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(*) in § 2 because f,[Fr(R®)] = f.(C) and this set les in V. Accordingly
(BT YV, (y)

Now for « sufficiently large, say » > N; > N, we have ,¢R and
Yo = Hn) e Vo (y). However this gives z,¢fy (B) C V,(y) so that g(y,,2,)
< 20 = @, confrary to relation (i) (see first paragraph of the proof in
§ 4), Thus the supposition of non-uniform convergence on 4 leads to a con-
tradiction.

7. Conclusion. Since for s real continuous function on the whoele
real axjs, or on a connected open set of real numbers, monotoneity of
the function is equivalent to quasi-openness of the mapping gemerated
by the function, the theorem just proven gives at once the result: any
sequence of monotone non-inereasing continwuous real functions on the whole
real amis which converges at an everywhere dense set to o function f(z) which
is continuous for all real @, necessarily converges almost uniformly to flz).

It seems likely, however, that our theorem for guasi-open mappings
may be of greater interest in connection with sequences of functions of
& complex variable or of mappings on surfaces and other more complex
spaces. The setting provided by a closed algebra of complex valued func-
tions seems of special interest and it is proposed to study this in a later
paper.
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ON A CERTAIN DISTANCE OF SBTS
AND THFE CORRESPONDING DISTANCE OF FUNCTIONS
BY
E. MARCZEWSEKI axp H. STEINHAUS (WROCLAW)

' T ig well known that the meagure of the symmetrie difference of
two sets can be considered as a distance of sets (so called dz‘smno_e of
Préchet- Nikodym-Aronszajn): g(A, B) = u(4-=B). This djstajnce is a
particular case of the distance in the space of Lebesgue infegrable

funetions. ‘
This paper is devoted to the study of another distance of sets, de-

fined by the formula
pA=B)  o(4, B)
WA +B)  wA+B)

o{d, B) =

and the corresponding distance of funetions. ) o
The distance o seemsy to be useful in several practical applications
and especially in some biclogical problems (see n®3 and our paper on

' <. gystematical digtanee . of hiotopes [2]).

1. 8BTS

1.1, Metric g. Let (X, M, p) be a o-finite s-measure space. Let us
denote by M, the class of all sets A<M with p(4) < oo, and by g, the
well-known distance of sets 4, BeM,:

- e.(4, B) = n(4d-B),
where A—=B denotes the symmetric difference of A and B.

The index x4 will be omitted in this case and in other analogous ones,
when no misnnderstanding is possible. ) 168
Tet us recall the fundamental properties of o (see e.g. [1], B.

and 169): .

(i) (M,, o) is a melric space when we identify eny two sets, the sym-

wmetric difference of which is of measure u zero.
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(ii) None of the numbers: o(A;+By, Ao+By), (41By, 4,B,),
o(41—By, Aa—By), o(4,=B,, 4,~-B,) surpasses g(4d,, 43)+¢(B,, By).
None of the numbers |p(d,)—u{ds)| aond o(X-—4,, X —A;) surpasses
a(d,;, As)-

In other words, all set-theoretical finite operations and the real
funetion g are Lipschitzian (with coefficients 1) in (M, ¢). Thus, we can
state a fortiori that

(i) The finite sei-theorvetical operations are conlinuous in (M,, o).

(iv) p 48 & real function continuwous in (M,, o).

Following proposition iy important:

(v) Buery sequence of sets Ay e BE,, fundamental with respect to g, contains
a subsequence Ay, such that

o (imsup Ay, — ]ir;:liJJfA.k?.) =
7

(where limsup end liminf are to be read in the set-theoretical semse).
(vi) If

A4, =liminfd;, A* = limsup4,
i t
ond
mAT—4,) =0,
then
hm@ Aiy ds) =0 = th(AnA )-

It results eagily from (v) and {vi) that
(vil) The metric space (M,, o) 48 complete.

