# 39. On a Certain Fractional Operator 

By Shigeyoshi Owa,*) Megumi Saigo,**) and David M. Furuto***)
(Communicated by Shokichi Iyanaga, m. J. A., May 13, 1991)

The object of the present paper is to derive some properties of a certain fractional operator $J_{0, z}^{\alpha, \beta, \eta}$ defined by using the fractional integral operator $I_{0, z}^{\alpha, \beta, \eta}$ for analytic functions in the unit disk.

1. Introduction. Let $\mathcal{A}$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z:|z|<1\}$. A function $f(z)$ belonging to the class $\mathcal{A}$ is said to be starlike of order $\alpha$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$ and for all $z \in \mathcal{U}$. We denote by $\mathcal{S}^{*}(\alpha)$ the subclass of $\mathcal{A}$ consisting of functions which are starlike of order $\alpha$. Further, a function $f(z)$ belonging to the class $\mathcal{A}$ is said to be convex of order $\alpha$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$ and for all $z \in \mathcal{U}$. Also, we denote by $\mathcal{K}(\alpha)$ the subclass of $\mathcal{A}$ consisting of all such functions. We note that $f(z) \in \mathcal{K}(\alpha)$ if and only if $z f^{\prime}(z) \in \mathcal{S}^{*}(\alpha)$.

Let the functions $f_{j}(z)$ be defined by

$$
\begin{equation*}
f_{j}(z)=\sum_{n=0}^{\infty} a_{j, n+1} z^{n+1} \quad(j=1,2) \tag{1.4}
\end{equation*}
$$

We denote by $f_{1} * f_{2}(z)$ the Hadamard product or convolution of two functions $f_{1}(z)$ and $f_{2}(z)$, that is,

$$
\begin{equation*}
f_{1} * f_{2}(z)=\sum_{n=0}^{\infty} a_{1, n+1} a_{2, n+1} z^{n+1} . \tag{1.5}
\end{equation*}
$$

Also, let the function $\phi(a, c ; z)$ be defined by

$$
\begin{equation*}
\phi(a, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+1} \quad(z \in \mathcal{U}) \tag{1.6}
\end{equation*}
$$

where $c \neq 0,-1,-2, \cdots$, and $(\lambda)_{n}$ is the Pochhammer symbol defined by

$$
(\lambda)_{n}=\left\{\begin{array}{cl}
1 & \text { (if } n=0)  \tag{1.7}\\
\lambda(\lambda+1) \cdots(\lambda+n-1) & \text { (if } n \in \mathfrak{N}=\{1,2,3, \cdots\}) .
\end{array}\right.
$$

The function $\phi(a, c ; z)$ is an incomplete beta function with

[^0](1.8)
$$
\phi(a, c ; z)=z_{2} F_{1}(1, a ; c ; z) .
$$

Corresponding to the function $\phi(a, c ; z)$, Carlson and Shaffer [1] defined a linear operator on $\mathcal{A}$ by

$$
\begin{equation*}
L(a, c) f(z)=\phi(a, c ; z) * f(z) \tag{1.9}
\end{equation*}
$$

for $f(z) \in \mathcal{A}$. Then $L(a, c)$ maps $\mathscr{A}$ onto itself. Further, if $a \neq 0,-1$, $-2, \cdots$, then $L(c, a)$ is an inverse of $L(a, c)$. Also, we observe that

$$
\begin{equation*}
\mathcal{K}(\alpha)=L(1,2) \mathcal{S}^{*}(\alpha) \quad(0 \leqq \alpha<1) \tag{1.10}
\end{equation*}
$$

and (1.11)

$$
\mathcal{S}^{*}(\alpha)=L(2,1) \mathcal{K}(\alpha) \quad(0 \leqq \alpha<1)
$$

In order to introduce our fractional operator $J_{0, z}^{\alpha, \beta, \eta}$, we need the following definition of fractional integral operators due to Srivastava, Saigo and Owa [3].

