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A cosmological version of Arnowitt, Deser and Misner's second coordinate conditions in 
their canonical treatment of general relativity is proposed in such a way that it is compatible 
with the effect of cosmic expansion. In terms of these coordinate conditions, N ariai and 
Kimura's canonical formalism of the cosmological gravitational field is refined so as to be 
appropriate in various isotropic problems. It is shown that the refined formalism is suitable to 
deal with the problem of a spherically symmetric matter·distribution in the universe. 

§ 1. Introduction 

It is very difficult in general to solve Einstein's gravitational equations 
because of their nonlinearity. In addition, their dynamical and constraint parts 
mix with each other, so that the dynamical behavior of a general gravitational 
field cannot be pursued so easily. In view of this, Arnowitt, Deser and Misner 
(we abbreviate as ADM in what followsr a

) proposed a canonical formalism for 
the gravitational field by dividing its field variables and their equations into 
dynamical and constraint parts. Their original motivation was to search for the 
quantization of Einstein's gravitational field, but their canonical formalism is also 
useful to the examination of a classical gravitational field. 

On the other hand, by virtue of astronomical observations of pulsars, X-ray 
sources and the 3K background radiation, the existence of a strong gravitational 
field such as those for neutron stars, black holes and an early stage of the big-bang 
universe became clear for the past fifteen years. 

As regards the problem of gravitational collapse attacked originally by Op
penheimer and Snyder,2) Misner and Sharp3) developed the ADM-like formalism for 
a spherical gravitational collapse and it was applied by various authors4

) to their 
numerical works. An extension of these works to the case of non-spherical 
gravitational collapse (in which the emission of gravitational waves plays an 
important role) was performed by Smarr,5) Piran6

) and Nakamura-Maeda-Miyama
Sasaki.?) As regards the dynamical problem in a homogeneous and isotropic 
universe, there are three works to be picked up, i.e., Lifshitz's linear theory8) of the 
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gravitational instability in the universe, Tomita's extension9
) to the second order 

and Nariai and Kimura's canonical formalism 10) (an ADM-like approach to a 
cosmological gravitational field). Moreover, the dynamics of a homogeneous and 
anisotropic universe was developed by the Soviet group consisting of Lifshitz, 
Khalatnikov and Belinskii,11) and Misner's groupl2) relying on the ADM formalism. 

The purpose of this paper is to refine N ariai and Kimura's canonical 
formalism by introducing an extended version of ADM's isotropic coordinate 
conditions 1b) which is reconciled with the effect of cosmic expansion. It is shown 
that such a refinement is suitable to search for the problem of an inhomogeneous 
and spherical distribution of matter immersed in the isotropic expanding universe. 

In § 2, the refinement in question is performed in terms of a suitable set of 
isotropic coordinate conditions. It is shown in § 3 that the refined formalism 
leads easily to the Schwarzschild-de Sitter space-time as an isotropic and vacuum 
solution of the Einstein equations with the cosmological term. 

§ 2. The refinement of Nariai and Kimura's canonical formalism 
in an isotropic expanding universe 

Let us consider an isotropic expanding universe specified by the metric 

(2·1)*) 

and by Friedmann's cosmological equations 

{
Pb=Z(~2_~), 

Pb+Pb- -4h, 

where ICt) is a scale factor such that h= ill (Hubble's expansion parameter), A 
the cosmological constant, and Pb, Pb stand for the background density and 
pressure, respectively. 

Next, we shall consider a general gravitational field specified by the metric 
tensor 4 gl'v and the source matter as a perfect fluid whose density, pressure and 
four-velocity are P, P and ul' (4gI'VUI'U"= -1), respectively. According to Nariai 
and Kimura's canonical formalism 10) in the isotropic universe with the metric 
(Z·l), the Lagrangian densities for 4gl'V and its source matter are, respectively, 
given by 

*) The metric tensor 4gpv and its background value (4 gpv h are assumed to be of the signature 
(-+++) with xo==! and x'==(x. y, z). Moreover, the system of units such as c=2x=1 (x is 
Einstein's gravitation constant) is used. 
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and 

1: m = gl12 [(p+ p )f]Uo + N {p- (p+ p )f]2} - (p+ P )f]NiU i ]. 

