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ON A CERTAIN NILPOTENT EXTENSION OVER Q OF DEGREE 64
AND THE 4-TH MULTIPLE RESIDUE SYMBOL

FUMIYA AMANO
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Abstract. In this paper, we introduce the 4-th multiple residue symbol [p1, p2, p3, p4]
for certain four prime numbers pi ’s, which extends the Legendre symbol

(p1
p2

)
and the Rédei

triple symbol [p1, p2, p3] in a natural manner. For this we construct concretely a certain
nilpotent extension K over Q of degree 64, where ramified prime numbers are p1, p2 and p3,
such that the symbol [p1, p2, p3, p4] describes the decomposition law of p4 in the extension
K/Q. We then establish the relation of our symbol [p1, p2, p3, p4] and the 4-th arithmetic
Milnor invariant μ2(1234) (an arithmetic analogue of the 4-th order linking number) by show-
ing [p1, p2, p3, p4] = (−1)μ2(1234) .

Introduction. As is well known, for two odd prime numbers p1 and p2, the Legendre
symbol

(p1
p2

)
describes the decomposition law of p2 in the quadratic extension Q(

√
p1)/Q.

In 1939, L. Rédei ([R]) introduced a triple symbol with the intention of a generalization of the
Legendre symbol and Gauss’ genus theory. For three prime numbers pi ≡ 1 (mod 4) (i =
1, 2, 3) with

( pi
pj

) = 1 (1 ≤ i �= j ≤ 3), the Rédei triple symbol [p1, p2, p3] describes the
decomposition law of p3 in a Galois extension over Q where all ramified prime numbers are
p1 and p2 and the Galois group is the dihedral groupD8 of order 8.

Although a meaning of the Rédei symbol had been obscure for a long time, in 2000,
M. Morishita ([Mo1, 2, 3]) interpreted the Rédei symbol as an arithmetic analogue of a mod
2 triple linking number, following the analogies between knots and primes. In fact, he in-
troduced arithmetic analogue μ2(12 · · ·n) ∈ Z/2Z of Milnor’s link invariants (higher order
linking numbers) for prime numbers p1, . . . , pn such that

(
p1

p2

)
= (−1)μ2(12) , [p1, p2, p3] = (−1)μ2(123) .

Since it is difficult to compute arithmetic Milnor invariants by the definition, it is desir-
able to construct Galois extensionsKn/Q concretely such that [p1, . . . , pn] = (−1)μ2(12···n)
describes the decomposition law of pn in Kn/Q, just as in the cases of the Legendre sym-
bol where K2 is a quadratic extension and the Rédei triple symbol where K3 is a dihedral
extension of degree 8. As we shall explain in Subsection 2.1, link theory suggests that the
desired extension Kn/Q should be a Galois extension such that all ramified prime numbers
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are p1, . . . , pn−1 and the Galois group is the nilpotent group

Nn(F 2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝

1 ∗ · · · ∗
0 1

. . .
...

...
. . .

. . . ∗
0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎠

∣
∣
∣∣
∣
∣
∣
∣∣
∣

∗ ∈ F 2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

consisting of n× n unipotent upper-triangular matrices over F 2. Note that N2(F 2) = Z/2Z

and N3(F 2) = D8.
The purpose of this paper is to construct concretely such an extension Kn/Q for n = 4

in a natural manner extending Rédei’s dihedral extension. We then introduce the 4-th multiple
residue symbol [p1, p2, p3, p4] describing the decomposition law of p4 in K4/Q and prove
that it coincides with the 4-th Milnor invariant μ2(1234),

[p1, p2, p3, p4] = (−1)μ2(1234) .

NOTATION. For a number field k, we denote by Ok the ring of integers of k. For a group
G and d ∈ N , we denote by G(d) the d-th term of the lower central series of G defined by
G(1) := G,G(d+1) := [G,G(d)]. For a ring R, R× denotes the group of invertible elements
of R.

1. Rédei’s dihedral extension and triple symbol. In this section, we recall the con-
struction of Rédei’s dihedral extension and triple symbol ([R]), which will be used later. We
also give some basic properties of Rédei’s dihedral extension and triple symbol.

1.1. The Rédei extension. Let p1 and p2 be distinct prime numbers satisfying

(1.1.1) pi ≡ 1 (mod 4) (i = 1, 2) ,

(
p1

p2

)
=
(
p2

p1

)
= 1 .

We set ki = Q(
√
pi) (i = 1, 2). It follows from this assumption (1.1.1) that we have the

following Lemma.

LEMMA 1.1.2 ([A, Lemma 1.1]). There are integers x, y, z satisfying the following
conditions:

(1) x2 − p1y
2 − p2z

2 = 0.
(2) g.c.d(x, y, z) = 1, y ≡ 0 (mod 2), x − y ≡ 1 (mod 4).

Furthermore, for a given prime ideal p2 of Ok1 lying over p2, we can find integers x, y, z
which satisfy (1), (2) and (x + y

√
p1) = pm2 for an odd positive integerm.

Let a = (x, y, z) be a triple of integers satisfying the conditions (1), (2) in Lemma 1.1.2.
Then let α = x + y

√
p1 and set

(1.1.3) ka = Q(
√
p1,

√
p2,

√
α) .

The following theorem was proved by L. Rédei ([R]).

THEOREM 1.1.4 ([R]). (1) The field ka is a Galois extension over Q whose Galois
group is the dihedral group of order 8.
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(2) Let d(k1(
√
α)/k1) be the relative discriminant of the extension k1(

√
α)/k1. Then

we have Nk1/Q(d(k1(
√
α)/k1)) = (p2). In particular, all prime numbers ramified in ka/Q

are p1 and p2 with ramification index 2.

The fact that ka is independent of the choice of a was also shown in [R]. The author gave
an alternative proof of this fact in [A], based on a proof communicated by D. Vogel ([V2]).

THEOREM 1.1.5 ([A, Corollary 1.5]). A field ka is independent of the choice of a =
(x, y, z) satisfying (1) and (2) in Lemma 1.1.2, namely, it depends only on a set {p1, p2}.

DEFINITION 1.1.6. By Proposition 1.1.5, we denote by k{p1,p2} the field ka = Q(
√
p1,√

p2,
√
α) given by (1.1.3) and call k{p1,p2} the Rédei extension over Q associated to a set

{p1, p2} satisfying (1.1.1).

The following theorem shows that the Rédei extension k{p1,p2}/Q is characterized by the
information on the Galois group and the ramification given in Theorem 1.1.4.

THEOREM 1.1.7 ([A, Theorem 2.1]). Let p1 and p2 be prime numbers satisfying the
condition (1.1.1). Then the following conditions on a number field K are equivalent:

(1) K is the Rédei extension k{p1,p2}.
(2) K is a Galois extension over Q such that the Galois group is the dihedral groupD8

of order 8 and prime numbers ramified in K/Q are p1 and p2 with ramification index 2.

1.2. The Rédei triple symbol. Let p1, p2 and p3 be three prime numbers satisfying

(1.2.1) pi ≡ 1 (mod 4) (i = 1, 2, 3) ,

(
pi

pj

)
= 1 (1 ≤ i �= j ≤ 3) .

Let k{p1,p2} be the Rédei extension over Q associated to a set {p1, p2} (Definition 1.1.6).

DEFINITION 1.2.2. We define Rédei triple symbol [p1, p2, p3] by

[p1, p2, p3] =
{

1 if p3 is completely decomposed in k{p1,p2}/Q ,

−1 otherwise.

The following theorem is a reciprocity law for the Rédei triple symbol:

THEOREM 1.2.3 ([R], [A, Theorem 3.2]). We have

[p1, p2, p3] = [pi, pj , pk]

for any permutation {i, j, k} of {1, 2, 3}.