1.2, Metric o. Let us define a new distance of gets belonging to A,
M4 -~B)

#(4+B)
0 if

o,(4, B) = 1B >0,

u(A+B)=0.

(i) (MM, o) 18 a metric space (when we identify any two sets, the symmetric
difference of which is of measure p zero).

It follows directly, from the definition that ¢(4, B) = 0 if and only
if u(4=B) =10, and that ¢ is symmetric,
In order to prove that

a(d, B)+o(B,0) > ¢(4,0)
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let ns denote by a,d”, 8, 8%, ¥,y

and & the values of u for the atoms
of 4, B and ¢:

9

Then, the inequality in question may be written as follows:

at-a"+ty+y°
at-a"+y+y B8

_Aa—i—a +B+5
ata’+ B+ +y 48

BB +r+y
Bt tyty tats T

After reducing the fractions above to a common denominator and ordering
the terms according to the powers of §, we have only to prove an inequality
of the form

PO Q3R = p8 - q84r.

An easy verification gives P 2 p, @ >
§ > 0, the inequality is proved.

It follows easily from the definition of o that

(il) o(d,BY<{1 for 4, BecM,, and o(4d,B) =1 if and only if
uw(AB) = 0 and p(4-+B) > 0.

In particular

(ili) If p(A) =0 and p(B) > 0, then o(d,B) = 1.

Therefore the empty set (with all sets of measure u zero) forms anm
isolated point of the space (M, g).

Thus the identity transformation of (Mj, o) onto (M,,s) iz not
homeomorphic for some measures. Nevertheless, we shall prove that
the empby set is a unigue discontinuity point of this mapping:

Colloguium Methematicum VI, 21

g and B >=r, and, since
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(iv) If A<M, and A;eM, for i=1,2,..., then the relation

(o) Hme(d;, A) =0

implies

® limg(dy, 4} = 0

and if, moreover, u(d) > 0, then (B) implies (o).

Since
ldy—4) #(4;4) pd)
. = =1 =1— ,
Z ot A =, 7 ) WA+ 47 PIVEwS

the relation (o) imyplies p(A+.4;) — p(d) and consequently the sequence
u(A-+4,) is bounded: 0 < u(A+4;) <, Whenee

(A,,_A) (A:M-A)
o4y, 4) = PR = 0= 0.
Thus () implies (B).
Sinece
o(dy, 4) o{dy, 4)
A ,A = = H
P A = A) S T

the relations u(4) > 0 and (8) imply («). Theorem {iv) is thus proved.
Let us prove now the following lemma:

(v) If 4; form a fundamental sequence with respest to o and if uld;) < 0,
then there are positive numbers a and b such that a < u(A) <b (j=1,2,...).
It suffices to prove that the relations u(4;} —0 and u(d)) —+ oo
are impodsible.
We have for every fixed positive integer j,
Hldydz)
(*) g(dy, Ay ) = 1—-"207
7 w4+ 4g)
If lim y(A4;) = 0, then limu(d;4;) = 0, and lmp(d;+dg) = (4,
7 i H
whence, by (%),

{#%) Jimo(dy, d;) =1
5

If imu(4;) = oo, then
i

w4y 4z)
pldy+45)

whenee, in view of (%), we obtain {+x) again.

e dy)
(A4

-0,
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But formula () contradicts the hypothesis that .4; form o sequence
fundamental with respeet to o.

Lemma (v) implies

(vi) The space (M,, o) 4s complete.

In fact, if 4; is a fundamental sequence in (B4, a), then, by (v),
4; is fundamental in (M, o). By 1.1(vii) there exists such an A <M that

e(4;, 4) >0, whenee, by 1.1 (iv), u(4;)— u(4d), It follows from (v)
that u(4) >0, whence, in view of (fv), o(d;, 4)—~ 0, g.e. 4.