In the above expressions, various symbols are defined by 

N==( _4g00tI12, Ni==4 g0i , 

gU==4 gU , gij==4 g ij+ N iN j/N 2, g==det(gij), 

;ru == ( - 4 g )l12{ 4 r:iz" - ginnr/iq gpq} gi m gjn, ;r == gU;rU, 

f]== - NuO = -( UiU i + 1)1/2
, Ui == guu

j
, 
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(2·3) 

(2·4) 

(2·5) 

and R is the three-dimensional curvature scalar formed from gij. Moreover, the 
symbols" I " and", " denote covariant differentiation with respect to the metric 
tensor gu and ordinary one, respectively. 

Taking the variation of the action 1= J (1: 9 + 1: m) d4 x with respect to the 
dynamical variables (;rij, gu) and the constraint variables (N, N i ), we obtain the 
dynamical and constraint equations in the following way: 

and 

:\ g '-2NgI12(","_~g .. ",")+ I\T· 1·+N·I· Ut iJ- Itl; 2 Ull l\1zJ Jl, 

g(R-2J1)+ ~;r2-;ru;rU+g{p-(p+p)f]2}=O, 

2;rUu-g I12 (p+p)f]u i =O. 

(2·6) 

(2·7) 

(2·8) 

(2·9) 

According to ADM's canonical theory, all of the field variables gij and ;ru 

cannot be independent to each other, because of the existence of constraint 
equations like Eqs. (2·8) and (2·9), together with the indeterminacy of gauge 
characteristic in the Einstein theory. In other words, among the twelve field 
variables gu and ;rii, truely dynamical ones are their transverse traceless parts 
gu TT and ;rij TT such as gl;j = g2' == 0, etc. Moreover, in the present case, We have 
to take into consideration the effect of cosmic expansion, as shown by Eqs. (2·1) 
and (2·2). In view of this, we performed in Ref. 10) the following decomposi-
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1 
- 2 TT 1 { T / 2) T } gu-(j -2)Ou+gu +20Ug -(I V g ,ij +gi,j+gj,i, 

J[ii = - 2hjou + J[ij TT + ~ {o uJ[ T - (I/ v 2 h T,U} + J[i,j + J[j,i , (2°10) 

where 

in which the symbol (I/ V2) stands for the inverse of Laplacian operator V 2 

=;F/OXiOX i with an appropriate boundary condition. In the above decompositon, 
we have taken account of the coordinate conditions to be specified later. 

On inserting Eqs. (2 0 8) and (2°9) into the original action I (from which there 
arise Eqs, (2 ° 6) and (2 ° 7) and making use of Eq, (2°10), we obtain such a reduced 
action as 

1= Jd4 x[ J[ijT7 OtgijTT + V 2g TOt{ - ~ 0/ V 2jJ[T}-2J[U,jOtg i 

+2hP(J[T +2J[i, i)+4hP+2(gT +2gi,diMhf)+gl/2(p+p)!3uo]. (2°11) 

In order that the above action may be reduced further to the required form I 
= f d 4 x{ J[ijTT OtgijTT - !J-(gU TT

, J[ijTT, t)}, we must impose a suitable set of coordinate 

conditions (the fixation of gauge), The coordinate conditions adopted in Ref, 
10) were 

(2°12) 

However, under these coordinate conditions, the metric three-tensor gij is not 
isotropic, even when g]T = O. (In the original ADM's theory, this led to a variety 
of complexities.) 

The aim of our refinement is to remedy this weak point in Ref, 10). For 
that purpose, let us introduce the following coordinate conditions resembling those 
in Ref. Ib): 

where 

1
- ~ 0/ V2)(J[T +2J[i, i- x)= JXOdt/J(t), 

1 / 2 T _ i gi-4 0 V )g , i-X, 

(2 0 13) 
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X==6h/(1- FI g I/6). (2-14) 

Then we can reduce Eq. (2 -10) to 

1 

- 2 4 TT - ( 1 -2 T)I/4 gij-f (t)¢ Oij+% , ¢= 1+2 / g , 

1[u= -2hfoij+1[ijll + jf'j, (2-15) 

where 

-ij- 1 {" T (1/ V2) T }+ i + j 1[ =2 Uij1[ - 1[ Jj 1[.J 1[ J (2 '16) 

which, together with Eq. (2·13), leads to jf!;=X. The first of Eq. (2'15) shows 
the isotropy of gij when gi/'T=O. By making use of Eq. (2'13), we can further 
reduce Eq. (2·11) to the required form 

J= jd4x(1[ijflOtgijTT-3{), (2·17) 

where 

(2'18) 

Similarly, the total generator G obtained from the variation of J at the end point 
is of the same as Eq. (4'8) in Ref. 10), i.e., 

(2'19) 

where r:J,..o == ( -!J-{, - 21[ij,j). 