2. Milnor invariants. In this section, we recall the arithmetic analogues of Milnor
invariants of a link introduced by M. Morishita ([Mo1, 2, 3]) and clarify a meaning of the
Rédei extension and the Rédei triple symbol in Section 1 from the viewpoint of the anal-
ogy between knot theory and number theory. The underlying idea is based on the following
analogies between knots and primes (cf. [Mo4]):
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knot prime
K : S1 ↪→ R3 Spec(Fp) ↪→ Spec(Z)

link finite set of primes
L = K1 ∪ · · · ∪ Kr S = {p1, . . . , pr }
XL = R3 \ L XS = Spec(Z) \ S

Galois group with restricted ramification
link group GS = πét

1 (XS) = Gal(QS/Q)

GL = π1(XL) QS : maximal extension over Q

unramified outside S ∪ {∞}
In the following, we firstly explain Milnor invariants of a link and their meaning in

nilpotent coverings of S3 ([Mi2], [Mu]). We then discuss their arithmetic analogues for prime
numbers where the Rédei triple symbol is interpreted as an arithmetic analogues of a triple
Milnor invariant. The analogy also suggests that a natural generalization of the Legendre and
Rédei symbols, called a multiple residue symbol [p1, . . . , pn], should describe the decompo-
sition law of pn in a certain nilpotent extension over Q unramified outside p1, . . . , pn−1 and
∞ (∞ being the infinite prime).

2.1. Milnor invariants of a link. Let L = K1 ∪· · ·∪Kr be a link with r components
in R3 and let XL = R3 \ L and GL := π1(XL) be the link group of L. Let F be the free
group on the words x1, . . . , xr where xi represents a meridian of Ki . The following theorem
is due to J. Milnor.

THEOREM 2.1.1 ([Mi2, Theorem 4]). For each d ∈ N , there is y(d)i ∈ F such that

GL/G(d)L = 〈x1, . . . , xr | [x1, y
(d)
1 ] = · · · = [xr, y(d)r ] = 1, F (d) = 1〉 ,

y
(d)
j ≡ y

(d+1)
j mod F (d) ,

where y(d)j is a word representing a longitude of Kj in GL/G(d)L .

Let Z〈〈X1, . . . , Xr 〉〉 be the algebra of non-commutative formal power series of variables
X1, . . . , Xr over Z, and let

M : F −→ Z〈〈X1, . . . , Xr 〉〉×
be the Magnus homomorphism defined by

M(xi) := 1 +Xi, M(x
−1
i ) := 1 − Xi + X2

i − · · · , 1 ≤ i ≤ r .

For f ∈ F , M(f ) has the form

M(f ) = 1 +
∞∑

n=1

∑

1≤i1,...,in≤r
μ(i1 · · · in; f )Xi1 · · ·Xin ,

where the coefficients μ(i1 · · · in; f ) are called the Magnus coefficients.
Let Z[F ] be the group algebra of F over Z and let εZ[F ] : Z[F ] → Z be the augmenta-

tion map. We note that the Magnus coefficients can be written in terms of the Fox derivative



ON A CERTAIN NILPOTENT EXTENSION AND THE 4-TH RESIDUE SYMBOL 505

introduced in [F]:

μ(i1 · · · in; f ) = εZ[F ]
(

∂nf

∂xi1 · · · ∂xin

)
.

For the word y(d)j in Theorem 2.1.1, we set

μ(d)(i1 · · · inj) := μ(i1 · · · in; y(d)j ) .

Since μ(i1 · · · in; f ) = 0 for f ∈ F (d) if d > n, by Theorem 2.1.1, μ(d)(I ) is independent of
d if d ≥ |I |, where |I | denotes the length of a multi-index I . Define μ(I) := μ(d)(I ) (d �
1). For a multi-index I with |I | ≥ 2, we define Δ(I) to be the ideal of Z generated by
μ(J ) where J runs over cyclic permutations of proper subsequences of I . If |I | = 1, we set
μ(I) := 0 and Δ(I) := 0 . The Milnor μ-invariant is then defined by

μ(I) := μ(I) mod Δ(I) .

The fundamental results, due to Milnor, are as follows.

THEOREM 2.1.2 ([Mi2, Theorems 5, 6]). (1) μ(ij) = lk(Ki ,Kj ) (i �= j).
(2) If 2 ≤ |I | ≤ d , μ(I) is a link invariant of L.
(3) (Shuffle relation) For any I, J (|I |, |J | ≥ 1) and i (1 ≤ i ≤ r), we have

∑

H∈PSh(I,J )

μ(H i) ≡ 0 mod g.c.d{Δ(Hi) | H ∈ PSh(I, J )}

where PSh(I, J ) stands for the set of results of proper shuffles of I and J (cf. [CFL]).
(4) (Cyclic symmetry). μ(i1 · · · in) = μ(i2 · · · ini1) = · · · = μ(ini1 · · · in−1).

EXAMPLE 2.1.3. For a multi-index I (|I | ≥ 2), μ(I) = μ(I) is an integral link
invariant if μ(J ) = 0 for all multi-index J with |J | < |I |. For example, let L = K1 ∪K2 ∪K3

be the following Borromean rings:

Then μ(I) = 0 if |I | ≤ 2 and hence μ(I) ∈ Z for |I | = 3. In fact, we have μ(ijk) = ±1 if
ijk is a permutation of 123 and μ(ijk) = 0 otherwise.

Move generally, let L = K1 ∪ · · · ∪ Kr be the following link, called the Milnor link
([Mi1, 5]). We easily see that the link obtained by removing any one component Ki from L is
trivial. So μ(I) = 0 if |I | ≤ n− 1 and μ(I) ∈ Z if |I | = n. For instance, μ(12 · · ·n) = 1.
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Next, we recall that Milnor invariants may be regarded as invariants associated to nilpo-
tent coverings of S3. For a commutative ring R, let Nn(R) be the group consisting of n by n
unipotent uppertriangular matrices. For a multi-index I = (i1 · · · in)(n ≥ 2), we define the
map ρI : F → Nn(Z/Δ(I)) by

ρI (f ) :=

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 ε
(
∂f
∂xi1

)
ε
(

∂2f
∂xi1∂xi2

)
· · · ε

(
∂n−1f

∂xi1 ···∂xin−1

)

0 1 ε
(
∂f
∂xi2

)
· · · ε

(
∂n−2f

∂xi2 ···∂xin−1

)

...
. . .

. . .
. . .

...
...

. . . 1 ε
(

∂f
∂xin−1

)

0 · · · · · · 0 1

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

mod Δ(I) ,

where we set ε = εZ[F ] for simplicity. It can be shown by the property of the Fox derivative
that ρI is a homomorphism.

THEOREM 2.1.6 ([Mo4, Theorem 8.8], [Mu]). (1) The homomorphism ρI factors
through the link groupGL. Furthermore it is surjective if i1, . . . , in−1 are all distinct.

(2) Suppose that i1, . . . , in−1 are all distinct. Let XI → XL be the Galois covering
corresponding to Ker(ρI ) whose Galois group Gal(XI /XL) = Nn(Z/Δ(I)). When Δ(I) �=
0, let MI → S3 be the Fox completion of XI → XL, a Galois covering ramified over the link
Ki1 ∪ · · · ∪ Kin−1 . For a longitude βin of Kin , one has

ρI (βin) =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 μ(I)

0 1 · · · 0
...

. . .
. . .

...
...

. . . 1 0
0 · · · · · · 0 1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

and hence the following holds:
μ(I) = 0 ⇐⇒ Kin is completely decomposed in MI → S3.