Let us denote by M the class of all sets 4 eM with 0 < u(d) < cc.
Propositions (iv), 1.1 (ifi), and 1.1 (iv) imply the continuity of finite
set-theoretical operations and of u in (M, ). 1t is worth noticing that,
moreover, these operations are Lipschitzian (with eoefficients 1):

(vii) o(d;+By, dy+Bs) < 0(4y, da)+ o(By, By

In the ease p(d;+4ds) # 0 & p (B;+B,) it follows from 1.1 (ii) that

o(d;+By, Ay +By) <
p(dy4+-By+ Ay +By)

< e(dy, ) 4
(A, +4,)

o4y, 4o)+ e(B1, Bs)

6(d;+By, A3+ By) = WA, L~ B+ 4,1+ By
1T 1 27 2

- 0By, B
M(BI:LB) = o(dy, du)+o(By, By).
LT 2

In the case gu(d,fd,) =0 (and, analogously, if w(B, 1B, = 0)
we have ¢(4;+B,, 4;+B;) = o(By, B,) and o{d,, 4,) = 0. Thus (vii)
is proved.

By arguments analogous to the first part of the preceding proof,
we get

(vili) If u(4yBy) # 0 5= pu(4,B,), then
oA, By, A3B,) < o(dy, 42)+-0(B,, By).
(ix) If u(d;—By) %0 % u(As—B,), then
o(d,— By, Ay—By) < o(dy, ds)+ olBy, By).
2. FUONUTIONS

2.1. Metric g. Lef us denote by .2, the class of all u-integrable real
functions (defined on X) and by g, the well known distance (ef. e. g. [1];
p. 98) of functions belonging to L2,:

ells 9) = [ 17 (@)~ g(@)|dp(z)

{where the integral is extended over X). Obviously


GUEST


324 E. MARCZEWSEKI AND H. STEINHAUS

(i) (L, 0,) @8 a metric space (when we identify any two functions which
are equal p-almost everywhere).

It is well-known that the distance g of sets may be treated as a
special case of the distance ¢ of functions. Namely, it y4 denotes the
characteristic funstion of the set 4, we have the following obvious re-
lation:

(i) eu(4, B) = g,(y, xz) for A, BeM,.

It is possible to formulate algo & converse relation, which permits
to say that the distance of functions is, in a certain sense, a case of the
distance of sets.

To this purpose, let us denote by ¥ the real axis, by N the smallest
o-field of sefs containing as elements all sets of the form A x B, where
AeM and B is Lebesgue measurable. Let » be a ¢o-measure in N, which
is the direct product of g and of the Lebesgue meagure in ¥.

Y a1l

\
LY

Next, denote by ¢ for fe.2, the set of points lying in X x ¥ between
the graph of f and the X-axis:
Cp={(z,9): ®eX, and 0 <y < o) or flo) <y < 0}.
Then

(i) ¢,.(f; 9) = 0,(Cs Cp) for Frgel,.
“In fact, the intersection of ¢;-C, by every vertical line w = w, is
an interval of length [f(z,)— g(w,), Whence, by the theorem of Fubini,

[ @ —g@)lap(a) = »(0p-0,).
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2.2. Metric o. We define the metric ¢, in 2, as follows:

Tl (@) — gl dul2)
fmax(if@), (@), 17 (@)~ g ()]) du ()

and o,(f,q) =0 if f(z) =0 = g(z) w-almost everywhere.

Let us remark that the number max(lal, [B], |a—B|) has a simple
geometrical meaning: it is the length of the shortest clased interval
containing the points: 0, a, and b.

In the case of non-negative functions the definition of 6, admits of
a gimpler form:

U(fag

S 1 (@)= g@)du(w)
Jmax( If o), lg @) dp(z)
Let us prove now two propositions analogous to 2.1 (ii) and 2.1 (iii).
() o.(4, B) = 6,(x4, 1n)
In faet

o (f, g} =

#(4=B) = [ |ya(@)—xn(2} duln),
p{A+B) = [ max(y.(w), zp(s)) du().