So far as the linear approximation to the dynamical equations for gijrr and 
1[1;" (which corresponds to!J[ being quadratic with respect to these dynamical 
variables) is concerned, the refined formalism is equivalent to the old one in Ref. 
10 ). 

§ 3. Derivation of the Schwarzschild-de Sitter solution 

As already mentioned, our refined formalism obtained in § 2 is useful to look 
into the dynamical problem of a spherical distribution of matter in the isotropic 
expanding universe universe with the metric (2'1). To exemplify the situation as 
simply as possible, we shall consider an isotropic and vacuum universe with a 
positive .11, so that we must have p=p=O in Eqs. (2'6)~(2-9) (which further 
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provide us with Pb=Pb=O in Eq. (2'2)). Accordingly the only background uni· 
verse is the de Sitter universe specified by 

Since we are considering an isotropic case such as g'jTT = l[iju = 0, Eq. (2 '15) 

is reduced to 

{
gu= j2(t)¢ 40U, .. 

l[lJ= -2hjou+ if';, 

where it follows from Eqs. (2'14), (2'16) and (3'2) that 

if" = x=6hj(1- ¢2), 

N=N(t, r), N,=O. 

(3'2) 

(3'3) 

(3'4) 

On inserting Eq. (3'2)~(3'4) and p=p =0 into Eqs. (2'8) and (2'9), we obtain 

where 

(3. 5) 

(3,6) 

(3.7) 

Equations (3'6) and (3'7) show the transverse traceless property of Cu, i.e., Cu 

= C,/T This means that c u = 0 in the presen t case, so that Eq. (3. 5) is reduced 
to 

(3·8) 

Since the metric three-tensor gu= j2( t)¢4(t, r)ou should tend to the background 
one for the de Sitter universe, i.e., (gUh=j2(t)OU, when 1'---;00, the required 
solution of Eq. (3'8) is given by 

¢=I+C(t)/r, (3·9) 

where C(t) is an arbitrary function of t. Then we can also rewrite Eq. (3' 2) as 

{ 

g,j= j2¢4ou, 

l[ij= -2hj¢2ou. (3'10) 

N ext we shall turn to the dynamical equations (2·6) and (2' 7) with P = P = O. 
On inserting Eq. (3'10) into Eqs. (2'6) and (2'7) with i* j, we obtain 
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(3'11 ) 

(3 '12) 

By virtue of Eqs. (3'4) and (3'9), we easily see that Eq. (3'11) holds identically 
and that Eq. (3 '12) gives rise to 

N =1- C(t)/J'-=2/¢-1 
I+C(t)/r . 

Then it follows from Eq. (2·6) with i= j that 

Ot(f2¢4) = 2(2/1; -1 )hj2¢4, 

which, together with Eq. (3·1), leads to 

(3'13) 

(3'14) 

In order that Eqs. (3'9) and (3'14) may be consistent to each other, we must have 

m 
<J;=2j(t)r' (3'15) 

where m is a positive constant to be identified with the central mass. Now it is 
not so difficult to examine that Eq. (2' 7) with i = j is automatically satisfied by 
Eqs. (3·10), (3'13) and (3·15), together with p=N,=O. 

The obtained solution is specified by the metric 

d ,2- -( 1- <J;_)2dt2+j2( t)(1 + ,/,)4" d i i· j 
s- 1+<J; 'P OuXGX, (3'16) 

which, together with Eqs. (3'1) and (3·15), represents the Schwarzschild·de Sitter 
solution. 13

) 

§ 4. Concluding remarks 

Since the metric three-tensor g/j given by Eq. (2 '15) consists of the isotropic 
part (ex: a ,j) and the dynamical one guTT

, our refined formalism is suitable to 
search for cosmological counterparts of Arnowitt and Deser's work l4

) for various 
conditions of flatness in general relativity and of Choquet-Bruhat and Deser's 
work l5

) on the stability of flat space. These problems will be dealt with in a 
separate paper. 

Here, it would not be useless to point out that Nariai's model (when 11=0)16) 
for a spherical gravitational collapse with pressure gradient also deals with a 
spherically symmetric space-time specified by Eq. (3'16) with <1,-1 = j( 1)(1 + ar2)1!2 

(a = const > 0) in which f(t) is a regular and positive function of t. 

Moreover, the problem worked out in § 3 will also be extensible to the case 
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where the background space-time is a more realistic (e.g., the big-bang) universe 
rather than the de Sitter one. 
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