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Abstract

It was proved by Hoeffding in 1963 that a real random variable X confined to [a, b]

satisfies E eX−EX ≤ e(b−a)2/8. We generalise this to complex random variables.
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1 Introduction

A celebrated concentration inequality of Hoeffding relies on the following bound.

Lemma 1.1 ([4]). Let X be a real random variable such that a ≤ X ≤ b. Then

1 ≤ E eX−EX ≤ e(b−a)
2/8.

Given the hundreds of references to this inequality in the literature, we believe
that a similarly tight bound for complex random variables may also have application.
Indeed, our ongoing investigation of complex martingales related to multidimensional
asymptotics encounters such a need. Our aim, therefore, is to find a complex analogue
of Lemma 1.1.

There are several possible complex replacements for the real bounds a ≤ X ≤ b.
A natural choice would be to confine Z to a disk of given radius, but we will use the
weaker condition that the support of Z has bounded diameter. This measure of spread
naturally arises in the study of separately Lipschitz functions [2], also called functions
satisfying the bounded difference condition [1]. For a complex random variable Z, define
the diameter of Z to be

diamZ = inf
{
c ∈ R | P (|Z1 − Z2| > c) = 0

}
, (1.1)

where Z1, Z2 are independent copies of Z,

with the infimum of an empty set taken to be∞.
Since Hoeffding’s bound states that E eX−EX is concentrated near 1, the natural

complex analogue is to bound the distance of E eZ−EZ from 1. This is the nature of our
main theorem.
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On a bound of Hoeffding in the complex case

Theorem 1.2. Let Z be a complex random variable with diamZ ≤ d. Then

|E eZ−EZ − 1| ≤ ed
2/8 − 1.

Since |Z − EZ| ≤ α implies diamZ ≤ 2α, Theorem 1.2 has a simple consequence,
which is a complex version of an inequality used many times in proving Azuma-type
inequalities.

Corollary 1.3. Let Z be a complex random variable with |Z − EZ| ≤ α a.s.. Then

|E eZ−EZ − 1| ≤ eα
2/2 − 1.

Note that in both the theorem and its corollary, distrubutions supported on {−1,+1}
are enough to show that the constants (respectively 1

8 and 1
2 ) cannot be reduced.

Corollary 1.3 and weaker versions of Theorem 1.2 can be proved by simpler means.
For example, the referee noted that Corollary 1.3 (which implies Theorem 1.2 with
constant 1

2 instead of 1
8 ) can be proved by representing complex numbers by real

matrices and applying result of Tropp [8, Lemmas 7.6–7].
Hoeffding actually found the best possible bound on eX−EX in the real case, as we

recall in the next section. In Section 2.1 we show that for d ≤ 3.12 the same tighter
bound holds in the complex case too, making use of a lemma that only random variables
with support of at most three points need to be considered. Then in Section 2.2 we
complete the proof of Theorem 1.2 for all d.

2 Results

Hoeffding’s paper [4] used the convexity of the exponential function to find the
tightest possible bound in the real case. For d > 0, consider the random variable Xd

supported on {0, d} with

P (Xd = d) =
ed − 1− d
d(ed − 1)

= 1
2
− 1

12d
+O(d3).

We find that E eXd−EXd − 1 = G(d), where

G(d) =
exp
(
− e

d−1−d
ed−1

)
− 2 exp

(
ded−ed+1
ed−1

)
+ exp

(
2ded−ed−d+1

ed−1

)
d(ed − 1)

− 1

= 1
8
d2 + 7

1152
d4 +O(d6) = exp

(
1
8
d2 − 1

576
d4 +O(d6)

)
− 1.

We can now state Hoeffding’s bound in its strongest form.

Lemma 2.1. Let X be a real random variable such that a ≤ X ≤ b. Then

|E eX−EX − 1| ≤ G(b− a) ≤ e(b−a)
2/8 − 1,

where the first inequality holds with equality if and only if X = Xb−a + a almost surely.

