on {kV+> 0}, we get (3.3).

STEP 2. — There are y <1, 6 > 0 (with (1 + 8)(1 + 0) < §), such that either

(3.8) [V =2y ands < oR; [[1v7 .,z dwds

Qﬁ.(ud) Q.‘#a(l‘f'd)
for some @ = ¢(g)p > pu or

(3.7) below is not fulﬁﬂed.

PROOF OF (3.5). — Let 4, (t):= {we B,|V(z,1)> k}. First of all, there is a i€
eI = [ty— R, t,— (0/2) Ri*™*], such that

(3.6) o,z ()] (1 —g) B,

because otherwise [{V,.>0}NQ%L|= f |44 5,(8)] ds > (1 — 0)|Q%,| contradieting (3.2).
H
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Now let p(x) denote the cutoff function on By, 1+ With respect to Bg, and ingert
E =2V (2, ) @*®) xy, 1(t) I (3.4) for any €[ty t,]. Then

fV z,1 2)2defV (z, ) dow + ¢ ff V_ (z, 8)|Vu|2|Vp|? do ds <

Brorse) . . BRy(1+8) X [£1,82]

= (1 - Z) [BafIn? (Z) T oltlo— ) w7 (0Ry)*| Br,a + 9 In (%) '
Hence, if y <1 and 2770 <g/8

| -
(s 5 Bl (1) 505+ o1 ())

We wili assume

(3.7) In? (%) <(14+0)"M: and cs2ln (Q)ggzm.
Then

[ Ay, B+ 0)(t2)] < [Br,a+8)\Br, |+ [4yu, z,t2)| =

< |Brya+o|| N0 + 2 (1 —%))é (1 —-%) | BRy1+0)]

if ¢ small and y close to 1 enough, depending on p. By [7], p. 56, we infer .

[(V(@, to) = y2) do < 0B fIVV 2o

Br a0 Br 140
Integrating over f,€ [t,— ((0/2) B3) 4>~ 6] = [to— (Ro(d + 6))*A*™", 1,] We get
[[r=yurawas< R [IVV. [ aw ds
Uaas+s Q148
with #*-2(1 + 8)*= u*(0/2), hence (3.5).

STEP 3. — Consists of the following lemma, which is a variant of [8], Theorem 6.2,
p. 105. As we must be careful about the dependence on u, we present a proof below.

LEMMA, — Let g,, 6<% and M := sup V.>0. Suppose there is a y <1, such
that for all o< gy, 6= 09, k=M a0

(3.8) sup'{ J. (V—k)?,dw}—{— ” V(V — k), [* do dt

s
= 01(09)"2ff (V—Fk)ydw dt .

(1-o)e
Ba-ose Q’(‘l—a)g
]
%
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(3.9) M5 ofar, v, ) 7=y IR A0
a,

Proor. - Let 7:= §(1 +1/y) > 1, ky=yM and define for se N,

kyi= thy— kor*(z —1) who
Qs 1= ((1 —0y) + 0'0'2‘8) Qo (

*

1-— UO)QO ’ Qs i= Jz"(@s"}_ Qa+1) > Qspa

and let ¢,(») denote a cutoff-function, which equals 1 on B,  and 0 outside BQ:.
Set I, :=”(V— k); do dt. I
Q#

2s
Using Sobolev’s inequality and (3.8); we get:

I'+1§ff (V— ks+1)-21-?9§(m) dwx dt
Qe
Q < o[ M ([ 07— ot (7 bV ds)
u

%, Bos

é C* ¢, 8Up ]Akﬁug.(t) |2IN(QS_ Qs+1)_2Is .
telfy,

On the ofther hand

6113(93— 954—1)—2 2 c‘uz-p» sup {f ( V— ks)i dw}g 'clu'z—p(k»s-};l_ ks)2 sup !Ak!+1’9:(t)l
2 Bos B ﬂé?

which combines to the recursion relation
(310) I, .= o((0s— gs+1)“213)‘*2’N[ﬂ"”‘2’(7cs+1—- k)T < o Tyt gy TP e I

with ¢ depending only on ¢, 7, 65, N and b = 4113/¥ 28 > 1,
Now if 0 < I,,,< Ab II*™¥ with b > 1, then I,~>0, if I,< A-¥2p=¥" (see [8]
Lemma 5.6, p. 95).
As L<[[(V —yM)2 du dt, it suffices, that
Yoo
[[7 = yay o at < ow—ni o™
%,
Hence let &, = max {yM, o({§{(V — yM)2 dz dt)*} and we conclude from I,— 0, that

%,

M<1k,.