2.2. Milnor invariants for prime numbers. Let S = {p1, . . . , pr } be a set of r
distinct odd prime numbers and let GS := πét

1 (Spec(Z) \ S). In order to get the analogy of
the link case, we consider the maximal pro-2 quotient, denoted by GS(2), of GS which is
the Galois group of the maximal pro-2 extension QS(2) over Q which is unramified outside
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S∪{∞}. Here we fix an algebraic closure Q of Q containing QS(2). We also fix an algebraic
closure Qpi

of Qpi and an embedding Q ↪→ Qpi
for each i. Let Qpi (2) be the maximal

pro-2 extension of Qpi contained in Qpi
. Then we have

Qpi (2) = Qpi (ζ2n, 2n
√
pi | n ≥ 1)

where ζ2n ∈ Q is primitive 2n-th root of unity such that ζ 2s
2t = ζ2t−s (t ≥ s). The local

Galois group Gal(Qpi (2)/Qpi ) is then topologically generated by the monodromy τi and the
extension of the Frobenius automorphism σi defined by

(2.2.1)
τi(ζ2n) = ζ2n , τi( 2n

√
pi) = ζ2n 2n

√
pi ,

σi(ζ2n) = ζ
p1
2n , σi( 2n

√
pi) = 2n

√
pi

and τi, σi are subject to the relation τpi−1
i [τi, σi ] = 1.

The embedding Q ↪→ Qpi
induces the embedding QS(2) ↪→ Qpi (2) and hence the

homomorphism ηi : Gal(Qpi (2)/Qpi ) → GS . We denote by the same τi , σi the images of
τi , σi under ηi . Let F̂ denote the free pro-2 group on the words x1, . . . , xr where xi represents
τi . The following theorem, due to H. Koch, may be regarded as an arithmetic analogue of
Milnor’s Theorem 2.1.1.

THEOREM 2.2.2 ([K2, Theorem 6.2]). The pro-2 group GS(2) has the following
presentation:

GS(2) = 〈x1, . . . , xr | xp1−1
1 [x1, y1] = · · · = x

pr−1
r [xr, yr ] = 1〉 ,

where yj ∈ F̂ is the pro-2 word which represents σj .

Set eS := max{e | pi ≡ 1 mod 2e (1 ≤ i ≤ r)} and fix m = 2e (1 ≤ e ≤ eS).
Let Z2〈〈X1, . . . , Xr 〉〉 be the algebra of non-commutative formal power series of variables
X1, . . . , Xr over Z2, the ring of 2-adic integers, and let

M̂ : F̂ −→ Z2〈〈X1, . . . , Xr 〉〉×
be the pro-2 Magnus embedding ([K1, 4.2]). For f ∈ F̂ , M̂(f ) has the from

M̂(f ) = 1 +
∑

1≤i1,...,in≤r
μ̂(i1 · · · in; f )Xi1 · · ·Xin ,

where the coefficients μ̂(i1 · · · in; f ) are called the 2-adic Magnus coefficients. We let

M2 : F̂ −→ F 2〈〈X1, . . . , Xr 〉〉×
be the mod 2 Magnus embedding defined by composing M̂ with the natural homomorphism
Z2〈〈X1, . . . , Xr 〉〉× −→ F 2〈〈X1, . . . , Xr 〉〉×.

Let Z2[[F̂ ]] be the complete group algebra over Z2 and let ε
Z2[[F̂ ]] : Z2[[F̂ ]] → Z2 be

the augmentation map. In terms of the pro-2 Fox free derivative ([I], [O]), the 2-adic Magnus
coefficients are written as

μ̂(i1 · · · in; f ) = ε
Z2[[F̂ ]]

(
∂nf

∂xi1 · · · ∂xin

)
.
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For the word yj in Theorem 2.2.2, we set

μ̂(i1 · · · inj) := μ̂(i1 · · · in; yj )
and we set, for a multi-index I ,

μm(I) := μ̂(I ) mod m .

For a multi-index with I with 1 ≤ |I | ≤ 2eS , let Δm(I) be the ideal of Z/mZ generated by(2eS
t

)
(1 ≤ t ≤ |I |) and μm(J ) (J running over cyclic permutation of proper subsequences of

I ). The Milnor μm-invariant is then defined by

μm(I) := μm(I) mod Δm(I) .

The following analogue of Theorem 2.1.2 is due to Morishita.

THEOREM 2.2.3 ([Mo3, Theorems 1.2.1, 1.2.5]). (1) ζμm(ij)m = (pj
pi

)
m

where ζm is the

primitive m-th root of unity given in (2.2.1) and
(pj
pi

)
m

is the m-th power residue symbol in
Qpi .

(2) If 2 ≤ |I | ≤ 2eS , μm(I) is an invariant depending only on S.
(3) Let r be an integer such that 2 ≤ r ≤ 2eS . For multi-indices I, J such that |I |+|J | =

r − 1, we have, for any 1 ≤ i ≤ n,
∑

H∈PSh(I,J )

μm(Hi) ≡ 0 mod g.c.d{Δ(Hi) | H ∈ PSh(I, J )} .

EXAMPLE 2.2.4. Let S = {p1, p2, p3} be a triple of distinct prime numbers satisfying
the condition (1.2.1) and let m = 2. Then μ2(I) = 0 if |I | ≤ 2 and hence, for |I | = 3,
Δ2(I) = 0 and μ2(I) = μ2(I) ∈ Z/2Z. The following theorem interprets the Rédei triple
symbol as a Milnor invariant.

THEOREM 2.2.4.1 ([Mo2, Theorem 3.2.5]). Under the above assumption on {p1,

p2, p3} we have

[p1, p2, p3] = (−1)μ2(123) .

For example, D. Vogel ([V1, Example 3.14]) showed that for S = {13, 61, 937} μ2(I) = 0
(|I | ≤ 2), μ2(I) = 1 (I is a permutation of 123), μ2(ijk) = 0 (otherwise). In view of
Example 2.1.3, this triple of prime numbers may be called the Borromean primes.
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Finally, we give an analogue of Theorem 2.1.6 for prime numbers. Let I = (i1 · · · in),
2 ≤ n ≤ leS and assume Δm(I) �= Z/mZ. We define the map ρ(m,I) : F̂ → Nn((Z/

mZ)/Δm(I)) by

ρ(m,I)(f ) :=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1 ε
(
∂f
∂xi1

)

m
ε
(

∂2f
∂xi1∂xi2

)

m
· · · ε

(
∂n−1f

∂xi1 ···∂xin−1

)

m

1 ε
(
∂f
∂xi2

)

m
· · · ε

(
∂n−2f

∂xi2 ···∂xin−1

)

m
. . .

. . .
...

0 1 ε
(

∂f
∂xin−1

)

m

1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

mod Δm(I) ,

where we set ε(α)m = ε
Z[[F̂ ]](α) mod m for α ∈ Zl[[F̂ (l)]]. It can be shown by the property

of the pro-2 Fox derivative that ρ(m,I) is a homomorphism.

THEOREM 2.2.5 ([Mo3, Theorem 1.2.7]). (1) The homomorphism ρ(m,I) factors
through the Galois groupGS(2). Further it is surjective if i1, . . . , in−1 are all distinct.

(2) Suppose that i1, . . . , in−1 are all distinct. Let K(m,I) be the extension over Q corre-
sponding to Ker(ρ(m,I )). Then K(m,I)/Q is a Galois extension unramified outside
pi1 , . . . , pin−1 and ∞ with Galois group Gal(K(m,I)/Q) = Nn((Z/mZ)/Δm(I)). For a
Frobenius automorphism σin over pin , one has

ρ(m,I)(σin ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 μm(I)

1 · · · 0
. . .

...

0 1 0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and hence the following holds:
μm(I) = 0 ⇐⇒ pin is completely decomposed in K(m,I)/Q.

EXAMPLE 2.2.6. Let m = 2 and K = K(2,I ). For S = {p1, p2}, pi ≡ 1 (mod 4)
(i = 1, 2) and I = (12), we have

K = Q(
√
p1), Gal(K/Q) = N2(F 2) = Z/2Z, (−1)μ2(12) =

(
p1

p2

)
.

For S = {p1, p2, p3} satisfying the condition (1.2.1) and I = (123), we have

K = k{p1,p2}, Gal(K/Q) = N3(F 2) = D8, (−1)μ2(123) = [p1, p2, p3] .

