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ON A CERTAIN FAMILY OF ASYMMETRIC RIEMANN SURFACES

WITH THE CYCLIC AUTOMORPHISM GROUP

Ewa KozŁowska-Walania and Ewa Tyszkowska

Abstract

A compact Riemann surface X of genus gb 2 is called asymmetric or pseudo-real

if it admits an anticonformal automorphism but no anticonformal involution. The

order d ¼aðdÞ of an anticonformal automorphism d of such a surface is divisible

by 4. In the particular case where d ¼ 4, d is a pseudo-symmetry and the surface is

called pseudo-symmetric.

A Riemann surface X is said to be p-hyperelliptic if it admits a conformal

involution r for which the orbit space X=hri has genus p. This notion is the

particular case of so called cyclic ðq; nÞ-gonal surface which is defined as the one

admitting a conformal automorphism f of prime order n such that X=f has genus

q. We are interested in possible values of n and q for which an asymmetric surface

of given genus gb 2 is ðq; nÞ-gonal, and possible values of p for which the surface is

p-hyperelliptic. Up till now, this problem was solved in the case where the surface

is asymmetric and pseudo-symmetric. If an asymmetric Riemann surface X is not

pseudo-symmetric then any anticonformal automorphism of X has order divisible by

2 sn for sb 3 and n ¼ 1 or n being an odd prime. In this paper we give the necessary

and su‰cient conditions on the existence of an asymmetric Riemann surface with the

full automorphism group being G ¼ Z2 sn, and we study ðq; nÞ-gonal automorphisms

and p-hyperelliptic involutions in G.

1. Introduction

A Riemann surface is called asymmetric, if it admits an anticonformal
automorphism but no anticonformal involution. The term pseudo-real is also
used, see for example [5]. Asymmetric Riemann surfaces appear naturally
when we consider an involution { : Mg ! Mg on the moduli space of Riemann
surfaces of genus g mapping a Riemann surface onto its complex conjugate.
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Then { preserves symmetric surfaces while asymmetric surfaces are outside the
set Fixð{Þ.

In the literature there are many results concerning asymmetric surfaces.
We would like to mention some of them which were a starting point for this
paper. In [8] asymmetric surfaces with cyclic automorphism groups are studied,
and in [5] authors prove that there exists an asymmetric Riemann surface of
any genus gb 2, they give the sharp bound on the order of its automorphism
group, and they study asymmetric surfaces of genera 2 and 3. Also, the minimal
genus problem for cyclic actions Zn for arbitrary n on pseudo-real surfaces was
completely solved in [1] by Gromadzki and Baginski.

An orientation reversing automorphism which has order 4 is called a pseudo-
symmetry and the corresponding surface—pseudo-symmetric. Not every asym-
metric surface is pseudo-symmetric—it is enough to consider an asymmetric
surface with the full automorphism group being Z8. Also, not every pseudo-
symmetric surface is asymmetric.

In this paper we study the degree of hyperellipticity of asymmetric Riemann
surfaces with the full automorphism group being a cyclic group of order 2sn for a
prime integer n and sb 3. A compact Riemann surface X of genus gb 2 is
called p-hyperelliptic if it admits a conformal involution (called a p-hyperelliptic
involution) such that the orbit space under the action of this involution is an
orbifold of genus p. In particular cases, when p ¼ 0 and p ¼ 1, the surface is
called hyperelliptic and elliptic-hyperelliptic respectively. It was proved in [10],
that for g > 4pþ 1, the p-hyperelliptic involution is unique and hence central
in the group of all automorphisms of the surface. Using this result, groups of
automorphisms of hyperelliptic, elliptic-hyperelliptic and 2-hyperelliptic surfaces
were determined respectively in [6], [16] and [17]. In the asymmetric case, the
hyperelliptic surfaces were studied in [15], whilst in [3] the authors determined the
defining equations for such surfaces; the special case of hyperelliptic asymmetric
pseudo-symmetric surfaces is also treated there. A p-hyperelliptic surface is the
particular case of so-called cyclic ðq; nÞ-gonal surface, which is defined as the
one admitting a conformal automorphism d of prime order n such that X=d has
genus q.