2.1 The complex case: tight bound for small diameter

Let Z1, . . . , Zn be complex random variables and let c1, . . . , cn be nonnegative real
numbers with c1 + · · ·+ cn = 1. Define the mixture Z = Mixc1,...,cn(Z1, . . . , Zn) by

P (Z ∈ A) =
n∑
k=1

ck P (Zk ∈ A)
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for every measurable set A ⊆ C. A standard property of mixtures is that

EF
(
Mixc1,...,cn(Z1, . . . , Zn)

)
=

n∑
j=1

cj EF (Zj) (2.1)

for any measurable function F : C→ C for which the expectations exist.
Let Zd be the class of all complex random variables Z with EZ = 0 and diamZ ≤ d,

and let Z(k)
d be the subclass of Zd consisting of those variables supported on at most

k points.

Lemma 2.2. Let F : {z ∈ C | |z| ≤ d} → C be continuous. Then

sup
Z∈Zd

|EF (Z)| = sup
Z∈Z(3)

d

|EF (Z)|.

Proof. This is an example of the “Carathéodory Principle”, see for example [3, 6, 7].
Since we didn’t find a statement in the literature that exactly matches our needs, we
outline the proof.

First, by a simple induction, any Z ∈ Zd with finite support can be written as a
mixture of members of Z(3)

d . This is true because, for any finite set of points in C having
the origin in its convex hull, there is a subset of three or fewer points having the origin
in its convex hull. By (2.1), this implies that the lemma holds when Z has finite support.

For more arbitrary Z ∈ Zd, we can use the continuity of F to show that for any ε > 0

there is Z ′ ∈ Zd of finite support such that EZ ′ = 0 and |EF (Z)−EF (Z ′)| ≤ ε. Allowing
ε to tend to 0 completes the proof.

We now return to Hoeffding’s bound using Lemma 2.2 for F (z) = ez − 1. Obviously
|E eZ−EZ−1| = 0 if Z is constant, so we need to consider the cases of 2-point and 3-point
supports. Since a random variable supported on 3 collinear points is a mixture of two
random variables supported on 2 points, in the case of 3 points only the non-collinear
case needs to be considered.

Lemma 2.3. If Z ∈ Z(2)
d , then |E eZ − 1| ≤ G(d).

Proof. The case of real Z is treated in Lemma 2.1. More generally, since EZ = 0,
Z = eiθX where X is real. Since EX = 0, there are x, x′ ≥ 0 such that X has support
−x with probability x′/(x+ x′) and x′ with probability x/(x+ x′). For any odd k we can
calculate that

EXk =
xk

1 + ρ
(ρk − ρ), where ρ = x′/x.

This shows that either X or −X has only nonnegative moments. By adding π to θ if
necessary, we assume that the former holds. Now, recalling that EZ = EX = 0, we can
calculate

|E eZ − 1| =
∣∣∣ ∞∑
k=2

1
k!
EZk

∣∣∣ = ∣∣∣ ∞∑
k=2

1
k!
eikθ EXk

∣∣∣
≤
∞∑
k=2

1
k!
EXk = E eX − 1,

which implies that |E eZ − 1| ≤ G(d) by the real case.

The case of a support of three points is considerably more difficult. To begin, define

d0 = sup {d ∈ R | <E eZ ≥ 0 for all Z ∈ Zd}.

Since <ez ≥ 0 for |z| ≤ π/2 we see that d0 ≥ π/2. The actual value is almost twice as
large.
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Lemma 2.4. d0 ≈ 3.120491233.

Proof. By applying Lemma 2.2 to F (z) = ed−<z, we see that only supports of two points
or three non-collinear points need to be considered.

For supports of two points, we have by definition

inf{<E eZ | Z ∈ Z(2)
d } = inf

`∈[0,d],x∈[0,1],θ∈[−π,π]
<
(
xe`(1−x)e

iθ

+ (1− x)e−`xe
iθ)
.

There appears to be no closed form for the infimum. However, careful numerical
computation shows that the infimum crosses 0 at d = d2 ≈ 3.120491233, which occurs
when ` = d, x ≈ 0.636527202 and θ ≈ 1.9198934984.