Definition. For real numbers $\alpha>0, \beta$, and $\eta$, the fractional integral operator $I_{0, z}^{\alpha, \beta, \eta}$ is defined by

$$
\begin{equation*}
I_{0, z}^{\alpha, \beta, \eta} f(z)=\frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{z}(z-\zeta)^{\alpha-1}{ }_{2} F_{1}\left(\alpha+\beta,-n ; \alpha ; 1-\frac{\zeta}{z}\right) f(\zeta) d \zeta \tag{1.12}
\end{equation*}
$$

where $f(z)$ is an analytic function in a simply-connected region of the $z$ plane containing the origin with the order

$$
f(z)=O\left(|z|^{\varepsilon}\right) \quad(z \rightarrow 0)
$$

where

$$
\varepsilon>\max \{0, \beta-\eta\}-1,
$$

and the multiplicity of $(z-\zeta)^{\alpha-1}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

Using the fractional integral operator $I_{0, z}^{\alpha, \beta, \eta}$, we introduce the fractional operator $J_{0, z}^{\alpha, \beta, \eta}$ defined by

$$
\begin{equation*}
J_{0, z}^{\alpha, \beta, \eta} f(z)=\frac{\Gamma(2-\beta) \Gamma(2+\alpha+\eta)}{\Gamma(2-\beta+\eta)} z^{\beta} I_{0, z}^{\alpha, \beta, \eta} f(z) \tag{1.13}
\end{equation*}
$$

for $f(z) \in \mathcal{A}$. Then we observe that

$$
\begin{equation*}
J_{0, z}^{\alpha, \beta, \eta} f(z)=L(2,2-\beta) L(2-\beta+\eta, 2+\alpha+\eta) f(z) \tag{1.14}
\end{equation*}
$$

2. Some properties of the fractional operator. We begin with the statement of the following lemma due to Carlson and Shaffer [1].

Lemma 1. If $\alpha \leqq \beta \leqq 1$ and $\alpha<1$, then

$$
\begin{equation*}
L(2-2 \beta, 2-2 \alpha) \mathcal{S}^{*}(\alpha) \subset \mathcal{S}^{*}(\beta) \subset \mathcal{S}^{*}(\alpha) \tag{2.1}
\end{equation*}
$$

Applying the above lemma, we derive
Theorem 1. If $\alpha>0,0 \leqq \beta<1$, and $\eta$ is real, then

$$
\begin{equation*}
L(2+\alpha+\eta, 2-\beta+\eta) J_{0, z}^{\alpha, \beta, \eta} \mathcal{K}(1 / 2) \subset \mathcal{S}^{*}(1 / 2) \tag{2.2}
\end{equation*}
$$

Proof. It follows from (1.10) and (1.14) that

$$
\begin{aligned}
J_{0, z}^{\alpha, \beta, \eta} \mathcal{K}(1 / 2) & =L(2,2-\beta) L(2-\beta+\eta, 2+\alpha+\eta) \mathcal{K}(1 / 2) \\
& =L(2,2-\beta) L(2-\beta+\eta, 2+\alpha+\eta) L(1,2) \mathcal{S}^{*}(1 / 2) \\
& =L(1,2-\beta) L(2-\beta+\eta, 2+\alpha+\eta) \mathcal{S}^{*}(1 / 2) .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
L(2+\alpha+\eta, 2-\beta+\eta) J_{0, z}^{\alpha, \beta, \eta} \mathcal{K}(1 / 2)=L(1,2-\beta) \mathcal{S}^{*}(1 / 2) \tag{2.3}
\end{equation*}
$$

Noting that $\mathcal{S}^{*}(1 / 2) \subset \mathcal{S}^{*}(\beta / 2)$ for $0 \leqq \beta<1$, we have
(2.4) $\quad L(1,2-\beta) \mathcal{S}^{*}(1 / 2) \subset L(1,2-\beta) \mathcal{S}^{*}(\beta / 2) \quad(0 \leqq \beta<1)$.

