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ON A CELL ENTROPY INEQUALITY FOR DISCONTINUOUS

GALERKIN METHODS

GUANGSHAN JIANG AND CHI-WANG SHU

Abstract. We prove a cell entropy inequality for a class of high-order dis-

continuous Galerkin finite element methods approximating conservation laws,

which implies convergence for the one-dimensional scalar convex case.

1.  INTRODUCTION

In [3] Cockburn and Shu defined a class of discontinuous Galerkin finite ele-

ment methods for conservation laws (the multidimensional case was discussed

in [4]):

(1.1) ut + div f(u) = 0.

The entropy solution of (1.1) also satisfies

(1.2) U(u), + div F(u) < 0

in the distribution sense, for any convex function U(u) and consistent entropy

flux F(u) satisfying F'(u) = U'(u)f'(u). The scheme is obtained in the follow-

ing way: first a triangulation ^ is chosen. In one space dimension, ^ is Just

a collection of subintervals Ij = (*,-_ i , xj+i), which are not necessarily of the

same length. We will use the notation Ax, = xj+1 - x¿_ i , h = max7 Axj and

Xj = \(Xj_i -(- xJ+i). In two and more space dimensions, ^ is a collection

of triangles, tetrahedrons or other simple geometric objects. The solution space
Vh is defined as the collection of all piecewise polynomials of degree up to r

for an (r + l)st-order method. The functions in Vh are allowed to have dis-

continuities across element interfaces. The conservation law (1.1) is multiplied

by a test function v £ Vh , integrated over an element K £ ^ > and formally

integrated by parts to shift the spatial derivatives from f(u) to v . The result
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is:

/ ut(x, t)v(x)dx+ Y     f(u(x, t))-nv(x)ds
(1.3) K e*dK e

- / f(u(x, t)) • grad v(x) dx = 0,
Jk

where dK is the boundary of the element K and n is the unit outward nor-

mal vector. Up to now, this is just the standard discontinuous Galerkin method.

Two things from the finite difference methodology are then used in [3], [4]: one

is the monotone or is-flux (approximate Riemann solver for systems) to define

the trace of the physical flux f(u) at the cell interface; the other is a local non-

linear limiter which limits the values of u at the cell interface by the differences

of the means of u over elements. With these two ingredients, it was proved in

[3] and [4] that the schemes are formally high-order accurate, measured by lo-
cal truncation errors in smooth regions including at extrema, are total-variation

bounded for one space dimension, and are maximum-norm bounded for any

space dimensions. The only thing missing is the entropy condition: in [3],

we were able to prove entropy consistency for the square entropy U(u) = \

for one-dimensional convex f(u) with an h -independent modification to the

scheme, following the idea of Osher [12]. We were also able to prove entropy

consistency for all convex entropies with an ^-dependent modification to the

scheme. The h -dependent limiters make the proof of high-order schemes easy,

but they are not very desirable for practical computations, because they usually

limit the slope near the discontinuities stronger than necessary, and essentially

flatten the solution to piecewise constants there for a fine mesh. They also

destroy the self-similarity of the scheme.
The entropy condition seems difficult to prove for high-order finite differ-

ence schemes. Osher and Tadmor proved [13] that finite difference schemes

(those which evolve only the means) which satisfy cell entropy inequalities for

all convex entropies can be at most first-order accurate. Even for one entropy

inequality (say for the square entropy), for one space dimension and for convex

f(u), the proof is extremely elusive if one does not modify the scheme. Osher

[11] and Nessyahu and Tadmor [10] were able to get such cell entropy inequal-

ities, for the square entropy and for the second-order MUSCL scheme, with

some A-independent modifications; Yang [ 14] was able to prove convergence of

the unmodulated second-order MUSCL scheme, using a global analysis rather

than relying solely on cell entropy inequalities; Lions and Souganidis [8] proved