This paper is a continuation of [11], where we studied asymmetric Riemann
surfaces with the full automorphism group Z4n. We gave the necessary and
su‰cient conditions on the existence of such a surface, we determined the degree
of its hyperellipticity, and we found all integers q for which the surface is ðq; nÞ-
gonal. Let us notice that an asymmetric Riemann surface whose full auto-
morphism group is a cyclic group Z2 sn is pseudo-symmetric only for s ¼ 2. So in
this paper we consider surfaces which are not pseudo-symmetric.

2. Preliminaries

In this chapter we give the basic definitions concerning theory of non-
euclidean crystallographic groups, called NEC groups, which are applied in the
paper. The NEC groups are discrete and cocompact subgroups of the group G
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of all isometries of the hyperbolic plane H. For any NEC group L, its
algebraic structure is described by the so-called signature:

sðLÞ ¼ ðh;G; ½m1; . . . ;mr�; fðn11; . . . ; n1s1Þ; . . . ; ðnk1; . . . ; nksk ÞgÞ;ð1Þ

where the brackets ðni1; . . . ; nisiÞ are called the period cycles and the integers
nij are the link periods, mi are called the proper periods and h is the orbit genus
of L.

A presentation for the group L with signature (1) is given by the following
generators, called canonical generators:

x1; . . . ; xr, ei, cij , for 1a ia k, 0a ja si, and a1; b1; . . . ; ah; bh if the sign is þ or
d1; . . . ; dh otherwise,

and relations:

xmi

i for 1a ia r, c2ij�1; c
2
ij; ðcij�1cijÞnij ; ci0e�1

i cisi ei, for 1a ia k; 1a ja si and

x1 � � � xre1 � � � eka1b1a�1
1 b�1

1 � � � ahbha�1
h b�1

h or x1 � � � xre1 � � � ekd 2
1 � � � d 2

h ;

according to whether the sign is þ or �. The last relation is called the long
relation. The elements xi are elliptic transformations, ai, bi hyperbolic trans-
lations, di glide reflections and cij hyperbolic reflections.

An abstract group with the presentation given above can be realized as an
NEC group L if and only if the value

hhþ k � 2þ
Xr
i¼1

1� 1

mi

� �
þ 1

2

Xk
i¼1

Xsi
j¼1

1� 1

nij

� �
;

is positive, where h ¼ 2 or 1 according to the sign being þ or �. The above
expression times 2p is equal to the hyperbolic area mðLÞ of a fundamental region
of L. The Riemann-Hurwitz formula says that for any subgroup ~LL of an NEC
group L with finite index,

½L : ~LL� ¼ mð~LLÞ
mðLÞ :

If an NEC group has no orientation reversing elements, then it is the
classical Fuchsian group and has a signature of the form

ðh;þ; ½m1; . . . ;mr�; f�gÞ;
which is often written as ðh;m1; . . . ;mrÞ.

Any NEC group L with the signature (1) has so-called canonical Fuchsian
subgroup Lþ consisting of all orientation preserving elements which by [14], has
signature

ðhhþ k � 1;m1;m1; . . . ;mr;mr; n11; . . . ; nksk Þ:ð2Þ

A signature s is called maximal, if for every NEC group L 0 with a signature
s 0 containing an NEC group L with the signature s and having the same

512 ewa kozŁowska-walania and ewa tyszkowska



Teichmüller dimension, the equality L ¼ L 0 holds. If the above condition does
not hold, then the pair ðs; s 0Þ is called a normal or non-normal pair according
to if L is a normal subgroup of L 0 or not. The complete lists of normal and
non-normal pairs are given in [2] and [9] (see also [13] and [4]). An NEC group
L is called maximal if there does not exist another NEC group containing it
properly. Also, for any maximal signature s, there exists a maximal NEC group
with the signature s.

A torsion-free Fuchsian group G is called the surface Fuchsian group. It has
a signature ðg;�Þ, and H=G is a compact Riemann surface of genus g. Con-
versely, every compact Riemann surface X of genus gb 2 is isomorphic to such
an orbit space for some surface Fuchsian group G. A finite group G is a group
of automorphisms of X if and only if G ¼ L=G for some NEC group L
containing G as a normal subgroup, and we say that G acts with the signature
sðLÞ. If G is not the full automorphism group of X , then there exists another
NEC group L 0 normalizing G such that L � L 0 with a finite index.

The formula on the number of fixed points of an automorphism of a
Riemann surface was given by Macbeath in [12]. By NGðhgiÞ we mean the
normalizer in G of the subgroup generated by g.