If d0 < d2, there is some d < d0 such that

0 < inf{<E eZ | Z ∈ Z(3)
d } < inf{<E eZ | Z ∈ Z(2)

d }.

By the compactness of Z(3)
d , the first infimum is realised by some Z ∈ Z(3)

d with a support
of three non-collinear points {z1, z2, z3}. Define Z(x,y) to be the random variable with the
same support, but mean at x+ iy (thus Z = Z0,0). As is well known, x, y determine the
probabilities at z1, z2, z3 linearly, so for some complex constants A,B,C we have

E eZ(x,y)−EZ(x,y) − 1 = e−x−iy(Ax+By + C)− 1

= C − 1 + (A− C)x+ (B − iC)y +O(x2 + y2), (2.2)

valid whenever x+ iy lies in the convex hull of {z1, z2, z3}.
In order for Z to be a local minimum for the real part, the coefficients of x and y

in (2.2) must be purely imaginary. Therefore, for some v, w ∈ R, A = C + iv and
B = iC + iw. Substituting in these values and writing C = c0 + ic1 we find

E<eZ(x,y)−(x+iy) = c0 + [x, y]R[x, y]T +O(|x|3 + |y|3),

where

R =

[
− 1

2c0
1
2 (c1 + v)

1
2 (c1 + v) 1

2c0 + w

]
.

The smallest eigenvalue of R is 1
2w −

1
2

√
(w + c0)2 + (v + c1)2, which is clearly negative

for c0 > 0. Thus (x, y) = (0, 0) is not a local minimum for E< eZ(x,y)−EZ(x,y) , contrary to
our assumption. This proves that d0 = d2.

Theorem 2.5. If diamZ = d ≤ d0, then |E eZ − 1| ≤ G(d).

Proof. We can rely on continuity to assume that d < d0.
By Lemma 2.2 with F (z) = ez − 1, we have supZ∈Zd |E e

Z − 1| = sup
Z∈Z(3)

d

|E eZ − 1|,

and by compactness the supremum is achieved for some Z ∈ Z(3)
d . We first show that no

such local maximum occurs when the support consists of 3 non-collinear points, implying
that it occurs in Z(2)

d . By Lemma 2.3, this will complete the proof.

So, suppose that the maximum value of |E eZ − 1| for Z ∈ Z(3)
d where the support of Z

consists of three non-collinear points. Let Z(x,y) be the random variable with the same
support as Z, but mean at x+ iy. As in the proof of Lemma 2.4, (2.2) holds. Since we are
assuming this to be a local maximum for |E eZ − 1|, A−C and B− iC must be orthogonal
to C − 1, i.e. real multiples of i(C − 1). That is, for some v, w ∈ R, A = C + iv(C − 1) and
B = iC + iw(C − 1). Substituting in these values, writing C = c0 + ic1 for c0, c1 ∈ R, and
defining ∆ = |C − 1| we can expand∣∣E eZ(x,y)−EZ(x,y) − 1

∣∣2 = |C − 1|2 + [x, y]Q[x, y]T +O(|x|3 + |y|3),
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where

Q =

[
∆v2 + c0 − c21 − c20 ∆vw − c1

∆vw − c1 ∆w2 + c0 − 1

]
.

We now show that Q cannot be negative semidefinite. If ∆ = 0 then E eZ − 1 = 0, which
is clearly not a maximum, so assume ∆ > 0. The trace of Q is ∆(v2 + w2 − 1), which
is impossible for a negative semidefinite matrix if v2 + w2 > 1, so assume v2 + w2 ≤ 1.
The determinant of Q is ∆

(
−w2c20 − (1 − v2 − w2)c0 − (v − wc1)2

)
, which is negative

(since d < d0 implies c0 > 0), which is also impossible for a negative semidefinite matrix.
Therefore, there is no local maximum here and the proof is complete.

We have no reason to believe that Theorem 2.5 requires the condition d ≤ d0, and
expect that it is true for all d. However, the same proof is insufficient since it is possible
for local maxima to occur for supports of three points. However, we can now complete
the proof of Theorem 1.2 for all d.