convergence of the second-order MUSCL scheme for steady-state Hamilton-

Jacobi equations and conservation laws. There are also many results which

prove entropy consistency and/or convergence using Ä-dependent limiters or

modifications for high-order schemes: for example, Coquel and LeFloch [7] for

finite difference; Johnson, Szepessy, and Hansbo [9] for streamline diffusion fi-

nite element; Cockburn, Coquel, and LeFloch [5] and Cockburn and Gremaud

[6] for high-order finite volume, streamline diffusion or discontinuous Galerkin

schemes with ¿-dependent "shock capturing" terms. These results are usu-

ally more general (many space dimensions, nonconvex fluxes, etc.). However,

as we have indicated before, A-dependent limiters or modifications should be
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avoided for practical computations if at all possible. More recently, Bouchut,

Bourdarias, and Perthame [2] obtained a second-order one-dimensional scheme

which is consistent with all entropy conditions and does not use ¿-dependent

limiter. A key ingredient of [2] is to evolve both the mean and the slope and to

use the whole function (not just the mean) to obtain cell entropy inequalities.

Discontinuous Galerkin methods also fall into this category (evolving the whole

polynomial in a cell, rather than just the mean), and we use this fact strongly

in this paper.

In §2 we prove a cell entropy inequality using the square entropy U(u) = \

for the unmodulated semidiscrete discontinuous Galerkin method of [3], [4].

The proof is remarkably simple and does not even use any nonlinear limiters.

It thus works for any spatial order of accuracy. As far as we know, all the

previous cell entropy inequalities without ¿-dependent limiters must restrict

the slope of a function by ¿- minmod(A+«,, A-Uj) (this means that the dif-

ference at the interface,  u+ , - u~ , , must be of the same sign as that of
j+2       j+i

Uj+i- Uj, i.e., no "sawtooth" is allowed in the reconstruction), hence cannot be

higher than second-order accurate. The result in this paper illustrates the poten-

tial of discontinuous Galerkin methods, or equivalent Hermite-type finite

difference/finite volume-type methods, which evolve the whole polynomial in

the cell rather than just the mean. Time discretization is discussed in §3.

2. Cell entropy inequality for the square entropy

The discontinuous Galerkin scheme in one space dimension, defined in [3], in

its semidiscrete form without slope limiting, is the following: Find «(•, t) £ Vh

such that, for all v £ Vh and all subintervals Ij,

I
(2.1)

ut(x, t)v(x)dx + hj+i(t)v(x   , ) - hj_i (t)v(x+_, )
J     I J' 2 J      2 J     1

- [ f(u(x, t))vx(x)dx = 0.
Jij

Here, hJ+i(t) = h(u(x. , , t), u(x+ . , t)) is a Lipschitz continuous monotone

flux (i.e., h is nondecreasing in the first argument and nonincreasing in the

second argument), or more generally, an £-flux as defined by Osher [11]:

(2.2) (h(u~,u+)-f(u))(u+-u-)<0

for all u between u~ and u+ . Some examples of the commonly used monotone

fluxes can be found in, e.g., [3].

If we take v(x) = u(x, t) in (2.1), we get

j (u (x,t)\ dx + hj+^,t)u,x-   ) t) _ h}_{(t)u(x+_{, t)

(2.3)J,'K

- / f(u(x, t))ux(x, t)dx = 0.
Jij
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We define

(2.4) g(u) = j" f(u)du

and rewrite (2.3) as

(2.5) J (^Y^) dx + PM(t)-Fj_i(t) + Aj(t) = 0,

where

(2.6) Fj+{(t) = hj+i(t)u(x7+i, t) - g(u(xT+{, t))

is consistent with the entropy flux for the square entropy,

/U rUf'(u)udu = f(u)u- I  f(u)du = f(u)u-g(u),

and

Aj(t) = - hj_k(t)(u(x+_, , t) - u(xj,, t))
■>      2 J     2 J     2

(2.8) +g(u(x+_, ,t))-g(u(x; , , t))

= - (hj_i(t) - /(í))(m(x+, , 0 - u(x- ., i)) > 0,

where we have used the mean value theorem and the definition (2.4) of g(u)

in the second equality; £ is between u(x~ , , t) and u(x+ , , t), and the last
J i J j

inequality is due to the property of E-flux (2.2).