Theorem 2.1. Let G ¼ D=G be the group of orientation preserving auto-
morphisms of a Riemann surface X ¼ H=G, and let x1; x2; . . . ; xr be the set
of canonical elliptic generators of D with periods m1; . . . ;mr respectively. Let
y : D ! G be the canonical epimorphism. Then the number m of points of X
fixed by g A G is given by the formula

m ¼ jNGðhgiÞj
X

1=mi;

where the sum is taken over those i for which g is conjugate to a power of yðxiÞ.
r

3. The degree of hyperellipticity

Let X ¼ H=G be an asymmetric Riemann surface of genus gb 2, for a
surface Fuchsian group G. Since X has anticonformal automorphisms but
no symmetries, it follows that the group of automorphisms of X acts with a
signature of the form ðh;�; ½m1; . . . ;mr�; f�gÞ. Moreover, the order a of an
anticonformal automorphism j of X is divisible by 4, since if a is odd, then j
is a power of j2 and so it would be orientation preserving, while if a1 2 ð4Þ
then ja=2 would be a symmetry of X .

For a prime divisor n of a, the element r ¼ ja=n is a ðq; nÞ-gonal auto-
morphism of X , where q is the genus of the orbifold X=hri. The group hri
acts with the signature ðq; n . . .r ; nÞ, where by the Riemann-Hurwitz formula
r ¼ 2þ ð2g� 2nqÞ=ðn� 1Þ. Thus according to Theorem 2.1, r has r fixed points.

We want to determine the possible values of q in the case when r is an
involution. The task becomes much easier, if we consider a subgroup of hji
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generated by an anticonformal automorphism d ¼ ja=ð2 snÞ, where s is the greatest
integer such that 2s divides a, and n is an odd prime divisor of a or n ¼ 1 if
a ¼ 2s. The possible degrees of hyperellipticity in the case s ¼ 2 were given in
[11], where we also proved that no cyclic group acts on an asymmetric Riemann
surface with a non-maximal signature. Here we shall study surfaces which are
not pseudo-symmetric and therefore we shall assume that sb 3. The notation
introduced above will be consistently employed throughout the chapter, unless
directly stated otherwise. First, we give the necessary and su‰cient con-
ditions on the existence of an asymmetric Riemann surface of genus g with
the automorphism group Z2 sn.

Theorem 3.1. A cyclic group Z2 sn is the full automorphism group of an
asymmetric Riemann surface of genus g if and only if g ¼ nqþ aðn� 1Þ for some
integers ab�1, qb 0, and there exist nonnegative integers k, g, ki, li,
i ¼ 1; . . . ; s� 1 such that

a ¼ 2s�1k þ
Xs�1

i¼1

2s�1�iki � 1 for n0 1ðIÞ

q ¼ 1þ 2s�1 g� 1þ
Xs�1

i¼1

ðli þ kiÞ
" #

�
Xs�1

i¼1

2s�1�iðli þ kiÞ;ðIIÞ

(III) k ¼ k1 ¼ � � � ¼ ks�1 ¼ 0 for n ¼ 1,
(IV) g has the same parity as g,
(V) if g ¼ 0, then ls�1 0 0 for n ¼ 1; ks�1 0 0 or kls�1 0 0 for n0 1, and

none of the two cases holds:
(a) g ¼ 1, ls�1 ¼ ks�1 ¼ 0 and

Ps�2
i¼1 ðli þ kiÞ þ k ¼ 1,

(b) g ¼ 0, ls�1 þ ks�1 ¼ 1 and
Ps�2

i¼1 ðli þ kiÞ þ k ¼ 1.

Proof. Suppose that d is an anticonformal automorphism of order 2sn of
an asymmetric Riemann surface X ¼ H=G of genus g, and let G ¼ hdi. Then
there exists an NEC group L containing G as a normal subgroup with index 2sn
such that G ¼ L=G. Since there is no period cycles in the signature of L and the
conformal automorphisms in G have orders 2 i, n or 2 in for some i ¼ 1; . . . ; s� 1,
it follows that L has a signature of the form