2.2 Proof of Theorem 1.2

We need two technical bounds whose uninteresting proofs are omitted, and a standard
result on planar sets.

Lemma 2.6. For t ≥ 3 we have

G(t) + 1 ≤ 0.9 et
2/8 . (2.3)√

G(2t) + 1 ≤ 1.65 et
2/8 (2.4)

Lemma 2.7. Let Z be a bounded complex random variable. Then Z is almost surely
confined to some closed disk of radius 1√

3
diamZ.

Proof. This follows from a standard result on convex sets, see [5, Thm. 12.3] for example.
An equilateral triangle shows that the constant cannot be reduced.

Proof of Theorem 1.2. For d ≤ 3, the theorem follows from Theorem 2.5, so we can
assume that d ≥ 3.

By Lemma 2.7, there is some a ∈ C such that |Z − a| ≤ 1√
3
d. We will find two bounds

on |EZeZ |. First we argue that

|EZeZ | ≤ |E(Z − a)eZ |+ |aE eZ |

≤ 1√
3
dE |eZ |+ |a| |E eZ |

≤ 1√
3
0.9 ded

2/8 + |a| |E eZ |, (2.5)

where we have used Lemma 2.1 to bound E|eZ | = E e<Z , and (2.3). On the other hand

|EZeZ | = |EZ(eZ − E eZ)| ≤
√
E|Z|2 E|eZ − E eZ |2

≤
√
E|Z − a|2 − |a|2

√
E|e2Z | − |E eZ |2

≤
√
d2/3− |a|2

√
1.652ed

2/4 − |E eZ |2, (2.6)

where we used Lemma 2.1 to bound E e2<Z , and (2.4).
Taking the average of (2.5) and (2.6), we have

|EZeZ | ≤ 1√
3
ded

2/8
(
0.45 + 0.825αβ + 0.825

√
(1− α2)(1− β2)

)
≤ 3

4
ded

2/8, (2.7)
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where α, β are defined by |a| = 1√
3
αd and |E eZ | = 1.65βed

2/8, and we have used that

xy +
√
(1− x2)(1− y2) ≤ 1 for 0 ≤ x, y ≤ 1.

We can now complete the proof. We have

E eZ − 1 = E e3Z/d − 1 +

∫ 1

3/d

EZesZ ds.

Since diam(3Z/d) ≤ 3, we have by Theorem 2.5 that |E e3Z/d−1| ≤ e32/8−1, and since we
are assuming that d ≥ 3, (2.7) gives that |EZeZ | ≤ 1

4d
2s ed

2s2/8 for s ≥ 3/d. Therefore,

|E eZ − 1| ≤ e3
2/8 − 1 +

∫ 1

3/d

1
4
d2sed

2s2/8 = ed
2/8 − 1.

−8

−6

−4

−2

2

4

6

8

108642−2−4

d=2

d=3

d=4

d=5

Figure 1: Boundaries of S(2)
d (black) and S(3)

d (red) for d = 2, 3, 4, 5

2.3 Conclusions

In conclusion, we note some questions that we have not answered. Our prediction that
Theorem 2.5 holds for all d is one of them. We can also ask for an exact description of the
boundary of possible values of E eZ−EZ when diamZ ≤ d. Define Sd = {E eZ | Z ∈ Zd}
and S(k)

d = {E eZ | Z ∈ Z(k)
d }.

Figure 1 shows S(2)
d and S(3)

d for d = 2, 3, 4, 5. Note that manifestly S(2)
d and S(3)

d are
not always equal. However it could be that the parts of them in the right half-plane are
equal.

By considering mixture with an identically-zero random variable, we find that the
region Sd is star-like from the point 1, and therefore simply connected. Lemma 2.2
applied to functions of the form F (z) = < ez−iθ shows that Sd and S

(3)
d have the same

convex hull, and therefore are the same if S(3)
d is convex. However, S(3)

d is not always
convex; there is a shallow indentation on the left side when d = 3, for example. There is
also an indentation where the red and black curves in the figure meet.
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