We have thus proved the cell entropy inequality

(2.9) jf (^y^) dx + Fj+l2(t)-Fj_Í2(t)<0

for the square entropy U(u) = y . Notice that we do not need any nonlinear

limiting at this stage. However, nonlinear limiting as introduced in [3] and [4]

will not destroy this cell entropy inequality (see next section). The cell entropy

inequality (2.9) trivially implies L2 stability of the scheme (again without even

using the nonlinear limiting):

but it is much stronger. For example, if f(u) is convex and we use the nonlinear

limiting [3] to obtain a total-variation boundedness for the solution, we will have

convergence towards the unique entropy solution.

The same entropy inequality can be obtained for many space dimensions
with arbitrary triangulations:

(2.11) / (t^iA\ dx+Y   ÍEe,K(x,t)ds<0,
Jk\        ¿        /, e€dKJe

where Fe¡¡c is consistent with F • n¡c for the entropy flux F in (1.2) and the

outward normal «#, and Fe,K — —F~e,K'  f°r the two neighboring elements

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON A CELL ENTROPY INEQUALITY FOR DISCONTINUOUS GALERKIN METHODS        535

K n K' = {e} (conservation). We omit the details of the derivation since they
parallel those for the one-dimensional case.

We have the following two remarks:

1. If we try to do the same estimate for a general convex entropy U(u),

we can obtain exactly the same cell entropy inequality modulo an interpolation

error term:

(2.12)    - / (u(x,t)t + f(u(x,t))x)(U'(u(x,t))-UU'(u(x,t)))dx,- ( (u
Jlj

where Ylv is a projection into the space Vh which interpolates at the two end

points of I i. This motivates the following ¿-dependent modification of the

scheme, which is similar to the "shock-capturing term" added to the streamline
diffusion method in Johnson, Szepessy, and Hansbo [9] and in Cockburn and
Gremaud [6]:

/ u,(x, t)v(x)dx + hj+i(t)v(xj+^) - ¿y_,(rMx+_J

(2.13) - / f(u(x,t))vx(x)dx

+ Ch í \ut(x,t) + f(u(x,t))x\   "x(¡X't] vx(x)dx = 0,
Jlj \UX{X , l)\

where C is a suitable positive constant. This, together with an L^ bound
which can be obtained by using nonlinear limiters [3], will give us a cell en-

tropy inequality for arbitrary convex entropy at least for the r = 1 (second-

order) case, hence convergence for any nonconvex flux f(u) in this case. For

general r, more ¿-dependent modification is needed. Notice that by adding

this modification, the formal order of accuracy of the scheme is not changed:

\ut(x, t) + f(u(x, t))x\ is just the local truncation error. A similar argument as

in [9] shows that the modification does not destroy convergence towards weak
solutions (conservation).

2. The so-called discontinuous Galerkin method can also be recast as a finite

difference scheme (Hermite type: where one evolves both the mean and the

slope, maybe more). For example, the second-order case is just the follow-

ing scheme for the mean Uj(t) and the slope Sj(t) where u(x, t) = Uj(t) +
Sj(t)(x-Xj) in cell Ij (see [3]):

im = -^fJ+hit)-fj-hit)\,

(2.14) ¿*j<0 = -¿Lkj(0 + ¿-j(0]

+ T^ S fiüjit) + Sj(t)(x-Xj))dx,

where

(2.15) fj+ï(t) = h (üj(t) + ^-Sj(t), üj+i(t) - ^-W)) •
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We have thus in effect proved cell entropy inequalities for such high-order

Hermite-type finite difference schemes without using the help of any nonlin-

ear limiting. Of course, to get convergence, one must use the nonlinear limiting

to obtain Lx and/or total-variation bounds.