ðgþ 1;�; ½ð2Þ l1 ; ð4Þ l2 ; . . . ; ð2s�1Þ ls�1 ; ðnÞk; ð2nÞk1 ; . . . ; ð2s�1nÞks�1 �; f�gÞ;ð3Þ

where k, g, li and ki are nonnegative integers, and the symbol ðmÞr denotes r
periods equal to m. In the particular case when n ¼ 1, k ¼ k1 ¼ � � � ¼ ks�1 ¼ 0.
By the Riemann-Hurwitz formula,

g ¼ 1þ 2s�1 ng� nþ n
Xs�1

i¼1

ðli þ kiÞ þ kðn� 1Þ
" #

�
Xs�1

i¼1

2s�1�iðnli þ kiÞ:ð4Þ
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According to (2), the canonical Fuchsian subgroup Lþ of L has the signature

ðg; ð2Þ2l1 ; ð4Þ2l2 ; . . . ; ð2s�1Þ2ls�1 ; ðnÞ2k; ð2nÞ2k1 ; . . . ; ð2 s�1nÞ2ks�1Þ:

The group Gþ ¼ Lþ=G ¼ Z2 s�1n is generated by the conformal automorphism d2.
If n0 1, then r ¼ d2

s

A Gþ is a ðq; nÞ-gonal automorphism of X with m ¼
2þ ð2g� 2nqÞ=ðn� 1Þ fixed points, where q is the genus of X=hri. On the

other hand, by Macbeath’s theorem, m ¼ 2sk þ
Ps�1

i¼1 2
s�iki and so

ðn� 1Þ2s�1k ¼ ðn� 1Þ m=2�
Xs�1

i¼1

2s�1�iki

 !

¼ n� 1þ g� nq� ðn� 1Þ
Xs�1

i¼1

2s�1�iki:

By substituting the last equation to (4), we get (II). Thus g� nq ¼
ðn� 1Þð2s�1k þ

Ps�1
i¼1 2

s�1�iki � 1Þ ¼ aðn� 1Þ for a given by (I).
By inspecting lists in [2] and [9], we check that the signature (3) is non-

maximal if and only if it has a form ð2;�; ½t�; f�gÞ or ð1;�; ½t; u�; f�gÞ for some
u A f2 s�1; 2s�1ng and t A fn; 2 in; 2 ig, where i0 s� 1. However, it was proved
in [4] that no cyclic group acts on an asymmetric Riemann surface with listed
signatures, as they in fact give rise to actions on symmetric surfaces. Thus the
cases (a) and (b) must be excluded.

The action of G on X is induced by an epimorphism y : L ! G with torsion-
free kernel G. Any such an epimorphism maps elliptic generators xi A L of
orders mi to d2

sngi=mi for some integers gi co-prime with mi. Thus the product

of all elliptic generators is mapped to dT for some even integer T . The glide
reflection generators di of L are mapped to d ti for some odd integers ti. Thus
the long relation is preserved if and only if the sum of gþ 1 odd integers ti is
equal to �T=2 modulo 2sn. The parity of the last integer depends only on the
parity of ls�1 þ ks�1 and so by (4), is di¤erent from the parity of g. Thus g must
have the same parity as g. Let us also notice, that for g ¼ 0, the restriction of
y to Lþ is an epimorphism onto Z2 s�1n under condition that ls�1 0 0 for n ¼ 1,
and ks�1 0 0 or both k and ls�1 are di¤erent from 0 for n0 1.

Conversely, suppose that g ¼ nqþ aðn� 1Þ for some integers ab�1 and
qb 0, and there exist nonnegative parameters l1; . . . ; ls�1, k1; . . . ; ks�1, k and g
such that the conditions (I)–(V) are satisfied, and neither case (a) nor (b) holds.
Then an NEC group L with the signature (3) is maximal. Let y : L ! Z2 sn ¼
hdi be a homomorphism which maps the elliptic generators xi of orders mi to

d2
sn=mi and the glide reflection generators di to d tj , for ðt1; t2; . . . ; tg�2; tg�1; tg; tgþ1Þ

¼ ð1;�1; . . . ;�1; 1;�1;�T=2Þ or ð1;�1; . . . ; 1;�1;�1;�T=2þ 1Þ, according to
if g is even or odd. Then y is an epimorphism with torsion-free kernel G. By
the Riemann-Hurwitz formula, the orbit space X ¼ H=G has genus g, and
G ¼ L=G is the full automorphism group of X . Since G contains anticonformal
automorphisms but no symmetries, it follows that X is asymmetric. r
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In the next theorem we exceptionally let the parameter s have value 2.