Theorem 2.2.5 suggests a problem to construct concretely a Galois extension Kn/Q
unramified outside p1, . . . , pn−1 and ∞ with Galois groupNn(F 2) and to introduce the mul-
tiple residue symbol [p1, . . . , pn], as a generalization of the Legendre symbol and the Rédei
triple symbol, which should describe the decomposition law of pn in the extensionKn/Q and
coincide with (−1)μ2(12···n). In the next section, we solve this problem for the case n = 4.
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3. Construction of anN4(F 2)-extension and the 4-th multiple residue symbol. In
this section, under certain conditions on three prime numbers p1, p2, p3, we construct con-
cretely a Galois extensionK over Q where all ramified prime numbers are p1, p2 and p3 and
the Galois group is N4(F 2), and introduce the 4-th multiple residue symbol [p1, p2, p3, p4]
which describes the decomposition law of p4 in K/Q. We then show that [p1, p2, p3, p4]
coincides with (−1)μ2(1234), where μ2(1234) is the 4-th arithmetic Milnor invariant defined
in 2.2. We keep the same notations as in the previous sections.

3.1. Construction of an N4(F 2)-extension. Let p1, p2 and p3 be three prime num-
bers satisfying the conditions

(3.1.1)

⎧
⎪⎨

⎪⎩

pi ≡ 1 (mod 4) (i = 1, 2, 3) ,

(
pi

pj

)
= 1 (1 ≤ i �= j ≤ 3) ,

[pi, pj , pk] = 1 ({i, j, k} = {1, 2, 3}) .
We let
{
ki := Q(

√
pi) (i = 1, 2, 3), kij := kikj = Q(

√
pi,

√
pj ) (1 ≤ i < j ≤ 3) ,

k123 := k1k2k3 = Q(
√
p1,

√
p2,

√
p3) .

For simplicity, we set k := k1 in the following. Let p2 be one of prime ideals of Ok lying over
p2. Then as in Lemma 1.1.2, we can find a triple of integers (x, y, z) with α = x + y

√
p1

satisfying (1), (2) in Lemma 1.1.2 such that

(α) = pm2 (m being an odd integer) , k{p1,p2} = Q(
√
p1,

√
p2,

√
α) .

In the following, we fix such an α once and for all.
For a prime p of k, we denote by

(
,
p

)
the Hilbert symbol in the local field kp, namely,

(a, kp(
√
b)/kp)

√
b =
(
a, b

p

)√
b (a, b ∈ k×

p ) ,

where ( , kp(
√
b)/kp) : k×

p → Gal(kp(
√
b)/kp) is the norm residue symbol of local class

field theory.

LEMMA 3.1.2. For any prime p of k, we have
(
α, p3

p

)
= 1 .

PROOF. We consider the following five cases.
(Case 1) p is prime to p2, p3, 2, ∞: Then we have α, p3 ∈ Up, where Up is the unit

group of kp, and hence
(
α,p3
p

)
= 1.

(Case 2) p = p2: Let π be a prime element of kp2 . Write α = u1π
m2, u1 ∈ Up2 . Then

we have
(
α, p3

p2

)
=
(
u1, p3

p2

)(
πm2, p3

p2

)

=
(
π, p3

p2

)
(u1, p3 ∈ Up2,m2 is odd)
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= (π, kp2(
√
p3)/kp2)

√
p3√

p3
.

Since (π, kp2(
√
p3)/kp2) is the Frobenius automorphism over p2 in k(

√
p3)/k,

(π, kp2(
√
p3)/kp2)(

√
p3) = √

p3 by
(
p1
p2

)
=
(
p3
p2

)
= 1.

(Case 3) p | p3: Let � be a prime element of kp. Write p3 = u2� , u2 ∈ Up. Then we
have

(
α, p3

p

)
=
(
p3, α

p

)

=
(
u2, α

p

)(
�,α

p

)

=
(
�,α

p

)
(u2, α ∈ Up)

= (�, kp(
√
α)/kp)

√
α√

α
.

Since p is decomposed in k(
√
α)/k by [p1, p2, p3] = 1 and (�, kp(

√
α)/kp) is the Frobenius

automorphism over p in k(
√
α)/k, (�, kp(

√
α)/kp)(

√
α) = √

α.
(Case 4) p = ∞: Since p3 > 0,

(α,p3∞
) = 1.

(Case 5) p | 2: If p = (2), the above cases and the product formula for the Hilbert symbol

yields
(
α,p3
p

)
= 1. If (2) = p · p′ (p �= p′), kp = kp′ = Q2 and so we have

(
α, p3

p

)
=
(
α, p3

p′

)
= (−1)

p3−1
2 · α−1

2 = 1 . �

PROPOSITION 3.1.3. Assume that the class number of k is 1. Then there areX,Y,Z ∈
Ok satisfying the following conditions:

(1) X2 − p3Y
2 − αZ2 = 0,

(2) g.c.d(X, Y,Z) = 1.

PROOF. By Lemma 3.1.2, we have α ∈ Nkp(
√
p3)/kp(kp(

√
p3)

×) for any prime p of

k and so there are Xp, Yp ∈ kp such that X2
p − p3Y

2
p = α. By the Hasse principal, there

are X̃, Ỹ ∈ k such that X̃2 − p3Ỹ
2 = α from which the condition (1) holds by writing

X̃ = X
Z
, Ỹ = Y

Z
withX,Y,Z ∈ Ok . Since Ok is the principal ideal domain by the assumption,

we may choose X,Y,Z ∈ Ok so that the condition (2) is satisfied. �

For k13 = Q(
√
p1,

√
p3), let U be the unit group of Ok13/(4) and U(2) the 2-Sylow

subgroup of U . Similarly, let k′
13 := Q(

√
p1,

√
α) and define U ′ := (Ok′

13
/(4))× and U ′(2)

to be the 2-Sylow subgroup of U ′.

LEMMA 3.1.4. The group U(2) is given by

U(2)= 〈−1〉 × 〈√p1〉 × 〈√p3〉 ×
〈

3 + √
p1 + √

p3 + √
p1p3

2

〉
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� Z/2Z × Z/2Z × Z/2Z × Z/2Z .

Similarly, U ′(2) is given by

U ′(2)= 〈−1〉 × 〈√p1〉 × 〈√α〉 ×
〈

3 + √
p1 + √

α + √
p1α

2

〉

� Z/2Z × Z/2Z × Z/2Z × Z/2Z .

PROOF. Since 2 is unramified in the extension k13/Q, we have the decomposition (2) =
c1 · · · cr . Therefore the order of U is given by

Πr
i=1Nci(Nci − 1) = N((2))Πr

i=1(Nci − 1) = 16m

and so U has the order 16m, where m is an odd integer. Let A := {±1 mod (4),±√
p1

mod (4),±√
p3 mod (4),±√

p1p3 mod (4)}. Since pi ≡ 1 mod 4, each element of A
has the order 2 and so A ⊂ U(2). We show that the order of A is 8. Suppose

√
p1 ≡ √

p3

mod (4) for example. Then
√
p1 − √

p3 = 4β for some β ∈ Ok13 . Taking the norm Nk13/Q,
we obtain

−p1 − p3

16
+

√
p1p3

8
∈ OQ(

√
p1p3) =

{
a + b

√
p1p3

2

∣
∣
∣
∣ a, b ∈ Z, a ≡ b mod 2

}
,

which is a contradiction. Similary, using the structure of Ok1 and Ok3 , we can check that any
two elements inA are distinct. Hence we see thatU(2) = A∪A·{(3+√

p1+√
p3+√

p1p3)/2
mod (4)}. Replacing p3 by α, the assertion for U ′(2) can be shown similarly. �

LEMMA 3.1.5. Assume p1 ≡ 5 (mod 8). Then there is a unit ε ∈ O×
k of the form

ε = s + t
√
p1, s, t ∈ Z, s ≡ 0, t ≡ 1 (mod 2). Such a unit ε satisfies ε ≡ ±√

p1 mod (4)
in U(2) and U ′(2).