As vy <1, the lemuma is proved,
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Now ingerting & = 2(V — k), #? in (3.4) with appropriate cutoff-functions, we
see that (3.8) is valid indeed, where we use again, that [Vu|*> (1 — g)u? on {V > 0}.
But combining (3.3) and (3.5), we see that either

f:’: (V—yM)idmdsgcln(%) for M =supV,,
k. ’ i Q4

%% (146) e
hence

(3.11a) M2:<cln (Q)
€

by the lemma, or (3.7) is not correct which amounts to

(3.11b) M< (148 (%)

Choose ¢ small enough, such that ¢ <(1 4 6)¥In (é/s), which reduces (3.11a) to
(3.11b) and by elementary calculations we get

IVu|< (1 —B)u on Qi
with f# just depending on ¢. Remembering, that 7 = ¢(o)u, we see that also
Vu| < (1 —fu  on Q4 ?

where 4 = d,(0), B = Bule)-

4. — Proof of alternative B.

This proof is essentially done along the lines of DIBENEDETTO and FRIEDMAN [5],
§ 4, § 5. We just have to be careful about the dependence on u and the different
cylinders used. We suppose again |Vu|< p <} on @5 and start with

LemMA 4.1. - Let W= (W) be any vector in RY*", Then

(4.1)  sup f|Vu—W|2dw+ff|Vu;?—2}D2u|2dwds§

a
Brye Qe

< cR—ﬁff (Va2 + pr=2)|Vu — W dz ds .
al :

ProOF. ~ Use the test-function (u;ﬁ— W;;)n2 in (1.3), with » an appropriate cutoff-
function. Noting that |n,| < 2u?—2R-2, the lemma follows by standard estimations.
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The idea of the following is to use the locally linearized system with constant
coefficients with the hope, that the good estimates for its solutions can be nsed to
derive at least not so bad estimates for the function « in question. This technique
was employed with great suecess by the italian school—we refer here to the book

of GIAQUINTA [6]. _ , B
For the following lemma in the elliptic version compare e.g. p. 78.

LEMMA 4.2. — Let V == (V%) e R™*" with u/2 < |V|< 2u and let » be the unique
solution of the linear parabolic System (cf. [8], P. 573)

(4.2) vi— div ([V]P* Vol 4 (p — 2)[V "™ ngiﬁV") =0 in Q%,,

v —u = 0 on the parabolic boundary of @%..
Then we have for all ¢ < R/4, We R™*”

(4.3) f Vo — (Vo) |t de ds < ¢ (%)Nﬂf Vo — W2 da ds

Q’Q‘ Qﬁlz
with some ¢, depending only on p and N.

ProoF. — Let 0,= B,(0) X[~ 0% 0] and consider w(,s) = v(w, + (B[2)z, t,+
+ }u*?R%s) solving

(4.4) wi— (A% wl ), =0 on 0,
with the constant matrix

’:ﬁ: |m”~25 0

i Y af

+ (p—2)| PP ViPL

where we set V= Vu, i< |P|=2.
Note that

e (PP ALmini=< o) for ne R™Y

with 0 < ¢_(p) < ¢, (p) independent of u and V. It is clear, that w is C* inside.
Now differentiate (4.4) and test with

(Vo — W)n?
which gives

f |1D2w| de ds = c(p)jf]Vw — Wirdads.
N

€3
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Repeating this procedure (now with W = 0) for the higher order derivatives gives
for all ke N

)
2 prw
8

Lfﬁia

where D*w denotes the vector of all spatial derivatives of order k. Hence by Sobolev

2dmds§c(p,k)ff{Vw—W]zdwds (
G,

max [D2w[* 4 | D3w|*< e{p, fo [V — W2 da ds .

Now let f(s) wa x,8)dz. Then JC f(%) ,:fJ[ Vw(z, 8) dv ds and

[—r%,0]

f [f(8) — (V)2 ds < 0r4f [f'(8)|2 ds < or® qup [f/(8)]2=< ers sup [V, |2 < ers sup | D3|

___T! ,__,2
with the last inequality following directly from (4.4). Hence

0
f Vw(z, s Vu) Pdw ds 2f f}Vw @, 8) —f(8)|? dew ds 4+ 207¥] |f(8) — (Vw), |2 ds =

~¢* By —r?