Therefore, with the aid of Lemma 1, we see that

$$
\begin{equation*}
L(1,2-\beta) \mathcal{S}^{*}(\beta / 2) \subset \mathcal{S}^{*}(1 / 2) \subset \mathcal{S}^{*}(\beta / 2) \tag{2.5}
\end{equation*}
$$

which completes the proof of Theorem 1.
A function $f(z)$ in the class $\mathcal{A}$ is said to be prestarlike of order $\alpha(\alpha \leqq 1)$ if and only if

$$
\begin{cases}\frac{z}{(1-z)^{2(1-\alpha)}} * f(z) \in \mathcal{S}^{*}(\alpha) & (\text { for } \alpha<1)  \tag{2.6}\\ \operatorname{Re}\left(\frac{f(z)}{z}\right)>\frac{1}{2} & (\text { for } \alpha=1)\end{cases}
$$

We denote by $\mathcal{R}(\alpha)$ the subclass of $\mathscr{A}$ consisting of all functions which are prestarlike of order $\alpha$. The class $\mathcal{R}(\alpha)$ was introduced by Ruscheweyh [2].

In view of the definition for the class $\mathcal{R}(\alpha)$, we see that

$$
\begin{equation*}
\mathcal{R}(\alpha)=L(1,2-2 \alpha) \mathcal{S}^{*}(\alpha) \quad(\text { for } \alpha<1) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{R}(1)=\left\{f \in \mathcal{A}: \operatorname{Re}\left(\frac{f(z)}{z}\right)>\frac{1}{2}, z \in \mathscr{U}\right\} . \tag{2.8}
\end{equation*}
$$

Finally, we prove
Theorem 2. If $\alpha>0,0 \leqq \beta<2$, and $\eta$ is real, then

$$
\begin{equation*}
L(2+\alpha+\eta, 2-\beta+\eta) J_{0, z}^{\alpha, \beta, \eta} \mathcal{K}(\beta / 2)=\mathscr{R}(\beta / 2) . \tag{2.9}
\end{equation*}
$$

Proof. Noting that

$$
\begin{aligned}
J_{0,2}^{\alpha, \beta, \eta} \mathcal{K}(\beta / 2) & =L(2,2-\beta) L(2-\beta+\eta, 2+\alpha+\eta) \mathcal{K}(\beta / 2) \\
& =L(1,2-\beta) L(2-\beta+\eta, 2+\alpha+\eta) \mathcal{S}^{*}(\beta / 2),
\end{aligned}
$$

we obtain that

$$
\begin{align*}
L(2+\alpha+\eta, 2-\beta+\eta) J_{0,2}^{\alpha, \beta, \eta} \mathcal{K}(\beta / 2) & =L(1,2-\beta) \mathcal{S}^{*}(\beta / 2)  \tag{2.10}\\
& =\mathcal{R}(\beta / 2) .
\end{align*}
$$

Letting $\beta=0$ in Theorem 2, we have
Corollary 1. If $\alpha>0$ and $\eta$ is real, then

$$
L(2+\alpha+\eta, 2+\eta) J_{0,2}^{\alpha, 0, \eta} \mathcal{K}(0)=\mathscr{R}(0) .
$$

Taking $\beta=1$, Theorem 2 gives
Corollary 2. If $\alpha>0$ and $\eta$ is real, then

$$
L(2+\alpha+\eta, 1+\eta) J_{0, z}^{\alpha, 1, \eta} \mathcal{K}(1 / 2)=\mathcal{R}(1 / 2) .
$$

## References

[1] B. C. Carlson and D. B. Shaffer: Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal., 15, 737-745 (1984).
[2] St. Ruscheweyh: Linear operators between classes of prestarlike functions. Comment. Math. Helv., 52, 497-509 (1977).
[3] H. M. Srivastava, M. Saigo and S. Owa: A class of distortion theorems involving certain operators of fractional calculus. J. Math. Anal. Appl., 131, 412-420 (1988).


[^0]:    *) Department of Mathematics, Kinki University, Japan.
    **) Department of Applied Mathematics, Fukuoka University, Japan.
    ***) Department of Mathematics, Brigham Young University, Hawaii Campus, U.S.A.