PROOF. Since p1 ≡ 1 (mod 4), the fundamental unit ε1 = s1+t1√p1
2 (s1 ≡ t1 (mod 2))

of k satisfies Nk/Q(ε1) = −1. If s1 ≡ t1 ≡ 0 (mod 2), we let ε := ε1 = s + t
√
p1,

s := s1/2, t := t1/2 ∈ Z, where we have s ≡ 0, t ≡ 1 (mod 2), since s2 −p1t
2 = −1. Since

ε = s + t
√
p1 = s + s

√
p1 + (t − s)

√
p1 and s + s

√
p1 ∈ 4Ok13 , ε ≡ ±√

p1 mod (4).
Suppose s1 ≡ t1 ≡ 1 (mod 2). Since p1 ≡ 5 (mod 8), we have s2

1 +3p1t
2
1 ≡ 3s2

1 +p1t
2
1 ≡ 0

(mod 8) and so

ε3
1 = s1(s

2
1 + 3p1t

2
1 )+ t1(3s2

1 + p1t
2
1 )

√
p1

8
= s + t

√
p1 ,

where s = s1(s
2
1 + 3p1t

2
1 )/8, t = t1(3s2

1 + t21 )/8 ∈ Z. Since Nk/Q(ε3
1) = −1, ε = ε3

1 satisfies
the desired conditions. �

The following theorem may be regarded as an analogue of Lemma 1.1.2.

THEOREM 3.1.6. Assume that the class number of k is 1 and p1 ≡ 5 (mod 8). Then
there are X,Y,Z ∈ Ok satisfying the following conditions:

(1) X2 − p3Y
2 − αZ2 = 0,

(2) g.c.d(X, Y,Z) = 1, (Z, 2) = 1 (resp. g.c.d(X, Y,Z) = 1, (Y, 2) = 1),
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(3) There is λ ∈ Ok13 (resp. λ ∈ Ok′
13
) such that λ2 ≡ X+Y√

p3 mod (4) (resp. λ2 ≡
X + Z

√
α mod (4)).

PROOF. By Proposition 3.1.3, there are X,Y,Z ∈ Ok satisfying (1) and (2).
Case (Z, 2) = 1: Let θ := X + Y

√
p3 and θ := θ mod (4). Then we easily see

θ ∈ Ok13 and θ ∈ U since (Z, 2) = 1. Let n be the order of θ in U .
(i) Suppose n �≡ 0 (mod 2). Then it is easy to see that there is λ ∈ Ok13 such that

λ2 ≡ θ mod (4).

(ii) Suppose n ≡ 0 (mod 2). By Lemma 3.1.4, n2 �≡ 0 (mod 2) and θ
n
2 ∈ U(2). Write

θ
n
2 = b1 + b2

√
p1 + b3

√
p3 + b4

√
p1p3, bi ∈ Q. Since Nk13/k(θ) = X2 − p3Y

2 = αZ2,

Nk13/k(θ
n
2 ) = (αZ2)

n
2 . Since α = x + y

√
p1 = x − y + 2y · 1+√

p1
2 ≡ 1 mod (4),

(αZ2)
n
2 ≡ (Z

n
2 )2 ≡ 1 mod (4). Therefore we have

(3.1.6.1)
(b1 + b2

√
p1 + b3

√
p3 + b4

√
p1p3) · (b1 + b2

√
p1 − b3

√
p3 − b4

√
p1p3) ≡ 1 mod (4) .

We claim that θ
n
2 ≡ −1 or ± √

p1 mod (4). Suppose this is not the case. Then, by Lemma

3.1.4, θ
n
2 ≡ ±√

p3, ±√
p1p3 or a · (3 + √

p1 + √
p3 + √

p1p3)/2 (a ∈ A) mod (4) and so
the coefficients of

√
p3 or

√
p1p3 are not 0. Since any element of U(2) has order 2, we have

(b1 + b2
√
p1 + b3

√
p3 + b4

√
p1p3) · (b1 + b2

√
p1 − b3

√
p3 − b4

√
p1p3) �≡ 1 mod (4) ,

which contradicts to (3.1.6.1). Therefore, by Lemma 3.1.5, there is ε ∈ O×
k such that εθ

n
2 ≡ 1

mod (4) and ε2 ≡ 1 mod (4). Replacing (X, Y,Z) by (εX, εY, εZ), (1), (2) holds obviously,
and (3) is also satisfied because εθ mod (4) has the order n2 �≡ 0 (mod 2).

Case (Y, 2) = 1: Let θ ′ := X + Z
√
α. Replacing θ by θ ′ and p3 by α, the above proof

works well by using Lemma 3.1.4. �

Let a = (X, Y,Z) be a triple of integers in Ok satisfying (1), (2), (3) in Theorem 3.1.6
and fix it once and for all. We let

{
θ := X + Y

√
p3 if (Z, 2) = 1 ,

θ ′ := X + Z
√
α if (Y, 2) = 1 ,

and set
⎧
⎪⎪⎨

⎪⎪⎩

θ1 := θ,

θ2 := X − Y
√
p3 ,

θ3 := X + Y
√
p3 ,

θ4 := X − Y
√
p3 ,

⎧
⎪⎪⎨

⎪⎪⎩

θ ′
1 = θ ′ ,
θ ′

2 = X − Z
√
α ,

θ ′
3 = X + Z

√
α ,

θ ′
4 = X − Z

√
α ,

where X,Y and α are conjugates of X, Y and α over Q respectively.

DEFINITION 3.1.7. We then define the number field K by

K = Ka =
{

Q(
√
p1,

√
p2,

√
p3,

√
θ1θ2,

√
θ1θ3,

√
θ1) if (Z, 2) = 1 ,

Q(
√
p1,

√
p2,

√
p3,
√
θ ′

1θ
′
2,
√
θ ′

1θ
′
3,
√
θ ′

1) if (Y, 2) = 1 .
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For the latter use, we set, for the case of (Y, 2) = 1,
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

η1 :=
(√
θ ′

1 + √θ ′
2

)2 = 2X + 2Y
√
p3 ,

η2 :=
(√
θ ′

1 − √θ ′
2

)2 = 2X − 2Y
√
p3 ,

η3 :=
(√
θ ′

3 + √θ ′
4

)2 = 2X + 2Y
√
p3 ,

η4 :=
(√
θ ′

3 − √θ ′
4

)2 = 2X − 2Y
√
p3 .

THEOREM 3.1.8. (1) We have

K =
{

Q(
√
θ1,

√
θ2,

√
θ3,

√
θ4) if (Z, 2) = 1,

Q
(√
θ ′

1,
√
θ ′

2,
√
θ ′

3,
√
θ ′

4

) = Q(
√
η1,

√
η2,

√
η3,

√
η4) if (Y, 2) = 1 .

(2) The extension K/Q is a Galois extension whose Galois group is isomorphic to
N4(F 2).

PROOF. (1) Case (Z, 2) = 1: It is easy to see
√
θ2,

√
θ3 ∈ K . Noting that

(3.1.8.1)

θ1θ2θ3θ4 = Nk13/Q(θ1)

= Nk/Q(Nk13/k(θ1))

= Nk/Q(αZ
2)

= p2h
2 (h ∈ Z) ,

we have
√
θ4 ∈ K and hence Q(

√
θ1,

√
θ2,

√
θ3,

√
θ4) ⊂ K . Next we show the converse

inclusion. Write θ1 = a1 + a2
√
p1 + a3

√
p3 + a4

√
p1p3 (ai ∈ Q). By considering the prime

factorization of the ideal (αZ2) in k1, we find αZ2 /∈ Z. Then, by the equality θ1θ2 = αZ2,
we find that the number of i (1 ≤ i ≤ 4) with ai = 0 is at most one. Since θ1 + θ2 =
2(a1 + a2

√
p1), θ1 + θ3 = 2(a1 + a3

√
p3) and θ1 + θ4 = 2(a1 + a4

√
p1p3),

√
p1,

√
p3 ∈

Q(
√
θ1,

√
θ2,

√
θ3,

√
θ4). By (3.1.8.1), we get K ⊂ Q(

√
θ1,

√
θ2,

√
θ3,

√
θ4).