Secfr f [D2w|® do ds + Cr¥+esup [DSw[*< Or¥sup {|D*wf+ [D*w|*} <
C, Cy

= OrN+4f- \Veo(w, 8) — W|rdzds  for r< ;— .

—r* Br

Let W= (R/2)W and transform back to get (4. 3)—note, that Hf Vuw(z. s) de ds =
= B2 §f Vo, 5) do ds.
rR/2

Lemyma 4.3. — Let v be given by (4.2). Then for ¢ << R/[2

ff [V — Voft do dt < o= H Vo — V| do dt)””'ff Vo — V] do at
Qg o4 ol

with N*= N if N>2 and N*>2 if N = 2.

ProOOF. ~ Subtracting (4.2) from (1.1) gives
(4.5) (W —of),— div (VP ~2(Vul — Vo) + (p — 2)|V P4 Vi(ul, — v},) V') = div H
and by [b], (4.8), p. 103, we have

B < w3 ([Vu] + [V])o=2|Va — TP
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Multiplying (4.5) by (#'— o), summing over i and integrating over Q%, gives
[V{HH{Vu — Vol da dt gf[ﬂnvu — V| du dt

Q%)a Q%2
hence

s  [[Fu-Vepaeas = [ [(Vu] + |P))o-oVu — Vs do .

Qs Qe
Let r = R/2 and consider

T=[([Vu| + |V ))=4[Vu — Vi do.

B,

Splitting the integrand in
{(W’“I 4+ IVD"’*?)“—”Q’[V% — V]Z“‘”‘”}X{(Wu[ 4 IV)\(P—Z)/‘”(”"”[V’M — Vlz/q+z}

and using Holder’s inequality gives for ¢ > 1:

I= OM"”"”“‘”‘”(f ]V?;& — Vlﬂ)l‘*l/q" (f (]Vu[ + |V |)e-paio| Yy — V]z+zq)”q§
By

< quso-io | L 7) 7 ([ 0m + oo — v

Br B

Now we need the elementary inequality
(4.7) |[URT — |V*V|ze(|U| + |V)*|U~ V]| fora>0,
which is proved in [5], p. 103, and we get

48) 1< e ( f Vi — V|2)H'q ( f |[Vaufs-0i2 Vo — |- V]?Q)llq .

By B

For abbreviation let X = |Vu|e-2/2Vy — |V|e-22V, Estimate the first factor of
(4.8) with the help of (4.1) and take ¢ == s/(s — 2) (hence 1 — 1/g = 2/s). Recall
(4.6), this gives » '

. N : /s
(4.9) - ff Vu— Vo2 de dt < cR2¥/sp2-» (;rz ch Vu —Vi*ds dt)‘2 .
o o

: f (I | X [pelte= dm)“—z)ls it .

II; By
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Now the last factor is estimated by Sobolev’s inequality
[ X [aspe—ar = 0| X[ B + o[ VX [, B

for s = N* on balls B,,.
This implies, using [X[*< ¢|Vu — V|2ur—2

(s—2)/s
f (f !XJ25/(3-—2) dw) a=s OR‘ZNI"‘u”‘sz [Vu — Vlz dz dt +

1 B Qs
-+ cRZ‘l—N/s’ff |Vu|e~2| D2 da dt < cR“2N/3,u1"2f Vu — V|2 do dt

Q¥ oG

by (4.1), which combined with (4.9) proves the lemma.
Next we give a condition, which implies the conclusion of Alternative B (com-
pare [5], Lemma 4.4, 4.5). Keep in mind, that |Vu|=< p on @%,.

LemMA 4.4, ~ Let Ve R¥*™, $u < |Vy| < §p and O € (0,1). Then there are ¢, 9,
positive, small and depending only on &, N, and p, such that

(4.10) JC Vi — V,|* dow dt < gu?

of
implies: For ¢ e N, there holds for @, = Q%

(i) JEJE Vo — (V)12 doe dit < @ff [Vu — (Vu),|? do di;

Qi Qi

(ii) J[:’: [V — (V)2 do dt < ep?;

Qi

(iii) ,Vo—‘ (Vu)zl =

=R

with (Vu); = :Ff Vu dz dt.
Q

REMARK. — We can find a ¢ > 0 of this kind, which is smaller than a given
number, say dy(p) from alternative A.