Theorem 3.2. Suppose that G ¼ Z2 sn ¼ hdi is the automorphism group of an
asymmetric Riemann surface X of genus g, for g0 n� 1; 2n� 1; 2n� 2, and let
r ¼ g mod n. If n > 1 and gb ðn� rÞðn� 1Þ, then X is a n-sheeted covering of
an orbifold of genus q ramified over m points, where

q ¼ ½g� ðn� rÞðn� 1Þ�=n� cðn� 1Þ and m ¼ 2½nðcþ 1Þ þ 1� r�;ð5Þ

for some integer cb�1 for which q and m are nonnegative. Moreover, for any
such c, there exists an asymmetric Riemann surface of genus g with the full
automorphism group Z4n.

Proof. Suppose that X=hd2
s

i has genus q. Then d2
s

is a ðq; nÞ-gonal
automorphism with m ¼ 2þ ð2g� 2nqÞ=ðn� 1Þ fixed points. By the proof of
Theorem 3.1, m is even and so g ¼ nqþ aðn� 1Þ for a ¼ m=2� 1. Writing g
in the form

g ¼ ½ðg� rÞ=nþ 1� ðn� rÞ�nþ ðn� rÞðn� 1Þ;

we can take q ¼ ½g� ðn� rÞðn� 1Þ�=n and a ¼ n� r. However, there are other
possibilities: q ¼ ½g� ðn� rÞðn� 1Þ�=n� cðn� 1Þ and a ¼ n� rþ cn for any
integer cb�1 for which qb 0 and ab�1.

Now for a given such c, let g ¼ q mod 2, and let k ¼ 0 or �1 according to
if a is even or odd. Then there exists an NEC group L with the signature

ðgþ 1;�; ½2; . . .q�2g�k; 2; n; . . .ða�kÞ=2; n; 2n; . . .kþ1 ; 2n�; f�gÞ

which is maximal for ðg; q; a; kÞ0 ð1; 1; 1;�1Þ, ð0; 0; 1;�1Þ and ð0; 0; 2; 0Þ. In the
exceptional cases, g ¼ 2n� 1, n� 1 and 2n� 2 respectively, however these values
of g are rejected by assumption. Let y : L ! G ¼ Z4n ¼ hdi be an epimorphism
defined by

yðxiÞ ¼ d2n; i ¼ 1; . . . ; k1 ¼ q� 2g� k;

yðxk1þiÞ ¼ d4; i ¼ 1; . . . ; k2 ¼ ða� kÞ=2;

yðxk1þk2þiÞ ¼ d2; i ¼ 1; . . . ; k3 ¼ k þ 1;

and yðd1Þ ¼ d�l if q is even, or yðd1Þ ¼ d and yðd2Þ ¼ d�1�l if q is odd, where
l ¼ nq� nk þ aþ 1� 2ng. Then the kernel G of y is a surface Fuchsian group
with the signature ðg;�Þ and X ¼ H=G is an asymmetric Riemann surface X of
genus g with the full automorphism group Z4n ¼ L=G. r

Theorem 3.3. For any integer g such that gb 2 s�1nð2s�1 þ nÞ, there exists
an asymmetric Riemann surface of genus g with the full automorphism group
Z2 sn.
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Proof. Suppose that gb 2s�1nð2s�1 þ nÞ, and let r ¼ g mod n,

r 0 ¼ ðg� rÞ=nþ 1 mod 2s�1 and b ¼ ½ðg� rÞ=nþ 1� r 0�=2 s�1:

Then gb 2s�1nð2s�1 þ nÞ � ðn� rÞ and so ðg� rÞ=nþ 1b 2s�1ð2s�1 þ nÞb
2s�1ð2s�1 þ n� 1Þ þ r 0. Thus

b ¼ ½ðg� rÞ=nþ 1� r 0�=2s�1
b 2s�1 þ n� 1b ð2s�1 � r 0Þ þ ðn� rÞ � 1:

For b satisfying the last inequality, there exist parameters a, q, g, k, ki, li,
i ¼ 1; . . . s� 1 for which the conditions (I)–(V) of Theorem 3.1 are satisfied and
neither case (a) nor (b) holds. Indeed, since

g ¼ ½ðg� rÞ=nþ 1� ðn� rÞ�nþ ðn� rÞðn� 1Þð6Þ

¼ ½ðbþ 1Þ2s�1 � ð2s�1 � r 0Þ � ðn� rÞ�nþ ðn� rÞðn� 1Þ;

it follows that g ¼ nqþ aðn� 1Þ for q ¼ ðbþ 1Þ2s�1 � ð2s�1 � r 0Þ � ðn� rÞ and
a ¼ n� r. The remaining parameters can be chosen as follows:

for b odd
n0 1: g ¼ bþ 1� ðn� rÞ � ð2 s�1 � r 0Þ, k ¼ 0, ks�1 ¼ n� rþ 1,

ls�1 ¼ 2s�1 � r 0 and ki ¼ li ¼ 0 for i0 s� 1,
n ¼ 1: g ¼ b� ð2s�1 � r 0Þ, ls�1 ¼ 2s�1 � r 0 þ 2, li ¼ 0 for i0 s� 1,
for b even
n0 1: g ¼ bþ 2� ðn� rÞ � ð2 s�1 � r 0Þ, k ¼ 0, ks�1 ¼ n� r� 1,

ks�2 ¼ 1, ls�1 ¼ 2s�1 � r 0, ls�2 ¼ 0, and ki ¼ li ¼ 0
for i0 s� 1; s� 2,

n ¼ 1: g ¼ bþ 1� ð2s�1 � r 0Þ, ls�1 ¼ 2s�1 � r 0, ls�2 ¼ 1,
li ¼ 0 for i0 s� 1; s� 2.

Let us notice that by (6), g has a di¤erent parity than the number rþ r 0 and so
g has the same parity as g. Thus by Theorem 3.1, there exists an asymmetric
Riemann surface of genus g with the full automorphism group Z2 sn. r

Remark 3.4. Suppose that G ¼ Z2 sn ¼ hdi acts on an asymmetric Riemann
surface X ¼ H=G of genus g with the signature (3). Then X is p-hyperelliptic
for

p ¼ 1þ ng� nþ n
Xs�1

i¼1

ðli þ kiÞ þ kðn� 1Þ
" #

2s�2 �
Xs�1

i¼1

2s�1�iðnli þ kiÞ;ð7Þ

and if n0 1, then X is ðq; nÞ-gonal for q given by (II).

Proof. If Lþ
aL is the canonical Fuchsian subgroup, then Gþ ¼ Lþ=G ¼

Z2 s�1n is the group of conformal automorphisms of X . By the proof of

Theorem 3.1, d2
s

A Gþ is ðq; nÞ-gonal automorphism of X for q given by (II).
Moreover, r ¼ d2

s�1n A Gþ is p-hyperelliptic involution of X with m ¼ 2gþ 2� 4p
fixed points, where p is the genus of X=hri. By Macbeath’s theorem, m ¼
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Ps�1
i¼1 2

s�iðnli þ kiÞ. Thus

p ¼ gþ 1�
Xs�1

i¼1

2s�1�iðnli þ kiÞ
" #,

2;ð8Þ

and so by (4), we get (7). r

For any even nonnegative integer u, there exists an asymmetric Riemann
surface X with ðq; nÞ-gonal automorphism and p-hyperelliptic involution having
the same even number u of fixed points.

Theorem 3.5. Let n0 1. (i) Then for any even integer u > 0, there exists

an asymmetric Riemann surface of genus g ¼ 1þ ð2sn� 1Þ u
2

which is n-sheeted

covering of an orbifold of genus q ¼ 1þ ð2 s � 1Þ u
2
with u ramification points and

which is two-sheeted covering of an orbifold of genus p ¼ 1þ ð2s�1n� 1Þ u
2

also
with u ramification points.

(ii) There exists an asymmetric Riemann surface of genus g ¼ 2snþ 1 which
is unramified n-sheeted covering of an orbifold of genus q ¼ 1þ 2s and which is
unramified two-sheeted covering of an orbifold of genus p ¼ 1þ 2s�1n.

Proof. (i) For a given nonnegative even integer u, let L be a maximal NEC
group with the signature