Case (Y, 2) = 1: First, let us show Q(
√
θ ′

1,
√
θ ′

2,
√
θ ′

3,
√
θ ′

4) = Q(
√
η1,

√
η2,

√
η3,√

η4). By the definition of ηi’s, obviously the inclusion ⊃ holds. Since
√
η1 + √

η2 = 2
√
θ ′

1,√
η1 − √

η2 = 2
√
θ ′

2,
√
η3 + √

η4 = 2
√
θ ′

3,
√
η3 − √

η4 = 2
√
θ ′

4, we obtain the converse
inclusion ⊂.

Next, we show K = Q(
√
θ ′

1,
√
θ ′

2,
√
θ ′

3,
√
θ ′

4). It is easy to see
√
θ ′

2,
√
θ ′

3 ∈ K . Since

θ ′
1θ

′
2 = X2−αZ2 = p3Y

2, we have θ ′
3θ

′
4 = X

2−αZ2 = p3Y
2
. So, θ ′

1θ
′
2θ

′
3θ

′
4 = p2

3(YY )
2 ∈ Q

and
√
θ ′

4 ∈ K . For the converse inclusion, it suffices to showK ⊂ Q(
√
η1,

√
η2,

√
η3,

√
η4).

By considering the prime factorization of the ideal (α(2Z)2) in k1, we find α(2Z)2 /∈ Z. By
Nk13/Q(η1) = 4p2h

2 and the argument similar to the case of (Z, 2) = 1, we have
√
pi ∈

Q(
√
η1,

√
η2,

√
η3,

√
η4) (i = 1, 2, 3).

(2) Case (Z, 2) = 1: First, K/Q is a Galois extension, because K is the split-
ting field of Π4

i=1(T
2 − θi) = Πσ∈Gal(k13/Q)(T

2 − σ(θ1)) ∈ Z[T ]. Next, let k123 =
Q(

√
p1,

√
p2,

√
p3), K1 := k123(

√
θ1θ2) and K2 := K1(

√
θ1θ3). Since θ3θ4 = θ1θ2 and
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√
θ3θ4 = h

√
p2/

√
θ1θ2 ∈ K1, K1/k123 is a Galois extension. Let us show [K1 : k123] = 2.

Define σ ∈ Gal(k123/Q) by

σ : (√p1,
√
p2,

√
p3) �→ (−√

p1,−√
p2,

√
p3) .

Let σ̃ ∈ Gal(K1/Q) be an extension of σ . Then we have

(σ̃ (
√
θ1θ2))

2 = σ̃ (θ1θ2) = θ3θ4

and so σ̃ (
√
θ1θ2) = ±√

θ3θ4. Therefore we have

σ̃ 2(
√
θ1θ2) = σ̃ (±√θ3θ4) = σ̃ (±h√p2/

√
θ1θ2) = −√θ1θ2 .

Since σ̃ 2 |k123= id,
√
θ1θ2 �∈ k123 and hence [K1 : k123] = 2. Similarly we can show that

K2/K1 is a Galois extension and [K2 : K1] = [K : K2] = 2. Hence we have [K : Q] = [K :
K2][K2 : K1][K1 : k123][k123 : Q] = 64.

Case (Y, 2) = 1: K/Q is a Galois extension, because K is the splitting field of
Π4
i=1(T

2 − ηi) = Πσ∈Gal(k13/Q)(T
2 − σ(η1)) ∈ Z[T ]. Let K ′

1 := k123(
√
η1η2) and E′

2 :=
k123(

√
η1η3). By the argumet similar to the case (Z, 2) = 1, we have [K : Q] = [K :

K ′
2][K ′

2 : K ′
1][K ′

1 : k123][k123 : Q] = 64.
Finally, by the computer calculation using GAP, we have the following presentation of

the groupN4(F 2):

N4(F 2) =
〈

g1, g2, g3

∣∣
∣
∣
∣
∣

g2
1 = g2

2 = g2
3 = (g1g3)

2 = 1
(g1g2)

4 = (g2g3)
4 = (g1g2g3)

4 = 1
((g1g2g3g2)

2g3)
2 = 1

〉

,

where g1, g2 and g3 are words representing the following matrices respectively:

g1 =

⎛

⎜⎜
⎝

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ , g2 =

⎛

⎜⎜
⎝

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ , g3 =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞

⎟⎟
⎠ .

Case (Z, 2) = 1: We define τ1, τ2, τ3 ∈ Gal(K/Q) by

τ1 : (
√
p1,

√
p2,

√
p3,

√
θ1θ2,

√
θ1θ3,

√
θ1,

√
θ2,

√
θ3,

√
θ4)

�→ (−√
p1,

√
p2,

√
p3,

√
θ3θ4,

√
θ1θ3,

√
θ3,

√
θ4,

√
θ1,

√
θ2)

τ2 : (
√
p1,

√
p2,

√
p3,

√
θ1θ2,

√
θ1θ3,

√
θ1,

√
θ2,

√
θ3,

√
θ4)

�→ (
√
p1,−√

p2,
√
p3,−√

θ1θ2,−√
θ1θ3,−√

θ1,
√
θ2,

√
θ3,

√
θ4)

τ3 : (
√
p1,

√
p2,

√
p3,

√
θ1θ2,

√
θ1θ3,

√
θ1,

√
θ2,

√
θ3,

√
θ4)

�→ (
√
p1,

√
p2,−√

p3,
√
θ1θ2,

√
θ2θ4,

√
θ2,

√
θ1,

√
θ4,

√
θ3) .

Then we can easily check τ 2
1 = τ 2

2 = τ 2
3 = (τ1τ3)

2 = id, (τ1τ2)
4 = (τ2τ3)

4 = (τ1τ2τ3)
4 =

id, ((τ1τ2τ3τ2)
2τ3)

2 = id. Thus the correspondence τi �→ gi (i = 1, 2, 3) gives an isomor-
phism Gal(K/Q) � N4(F 2).

Case (Y, 2) = 1: We note K = Q(
√
p1,

√
p2,

√
p3,

√
η1η2,

√
η1η3,

√
η1), because√

η3η4 = 4h
√
p2/

√
η1η2 ∈ K1. Then the assertion can be shown in a way similar to the case

(Z, 2) = 1, by replacing θi with ηi . �
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Next, let us study the ramification in our extension K/Q. First, we recall the following
well-known fact on the ramification in a Kummer extension.

LEMMA 3.1.9 ([B, Lemma 6]). Let l be a prime number and E a number field con-
taining a primitive l-th root of unity. Let E( l

√
a) (a ∈ OE) be a Kummer extension over E of

degree l. Suppose (a) = qma where q is a prime ideal in E which does not divide l, (q, a) = 1
and l | m. Then q is unramified in E( l

√
a)/E.

THEOREM 3.1.10. All prime numbers ramified in the extension K/Q are p1, p2 and
p3 with ramification index 2.

PROOF. Case (Z, 2) = 1: Let us study the ramification in the extension k13(
√
θ1)/k13.

Since (T − λ+√
θ1

2 )(T − λ−√
θ1

2 ) = (T − λ
2 )

2 − (
√
θ1
2 )2 = T 2 − λT + λ2

4 − θ1
4 with λ, λ

2−θ1
4 ∈

Ok13 , we find λ+√
θ1

2 ∈ Ok13(
√
θ1)

. Since the relative discriminant of λ+√
θ1

2 in k13(
√
θ1)/k13

is given by
∣
∣
∣
∣∣
1 λ+√

θ1
2

1 λ−√
θ1

2

∣
∣
∣
∣∣

2

=
(
λ− √

θ1

2
− λ+ √

θ1

2

)2

= θ1 ,

we find that any prime factor of 2 is unramified in k13(
√
θ1)/k13.