ProoF. — We note first the triviality that ” (Vu — (Vu),|? do dt é“ Vi — Wrdadt
’ Qi @

for all constant vectors W e RY*™. Then the remark is easily seen to be true, because
whenever we have found a §, such that (i)-(iii) holds, choose & € N with § = 0¥=< dy(p)
and consider those @, with ¢= 0 mod %. Then the lemma is true with this 4.
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We start with V=7V, and use only /2= |V|<2u so that in view of (iii),
we can proceed inductively. By assumption and Liemma 4.3 we get

ff[Vu ~Volrdzdt = cff!Vu — Vol da dt
Q%2 Q%

which implies by (4.3) (if 6 < 1)

(4.11) ff]Vv — (Vo) P do dt = cé”“ff[Vu — Vol2dwdt .

Qfz Q%

Now by lemma 4.3 and (4.11)

[[1vu— (Vu),y do as g”[w — (Vo) o dt < 2”[% — Vol do dt -+
s

47 Q Qlr
+2f f (Vo — (Vo) ,,[? dee dt < o2 - o+ f f Vu — Vo da dt
Qg QF

and we see that

ff]Vu — (V) op|? di dt < (0% - g2/¥* §-+2) fJ( [Vu — V|2 do dt
Yo o < @H Vi — V|2 da dt
QH

if we choose first 6 and then e, depending on @.
We assume additionally that
N 1
(4.12) 0L (1 — O,

It remains to check the third assertion

2§H [V — V|2 do dt <

Qs

[(Vt)sp— V|2 = } ]ff (Vo — Vo) da dt
0z
_g_ G- @2 j:J[ lvu — Voiz dao dt é 65-—(N+2)‘u2§ ilé‘uz .
Q4

We can continue this process, now with V = (Vu),,, if we show that (iii) remains
true. But as above, we have

[(Vu),;mR— (Vu)5i3|2§ @ié—‘Nﬂ’am_ﬁ_ %6— @i,uz(l - @*)2
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by (4.12), hence

(Vupoz— V| £ 3 O(1 — O <
: , =1 S

L~

So all what is left to prove alternative B is the following lemma, differing only
from [5], Lemma 5.1 by the use of the cylinder ¢4 instead of Q.. In order to keep
this paper selfcontained, we give the full proof.

LevMMA 4.5. — There are o, ¢ € (0, %), such that

meas {(z; ) C @+ oo, )| [Vul* < (1 — @)™} < 0l@%r 10
implies: There is a V,e R**™, $u < |V,| < 24, such that
(4.10) ff |[Vu — V|2 de df < su*  holds
o
-with ¢ determined in Lemma 4.4.

PrOOF. — We mimicry the proof of [5], Lemma 5.1. Define W:= (|Vu|t—
— (1 — 2p)u?) and use the test-function 2u';ﬂW %% in (1.3) with 5 denoting a cutoff-
function on @5 with respect t6 @, 5. We get by standard estimations

f f Vulr=2| D2 W, do dt < ¢ f f W2 (Va2 Vgt + |n,]) d dt .

Wrorn Oz

Observing that W, = 20u® on @4, and W, = gu® on

A o= {(w, 1) EQ{I+G)RHVM‘2 >(1— 9),“2}
we get

(4.13) f f [Vulp=2|D*ul* do dtsc(eﬂz)‘%ezﬂ‘*ﬂ (IVulr=2[Vy[* 4 [n]) do di < cou*RY .

Aok Qe
Note that we have also from (4.1)
(4.14) f f [Vulr~2|Druf2 do dt < cu2RY .
Ql(‘l+am

Now define for te If  n

V)= Jf Vau|>-02 Vs @

Busor
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‘We want to prove

(4.15) | f |[Vefo=972 Vo — V(3)|2 o @ < e gt/v Rovee

Ql(‘l +6)B

We need the inequality

f]w]z do < cf(lvwlz)zv/(zvﬂ) - (J' » dw)2l(zv+1)

Be Be

valid for funetions having average zero on B,; see e.g. [7], (2.10), p. 45 with o =
= N/(N +1),r=1,p =2, m =2N/(N 1),
Let w = |Vu|»-»/2Vy — V(1), hence |w|= cu?’?, and we get

f f |[Vafoion — V()| do dt < oRar golern f f (IVasfe—2| D2 |2)¥10040 g @t
n

Q (1+o)R Ql(‘1+u)zz

Split the region of integration into the two parts A%, ., and QF ., Hp\4& 0r: By
(4.13) we get