(@) e,f,9) = 0,(Cy, Cp).
The intersection of ;+C, by the vertical line # = x, is an interval
of length
max(lf(-”o)' s 19 (@)l lf(mo)‘““g(mom:

whenece, by the theorem of Fubini,
[ max(if(a)], g (@)l [F(2)— g (@)])dpa(@) = »(Cp+Cp).

Consequently, in view of 2.1 (iii), formula (i) is proved.

Theorem (ii) permits to reduce problems on the distance between
functions to the analogous problems on sets. First of all, the triangle
property of functions results from the same property of sets (1.2 (ii)).
Therefore:

(iii) (L,,0,) 18 o meric space (when we identify any two functions
equal p-almost everywhere).

It follows directly from 1.2 (iv), 2.1(iii) and 2.2 (ii) that, in .2,, the
convergences with respect to g, and o, to a function f essentially different
from. zero are equivalent:

(iv) If 1, frely for §=1,2,... and p{0f > 0, then ]jljneﬂ(fi;f) =0
if and only if iijma,.(fj: f=0
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Denote now by N, the class of all sets He N with »{H) < oo and by €
the class of all sets of the form Oy, where fe.2,. We shall prove that

(iv) The set C is closed in the space (Ny, 0,).

Suppose that a sequence A; = 0y is convergent with regpect to o
to o set 4. It is to prove that there is a funetion f such that
»{dCy) = 0. We may assume of course »(4) > 0..

On account of 1.2 (iv) ]img;(A,-,A) ='0. Then, by 1.1 {v), there

exists a sui)sequence Ak,- = Ufkj soeh that
» (IimjsupAk].— ]im;iank].) =0,
Puftting f(z) = h‘mjsup f,,j(m) we easily get
]im;_in_fAkj C o C ]jmy'supAkj,

whence, by 1.1 (vi), limg,(4;, Cy) =0, and consequently »(4d-—Cy) =70,
q.e.d. !
Proposifions (iv), (i) and 1.2 (vi) (applied to the measure ») imply
(v) The space (L,, o,) is complete.

4. BIOTOPES

An egpecially simple cage of o ariges if the space X containg only
a finite number of elements {a,d,¢,..., %}, M heing the clugs of all
subsets of X and p(F) the number of elements of B. Then the integration
in the formulae of the preceding section reduces to the ordinary addition.

The digtance o pertaining to the case above may be applied e. g.
in the study of biotopes, where it can be employed as a quantitative
characteristic of the qualitative difference of two biotopes.

For instance, to characterize numerically the difference of two forests
2 and B we may proceed as follows: we consider the set 4 of all species
growing in ¥, and the set B of all species growing in B; the distance
o(d, B) will be the characteristic sought for. If there are no spocies
common to U and B, the distance will agsume its greatest value: it will
be equal to 1; if the forests are identical as to the species they contain,
the distance will assume its smallest value, which is 0.

If we were interested not only which species can be found in the
forests butb also, how often they appear, we would take instead of 4 and B
functions defined in A-+B: function f may be the quantitative character-
igtic of the species growing in 2, function ¢ the analogous characteristic
for B. The distance o(f, g) will now be the quantitative characterigtic
of the biotopical difference hetween the two forests considered.
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Let us take, for instance, two real forests of Lower Silegia: Tn 2 we
have red pines (a), oaks (b), birches {c), and alders (d); in B oaks, birches,
alders and black pines (¢). We can symbolize by 1 the presence and by 0
the absence of a species in a forest, which leads to the following table:

a b e @& e g!
A 1 11 1 0
B ¢ 1 1 1 1
4B 100 0 1, 2
A+B 1 1 1 1 1 5

We easily read that u(d--~B)=2, u{d }B) =05, thus g(4, B) = 2/5.
The same two forests give another table if frequencies of the species
are taken into account:

a b e d e i
7 4 2 3 1 0
g 0 21 2 5
F—gl 14 0 2 1 5} 12
max(f,g)y{ 4 2 3 2 5| 18
Thus olf, g) = 3/4.
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