3. Time discretization

We discretize (2.1) in time by the following class of methods:

<"+'(*)-M"(x)„,„w„, un+e

(3.1)

where

(3.2)

t  U"+ (X)      «n(x)v,x)dx + hn+Ov,x-■ J.ftn+W    )
J[ Ai J+2       J+2 1-1       )   t

- [ f(u"+e(x))vx(x)dx = 0,
Jlj

un+e(x) = (1 - 8)un(x) + 8un+x(x),

h"^ = h(un+e(x7  ),u"+e(x¡+l)).
J'2~ J^î J^l

For 0 = 0, this is the Euler forward discretization; for 8 = 1, it is Euler

backward, and for 8 = \ , Crank-Nicolson.

If we take v(x) = un+e(x), we obtain just as before

(3.3) / un+l{x\~un{x)u"+e(x) dx + Fn+,e - Fn+° < 0,
Jj. At J+i        J   ï

where

(3.4) F"+.fl = ¿"+fM"+0(x-+1) - g(u"+e(x-+,))
J+ï J+2 J+1 J+2

with g(u) defined by (2.4). We can rewrite (3.3) as

L(u»+x(x))2-(u»(x))2 dx + pn+6 _ pn+e

2 At i+\       i~\

<3'5> +(e^)j(J^il^tdx<o.

Thus, a sufficient condition to get the cell entropy inequality

i yw-mr<, + «_f„f <0
v     ' J,. 2At i+i       J-\ -

is just 8 > j , i.e., implicit schemes from Crank-Nicolson to Backward Euler.

Up to now, we have not considered the nonlinear minmod-type limiters in

[3] and [4]. These limiters will render the scheme total-variation stable (in one

space dimension) or L^ stable (in many space dimensions). We have to make

sure that these limiters do not destroy the cell entropy inequality (3.6). This

turns out to be a simple issue: suppose un+x(x) is the solution obtained from

the scheme (3.1) without limiter, then projected to get the solution at time level

n + 1 by some minmod-type limiter un+x(x) = Pun+X(x) (this is the procedure
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adopted in [3] and [4]). The above derivation for the unlimited scheme will
give (3.6) for ün+x :

(3 ?) ^   {ùn+i{x))2^{un{x))2dx + ^ _ ^ ^ q _

hence, a sufficient condition to get the cell entropy inequality (3.6) for the lim-

ited (projected) solution u"+x is to require the projection P to satisfy

(3.8) f(Pw(x))2dx< /(w(x))2dx
Jlj Jf

for all polynomials w(x) of degree up to r (recall that r + 1 is the order of the

scheme), i.e., P does not increase the L2 norm of any rth-degree polynomial

in cell I j. Notice that this is the idea used in [2]. An easy way to ensure

condition (3.8) is to write w(x) and Pw(x) as expansions of (scaled) Legendre

polynomials p¡(x) as in [3]: w(x) = ¿~2r¡=oaiPiix) anc* Pw(x) = Y!¡=o°iPiix) ■

A simple sufficient condition to ensure (3.8) is now just \b¡\ < \a¡\ for all /,

which is easily checked to be correct for the Px case ( r = 1) in [3] and also for

the general Pr case with similar minmod limiters on a¡ (see also [1] for such

limiters).
It is also possible to get cell entropy inequalities for certain explicit time

discretizations. For example, with leap-frog time discretization,

(3.9)

j Un+l{x)~Af~1{x)v(x)dx + ¿J+i(0M*7+i) -h,_k(t)*v(x¡_k)

- [ f(un(x))vx(x)dx = 0,
Jlj

we can obtain, by taking v(x) = un(x),

¡U»+X(x)u»(x)-U»(x)u»-X(x)d p    L_Fni<0.
v       ' Jj. 2At J+2       J-i -
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