NIN+1)
[[ (wuimsipsaispines o ae o [[ wa-iprage o )™ ot i
4fit00z Ao

§ GQN/(N—H) MsN/(N+1)RN2/(N+1)ﬂ(2—p)/(1v+1)R(N+z)/(N+1)

and using the assumption of the lemma and (4.14) we have

f f (Va2 | D2uf2) MO0 g gt <

i ax 1 t0in

<o H Va2 D2u? de dt
Q{‘l+v)R

N[N +1) pNY(N +1),

NN +1) U
) 0 AR el <

(N +1) @) (N +1) RV +2)/(F +1)

=op 4 7

Collecting the estimates gives (4.15).
Now define g(f) by V() == g(t)|g()|[**-2"/2; note, that |g(t)|< u. By (4.7)

|[Vu| @202 Vy— V(1) o|Vu|-2|Va — g(t)[*
which together with (4.15) implies

(1 -— Q)(p—z)lzﬂp-z-’.flvu — g(t))? dov dt < ou? @+ RN+ |

A vorm



MicHAEL WIEGNER: On Cy-reqularity of the gradient of solutions, ete. 403

Let (Vau)y( fVu (2, t) dz; then obviously
f;vu (@, 1) — (Vi) |2do«<j[\7u(x, ) — g do
hence

(4.16) f f [V — (Va), ()] do @t < | f Vu — g(t)* . dt + 202108, i \Al s orl <.
ok LIy < ot gl /+D RN+

where the assumption of the lemma was used again.
Next we want to estimate

D= f (1wt = (Vu), * dm at,

which can be bounded by

1 1 2
@LfVu(a:, 1) dx—_ﬁfﬂl_f (‘BR]fVu(m, 8) dw) ds| <

D < Q%] sup

tert

2
=

< Q4| Bgl2 sup Lf (Vu(z, t) — Vu(w, s)) de

t,selly
R

= cu* P R*¥ sup

f (Vu(x, t) — Vu(a, s)) dz

t,sel% B

Let ¢ be a cutoff function on B, With respect to Bg. Then

) f Valw, t) — Va(z, 5) dx)<} j Vale, 1) — Vu(a, 5)) (o) dm] 2By, o \Bal -

B1+oR

Integrate (1.3) from s to ¢, multiply by ¢ and integrate over B .y t0 get

t
B < cuoR I [ [ (vuls v, + V(Vap-)u,)g., do dr' < cuoRY -
8 Biior

+ o(gB)-ute-o f (Vu|o-o/24D2 0 d d .
Qfiioim

Now the right hand side is treated the same way as in the proof of (4.15) above,.
giving

ff [Vulw~2)/2‘_02u| dx ar < ,0#(4—p)/29§RN+1

ron
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and we get
B < culo + gto~!)EY
Therefore

D < eut?R¥*(g + piog~1)2.
Recalling (4.16) gives the final estimate

J.fWu(w, 1) — (V)| do db < opt=2 BN¥2(gU 4+ - g2 - g0~2)

So choose first ¢ and then g suitably small, depending on &, to get

(4.17) ff [Vulw, 1) — Vo |* do dt < eps
o
with V,:= (Vat)z.
It remains to check that u < |Vo| < §p. But |(Vu),| < u trivially; and the other
estimate follows this way: By (4.17) we have

$
([[ wu ao )’ e+ pmapiess
But “

H [Val? dw dt>ff (Val? do dt — [Q<1+G)R\Q§i>” (Vuf? do dt — cou® [Q"[>

Wion A% oz

= (1—op* + )2 (Q%] — cop®[Q%l -

Hence
Vol = pl(1 — o)A 4 o) 2 —coli—ctu = $u

if ¢, o, and & are suitable small.
Thereby the proof of the lemma is completed.

5. -~ Remarks.

1. - One can get global estimates (on [, T]x 2) for Neumann boundary -conditions.

2. — Further generahzatlons concernmg lower order terms and 2 non-zeto Tight ha,nd
side indicated in [B] and [9] are possible.

3. — Existence of weak solutions follows by standard Galerkin-approximation, as an
a-priori-estimate in the spaces defined in (1.2) is easy available.
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