Next, let us look closely at the prime factorization of the ideal (θ1) in k13. We let

(θ1) = Qe1
1 Qe2

2 · · ·Qer
r

be the prime factorization of (θ1) and let qi = Qi ∩ k. Since Nk13/k(θ) = X2 −p3Y
2 = αZ2,

we have

(3.1.10.1) Nk13/k((θ1)) = (αZ2) = pm2 a
2 ,

where a := (Z) is an ideal in k. Now the prime factorization of qi in k13/k has the following
three cases:

(i) qi = Q2
i Nk13/k(Qi ) = qi ,

(ii) qi = Qi Nk13/k(Qi ) = q2
i ,

(iii) qi = QiQ
′
i Nk13/k(Qi ) = qi , Nk13/k(Q

′
i ) = qi

Case (i): If ei is odd, it contradicts to (3.1.10.1). Hence ei is even.
Case (ii): Since θ1 ∈ Qi and qi = Qi , θ2 = a1 + a2

√
p1 − a3

√
p3 − a4

√
p1p3 = X −

Y
√
p3 ∈ Qi . Since p2 is decomposed in k13/k, we see, by (3.1.10.1), Z ∈ Qi . Further, since

Qi is not a prime factor of 2 by (Z, 2) = 1 and 2X = θ1 + θ2 ∈ Qi , 2Y
√
p3 = θ1 − θ2 ∈ Qi

and X,Y,Z ∈ k, we have X,Y,Z ∈ qi , which contradicts to g.c.d(X, Y,Z) = 1.
Case (iii): Suppose P and P′ are prime factors of p2. Since the exponentm in (3.1.10.1)

is odd, one of P and P′ appears odd times in the prime factorization of (θ1). Let P be
that one. When Qi �= P, assume ei is odd. By (3.1.10.1), Q′

i also appears odd times in
the prime factorization of (θ1). Therefore we have θ1 ∈ QiQ

′
i = qi and θ2 ∈ qi , and so

2X = θ1 + θ2 ∈ Qi , 2Y
√
p3 = θ1 − θ2 ∈ Qi . This deduces X,Y,Z ∈ qi , which contradicts

to g.c.d (X, Y,Z) = 1. Thus ei must be even.
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Getting all together, we find that (θ1) has the form Pm1A2 (m1: odd). Then, by Lemma
3.1.9, ramified finite primes in k13(

√
θ1)/k13 must be lying over p2. Similarly, we see that

ramified finite primes in k13(
√
θi)/k13 (i = 2, 3, 4) are all lying over p2. This shows that

any ramified finite prime in the extension K = k13(
√
θ1,

√
θ2,

√
θ3,

√
θ4)/k13 is lying over

p2. Since k13/Q is unramified outside p1, p3, we conclude that all ramified prime numbers
in K/Q are p1, p2 and p3.

Finally, we show that the ramification indices of pi’s inK/Q are all 2. We easily see that
this is true for p1 and p3, because the ramification indices of p1 and p2 in k13/Q are 2 and
any prime factor of p1 or p3 is unramified in K/k13. So it suffices to show our assertion for
p2. Let p2i be a prime factor in k13 of p2 which is ramified in k13(

√
θ1)/k13. Since we have

p2i = Q2
i in k13(

√
θ1), by considering the prime factorization of the ideal (θi) in k13(

√
θ1),

we see by Lemma 3.1.9 that Qi is unramified in k13(
√
θ1,

√
θi). Therefore any prime factor

of p2 ramified in k13(
√
θ1)/k13 is unramified in k13(

√
θ1,

√
θ2,

√
θ3,

√
θ4)/k13(

√
θ1). Thus

the ramification index of p2 is 2.
Case (Y, 2) = 1: As in the case of (Z, 2) = 1, we consider the prime factorization of

(θ ′
1) in k′

13. Then, by a similar argument, we find that (θ ′
1) has the ideal decomposition of

the form Q′B2 where any prime factor of Q′ is lying over p3. This shows by Lemma 3.1.9
that any ramified finite prime in k′

13(
√
θ ′

1)/k
′
13 is lying over p3. Similarly, we see that finite

ramified primes in k′
13(
√
θ ′

2)/k
′
13, k′

13(
√
θ ′

3)/k
′
13 and k′

13(
√
θ ′

4)/k
′
13 are all lying over p3. Hence

all ramified prime numbers in K/Q are p1, p2 and p3. The assertion on the ramification
indices of pi ’s can also be shown by an argument similar to the case of (Z, 2) = 1. �

THEOREM 3.1.11. We have

K =
{
k{p1,p2}k{p2,p3}(

√
θ1) if (Z, 2) = 1 ,

k{p1,p2}k{p3,p2}(
√
θ ′

1) if (Y, 2) = 1 .

PROOF. Case (Z, 2) = 1: First we have

Q(
√
p1,

√
p2,
√
θ1θ2)= Q(

√
p1,

√
p2,
√
αZ2)

= Q(
√
p1,

√
p2,

√
α)

= k{p1,p2} .

Next, it is easy to see that Q(
√
p2,

√
p3,

√
θ1θ3) is a dihedral extension over Q of degree 8.

Since all prime numbers ramified in Q(
√
p2,

√
p3,

√
θ1θ3)/Q arep2 andp3 with ramification

index 2 by Theorem 3.1.10, we have

Q(
√
p2,

√
p3,
√
θ1θ3) = k{p3,p2}

by Theorem 1.1.7. Hence we have

K = k{p1,p2}k{p3,p2}(
√
θ1) .
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Case (Y, 2) = 1: Noting that η1 = 2X + 2Y
√
p3, η2 = 2X − 2Y

√
p3 and η3 =

2X + 2Y
√
p3, we have

Q(
√
p1,

√
p2,

√
η1η2)= Q(

√
p1,

√
p2,
√

4αZ2)

= Q(
√
p1,

√
p2,

√
α)

= k{p1,p2} .

By the same argument as in the case of (Z, 2) = 1 replacing θi with ηi , we have Q(
√
p2,√

p3,
√
η1η3) = k{p3,p2}. Hence we have, by Theorem 3.1.8,

K = Q(
√
η1,

√
η2,

√
η3,

√
η4)

= Q(
√
p1,

√
p2,

√
p3,

√
η1η2,

√
η1η3,

√
η1)

= k{p1,p2}k{p3,p2}(
√
θ ′

1) . �

3.2. The 4-th multiple residue symbol. Let p1, p2, p3 and p4 be four prime num-
bers satisfying

(3.2.1)

⎧
⎨

⎩

p1 ≡ 5 (mod 8), pi ≡ 1 (mod 4) (i = 2, 3, 4) ,(
pi

pj

)
= 1 (1 ≤ i �= j ≤ 4), [pi, pj , pk] = 1 (i, j, k : distinct) ,

and we assume that the class number of k1 = Q(
√
p1) is 1.

Let K be the field defined in Definition 3.1.7.

DEFINITION 3.2.2. We define the 4-th multiple residue symbol [p1, p2, p3, p4] by

[p1, p2, p3, p4] =
{

1 if p4 is completely decomposed in K/Q ,

−1 otherwise.

We let

L :=
{

Q(
√
p1,

√
p2,

√
p3,

√
θ1θ2,

√
θ1θ3) if (Z, 2) = 1 ,

Q(
√
p1,

√
p2,

√
p3,

√
η1η2,

√
η1η3) if (Y, 2) = 1 .

Case (Z, 2) = 1: Let τ1, τ2, τ3 ∈ Gal(K/Q) be as in the proof of Theorem 3.1.8 and we
let

ξ1 := √θ1θ2 +√θ3θ4 , ξ2 := √θ1θ3 +√θ2θ4 , ξ3 := √θ1 +√θ2 +√θ3 +√θ4 .