ðu=2þ 2;�; ½2 s�1n; . . .
u
2 ; 2s�1n�; f�gÞ;

and let G ¼ hdi be a cyclic group of order 2 sn. Then there exists an epi-

morphism y : L ! G given by yðxiÞ ¼ d2 for i ¼ 1; . . . ;
u

2
, and yðdjÞ ¼ d tj , for

ðt1; . . . ; tu=2þ2Þ ¼ ð1;�1; . . . ; 1;�1;�u=2þ 1;�1Þ or ð1;�1; . . . ; 1;�1;�u=2Þ ac-
cording to if u1 0 ð4Þ or u1 2 ð4Þ. The kernel G of y is a surface Fuchsian
group which by the Riemann-Hurwitz formula has the signature ðg;�Þ, for

g ¼ 1þ ð2sn� 1Þ u
2
, and G ¼ L=G is the automorphism group of an asymmetric

Riemann surface X ¼ H=G of genus g. By Remark 3.4, X has p-hyperelliptic

involution and ðq; nÞ-gonal automorphism for q ¼ 1þ ð2s � 1Þ u
2

and p ¼
1þ ð2 s�1n� 1Þ u

2
. The last elements have 2gþ 2� 4p and 2þ ð2g� 2nqÞ=ðn� 1Þ

fixed points respectively, and these numbers are equal.
Similarly, we can prove the statement (ii) by taking an NEC group L with

the signature ð4;�; ½��; f�gÞ and an epimorphism y : L ! G defined by yðd1Þ ¼
yðd2Þ ¼ d and yðd3Þ ¼ yðd4Þ ¼ d�1. r

An asymmetric Riemann surface of genus g is p-hyperelliptic for some

integer p in the range 0a pa
g

2
or 1a pa

gþ 1

2
, according to if g is even of
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odd. We will prove that there are infinite sequences of g for which the upper
and lower bounds are attained.

Theorem 3.6. For any g such that g1 1 ð2snÞ, there exists an asymmetric
Riemann surface X of genus g with the full automorphism group G ¼ Z2 sn, which

acts with one of signatures
g� 1

2s�1n
þ 2;�; ½��; f�g

� �
or ð2;�; ½2; . . .

g�1

2 s�2n ; 2�; f�gÞ.

In the first case, X is
gþ 1

2
-hyperelliptic and in the second one, X is elliptic-

hyperelliptic.

Proof. If g1 1 ð2snÞ, then g ¼ nqþ aðn� 1Þ for q ¼ ðg� 1Þ=nþ 1 and
a ¼ �1. Let k ¼ li ¼ ki ¼ 0 for i ¼ 1; . . . ; s� 1 and g ¼ ðg� 1Þ=ð2 s�1nÞ þ 1 or

let g ¼ 1, k ¼ li ¼ ki ¼ 0 for i ¼ 2; . . . ; s� 1, l1 ¼ ðg� 1Þ=ð2s�2nÞ and k1 ¼ 0.
Then g, a, k, g, ki and li satisfy the conditions (I)–(V) of Theorem 3.1 and none
of the cases (a), (b) holds. Thus there exists an asymmetric Riemann surface X
of genus g with the full automorphism group Z2 sn acting with the signature
(3). By Remark 3.4, X is p-hyperelliptic, where p ¼ ðgþ 1Þ=2 for the first choice
of parameters, and p ¼ 1 for the second one. r

Theorem 3.7. For any g such that g1 0 ð2snÞ there exists an asymmetric
Riemann surface X of genus g with the full automorphism group Z2 sn, which acts

with one of the signatures
g

2 s�1n
þ 1;�; ½2 s�1n�; f�g

� �
or ð1;�; ½2; . . .

g

2 s�2n ; 2; 2s�1n�;

f�gÞ. In the first case, X is
g

2
-hyperelliptic and in the second one, X is

hyperelliptic.

Proof. Any integer g satisfying the congruence g1 0 ð2snÞ can be written
in the form g ¼ nqþ aðn� 1Þ for q ¼ g=n and a ¼ 0. If n0 1, then by Theorem
3.1, a cyclic group Z2 sn acts on an asymmetric Riemann surface of genus g with
the signature (3), where k ¼ li ¼ ki ¼ 0 for i ¼ 1; . . . ; s� 2, ls�1 ¼ 0, ks�1 ¼ 1 and
g ¼ g=ð2s�1nÞ, or k ¼ li ¼ ki ¼ 0 for i ¼ 2; . . . ; s� 2, l1 ¼ g=ð2s�2nÞ, k1 ¼ ls�1 ¼ 0,
ks�1 ¼ 1 and g ¼ 0. If n ¼ 1, then we can assume that parameters k, g, ki and
li, i ¼ 1; . . . ; s� 2 have above values, ks�1 ¼ 0 and ls�1 ¼ 1. By Remark 3.4, X
is p-hyperelliptic, where p ¼ g=2 in the first case and p ¼ 0 in the second one.

r
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