Then, the subfields of K/Q which corresponds by Galois theory to the subgroups generat-
ed by τ1, τ2, τ3 and (τ1τ2τ3τ2)

2 are Q(
√
p2,

√
p3, ξ1,

√
θ1θ3, ξ3), Q(

√
p1,

√
p3,

√
θ2,

√
θ3,√

θ4), Q(
√
p1,

√
p2,

√
θ1θ2, ξ2, ξ3) and F , respectively. By the assumption (3.2.1), p4 is

completely decomposed in the extension F/Q.
Case (Y, 2) = 1: We let τ1, τ2, τ3 ∈ Gal(K/Q) and ξ1, ξ2, ξ3 be defined by replac-

ing θi in the case (Z, 2) = 1 with ηi (1 ≤ i ≤ 4). Then, as in the case (Z, 2) = 1
the subfields of K/Q which corresponds by Galois theory to the subgroups generated by
τ1, τ2, τ3 and (τ1τ2τ3τ2)

2 are Q(
√
p2,

√
p3, ξ1,

√
η1η3, ξ3), Q(

√
p1,

√
p3,

√
η2,

√
η3,

√
η4),
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Q(
√
p1,

√
p2,

√
η1η2, ξ2, ξ3) and F , respectively. By the assumption (3.2.1), p4 is com-

pletely decomposed in the extension F/Q.

Let P4 be a prime ideal in F lying over p4 and let σP4 =
(
K/F
P4

)
∈ Gal(K/F) be the

Frobenius automorphism of P4. Note that P4 is decomposed in K/F if and only if p4 is
completely decomposed in K/Q. So we have, by Definition 3.2.2,

(3.2.3) [p1, p2, p3, p4] =
{

1 σP4 = idK ,
−1 σP4 �= idK .

Let S := {p1, p2, p3, p4}. Then, by Theorem 2.2.2, we have

GS(2)= Gal(QS(2)/Q)

= 〈x1, x2, x3, x4 | xp1−1
1 [x1, y1] = · · · = x

p4−1
4 [x4, y4] = 1〉 .

Let F̂ be the free pro-2 group on x1, x2, x3, x4 and let π : F̂ (2) → GS(2) be the natural
homomorphism. Since K ⊂ QS(2) by Theorem 3.1.10, we have the natural homomorphism
ψ : GS(2) → Gal(K/Q). Let ϕ := π ◦ ψ : F̂ → Gal(K/Q). We then see that

ϕ(x1) = τ1 , ϕ(x2) = τ2 , ϕ(x3) = τ3, ϕ(x4) = 1 .

Therefore the relations among τ1, τ2 and τ3 are equivalent to the following relations:

(3.2.4)
ϕ(x1)

2 = ϕ(x2)
2 = ϕ(x3)

2 = ϕ(x1x3)
2 = 1 , ϕ(x4) = 1 ,

ϕ(x1x2)
4 = ϕ(x2x3)

4 = ϕ(x1x2x3)
4 = ϕ((x1x2x3x2)

2x3)
2 = 1 .

On the other hand, by the assumption (3.2.1), we have μ2(1234) = μ2(1234).

THEOREM 3.2.5. We have

[p1, p2, p3, p4] = (−1)μ2(1234) .

PROOF. By (3.2.3), we have

ϕ(y4) =
{

1 if [p1, p2, p3, p4] = 1 ,
(τ1τ2τ3τ2)

2 = ϕ((x1x2x3x2)
2) if [p1, p2, p3, p4] = −1 .

By (3.2.4), Ker(ϕ) is generated as a normal subgroup of F̂ by

x2
1 , x

2
2 , x

2
3 , (x1x3)

2, x4, (x1x2)
4, (x2x3)

4, (x1x2x3)
4 and ((x1x2x3x2)

2x3)
2
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and one has

M2((x1)
2) = (1 + X1)

2 = 1 +X2
1 ,

M2((x2)
2) = (1 + X2)

2 = 1 +X2
2 ,

M2((x3)
2) = (1 + X3)

2 = 1 +X2
3 ,

M2((x1x3)
2) = ((1 +X1)(1 + X3))

2 ≡ 1 mod deg ≥ 2 ,

M2((x1x2)
4) = ((1 +X1)(1 + X2))

4 ≡ 1 mod deg ≥ 4 ,

M2((x2x3)
4) = ((1 +X2)(1 + X3))

4 ≡ 1 mod deg ≥ 4 ,

M2((x1x2x3)
4) = ((1 +X1)(1 +X2)(1 +X3))

4 ≡ 1 mod deg ≥ 4 ,

M2(((x1x2x3x2)
2x3)

2)

≡ 1 +X2
3 +X2

1X3 + X1X
2
3 +X1X

2
3 +X3X

2
1 +X2

3X1 mod deg ≥ 4 .

Therefore μ2((1); ∗), μ2((2); ∗), μ2((3); ∗), μ2((12); ∗), μ2((23); ∗), μ2((123); ∗) take
their values 0 on Ker(ϕ). If ϕ(y4) = 1, μ2(1234) = μ2((123); y4) = 0 by ϕ(y4) ∈
Ker(ϕ). If ϕ(y4) = (τ1τ2τ3τ2)

2 = ϕ((x1x2x3x2)
2), we can write y4 = (x1x2x3x2)

2R,
where R ∈ Ker(ϕ). Then comparing the coefficients of X1X2X3 in the equality M2(y4) =
M2((x1x2x3x2)

2)M2(R), we have

μ2(1234)= μ2((123); y4)

= μ2((123); (x1x2x3x2)
2)+ μ2((12); (x1x2x3x2)

2)μ2((3);R)
+ μ2((1); (x1x2x3x2)

2)μ2((23);R)+ μ2((123);R)
= 1 .

This yields our assertion. �

EXAMPLE 3.2.6. Let (p1, p2, p3, p4) := (5, 8081, 101, 449). Then we have
⎧
⎪⎪⎨

⎪⎪⎩

θ1 = 25 + 2
√

5 + 2
√

101 ,
θ2 = 25 + 2

√
5 − 2

√
101 ,

θ3 = 25 − 2
√

5 + 2
√

101 ,
θ4 = 25 − 2

√
5 − 2

√
101 ,

{
k{p1,p2} = Q(

√
5,

√
8081,
√

241 + 100
√

5) ,

k{p3,p2} = Q(
√

8081,
√

101,
√

1009 + 100
√

101) ,

and

K = k{p1,p2} · k{p3,p2}(
√

25 + 2
√

5 + 2
√

101) .

Then we have⎧
⎨

⎩

(
pi
pj

)
= 1 (1 ≤ i �= j ≤ 4) , [pi, pj , pk] = 1 (i, j, k : distinct) ,

[p1, p2, p3, p4] = −1 .

In view of Example 2.1.3, this 4-tuple prime numbers may be called Milnor primes.
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Finally, two remarks are in order.
REMARK 3.2.7. (1) By Theorem 3.2.5, the shuffle relation for arithmetic Milnor in-

variants (Theorem 2.2.3 (3)) yields the following shuffle relation for the 4-th multiple residue
symbol ∏

(ijk)∈PSH(I,J )

[pi, pj , pk, pl] = 1 ,

where I , J are multi-indices with |I | + |J | = 3 and PSH(I, J ) is the set of proper shuffles of
I and J , and 1 ≤ l ≤ 4. It is also expected that our 4-th multiple residue symbols satisfy the
cyclic symmetry, although we are not able to prove it in the present paper. We hope to study
the reciprocity law for the 4-th multiple residue symbol in the future.

(2) In this paper, we are concerned only with 2-extensions over Q as a generalization
of Rédei’s work. If a base number field k contains the group of l-th roots of unityμl for an odd
prime number l and the maximal pro-l Galois group over k unramified outside a set of certain
primes S = {p1, . . . , pr } ∪ {p|∞} is a Koch type pro-l group, we can intoduce μl-valued
multiple residue symbol [p1, . . . , pr ] in a similar manner.
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