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ON A CERTAIN NILPOTENT EXTENSION OVER Q OF DEGREE 64
AND THE 4-TH MULTIPLE RESIDUE SYMBOL
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Abstract. In this paper, we introduce the 4-th multiple residue symbol [p1, p2, p3, p4]
for certain four prime numbers p;’s, which extends the Legendre symbol (%) and the Rédei
triple symbol [py, p2, p3] in a natural manner. For this we construct concretely a certain
nilpotent extension K over Q of degree 64, where ramified prime numbers are py, pp and p3,
such that the symbol [py, p2, p3, p4] describes the decomposition law of p4 in the extension
K/ Q. We then establish the relation of our symbol [p{, p2, p3, p4] and the 4-th arithmetic
Milnor invariant 1o (1234) (an arithmetic analogue of the 4-th order linking number) by show-

ing [p1, p2, p3, pal = (=223,

Introduction. As is well known, for two odd prime numbers p; and p», the Legendre
symbol (%) describes the decomposition law of p; in the quadratic extension Q(,/p1)/ Q.
In 1939, L. Rédei ([R]) introduced a triple symbol with the intention of a generalization of the
Legendre symbol and Gauss’ genus theory. For three prime numbers p; = 1 (mod 4) (i =
1,2,3) with (5—;) =1(1 <i # j < 3), the Rédei triple symbol [p1, p2, p3] describes the
decomposition law of p3 in a Galois extension over @ where all ramified prime numbers are
p1 and p; and the Galois group is the dihedral group Dg of order 8.

Although a meaning of the Rédei symbol had been obscure for a long time, in 2000,
M. Morishita ([Mol, 2, 3]) interpreted the Rédei symbol as an arithmetic analogue of a mod
2 triple linking number, following the analogies between knots and primes. In fact, he in-
troduced arithmetic analogue w2(12---n) € Z/2Z of Milnor’s link invariants (higher order

linking numbers) for prime numbers pq, ..., p, such that
P1\ _ 1o (12) _ 2(123)
mn) = (=1 » Lp1, p2, p3l = (=1 .

Since it is difficult to compute arithmetic Milnor invariants by the definition, it is desir-
able to construct Galois extensions K,/ Q concretely such that [py, ..., py] = (—1)“2(12‘“”)
describes the decomposition law of p, in K,/ Q, just as in the cases of the Legendre sym-
bol where K> is a quadratic extension and the Rédei triple symbol where K3 is a dihedral
extension of degree 8. As we shall explain in Subsection 2.1, link theory suggests that the
desired extension K,/ Q should be a Galois extension such that all ramified prime numbers
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are pi, ..., pp—1 and the Galois group is the nilpotent group
I % - %
[
Ny =1 | v e Fy
0 --- 0 1

consisting of n X n unipotent upper-triangular matrices over F,. Note that N2 (F2) = Z/2Z
and N3(F;) = Ds.

The purpose of this paper is to construct concretely such an extension K,/ Q forn = 4
in a natural manner extending Rédei’s dihedral extension. We then introduce the 4-th multiple
residue symbol [p1, p2, p3, p4] describing the decomposition law of p4 in K4/ Q and prove
that it coincides with the 4-th Milnor invariant o (1234),

[p1, p2, 3, pal = (—1)H21239

NOTATION. For a number field k, we denote by Oy the ring of integers of k. For a group
G and d € N, we denote by G the d-th term of the lower central series of G defined by
GO .= G,GU+th .= (G, G(d)]. For a ring R, R* denotes the group of invertible elements
of R.

1. Rédei’s dihedral extension and triple symbol. In this section, we recall the con-
struction of Rédei’s dihedral extension and triple symbol ([R]), which will be used later. We
also give some basic properties of Rédei’s dihedral extension and triple symbol.

1.1. The Rédei extension. Let p; and p, be distinct prime numbers satisfying

(1.1.1) pi=1 (modd) (i=12), (ﬂ>=(2>=1.

p2 )4
We set ki = Q(/pi) (i = 1,2). It follows from this assumption (1.1.1) that we have the
following Lemma.

LEMMA 1.1.2 ([A, Lemma 1.1]). There are integers x, y, z satisfying the following
conditions:

(1) x* = p1y* — ppz? = 0.

2) gecdx,y,z)=1, y=0 (mod?2), x—y=1 (mod4).
Furthermore, for a given prime ideal py of O, lying over p,, we can find integers x, y, z
which satisfy (1), (2) and (x + y/p1) = p4' for an odd positive integer m.

Leta = (x, y, z) be a triple of integers satisfying the conditions (1), (2) in Lemma 1.1.2.
Then let @ = x 4+ y,/p1 and set

(1.1.3) ka = Q(/P1, /P2, V).
The following theorem was proved by L. Rédei ([R]).

THEOREM 1.1.4 ([R]). (1) The field kq is a Galois extension over Q whose Galois
group is the dihedral group of order 8.
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(2) Let d(k1(\/&)/ k1) be the relative discriminant of the extension ki(\/&)/ k1. Then
we have Ni, ;o (d(ki(J@)/k1)) = (p2). In particular, all prime numbers ramified in kaq/ Q
are p1 and py with ramification index 2.

The fact that k, is independent of the choice of @ was also shown in [R]. The author gave
an alternative proof of this fact in [A], based on a proof communicated by D. Vogel ([V2]).

THEOREM 1.1.5 ([A, Corollary 1.5]). A field k, is independent of the choice of a =
(x,y, 2) satisfying (1) and (2) in Lemma 1.1.2, namely, it depends only on a set {p1, p2}.

DEFINITION 1.1.6. By Proposition 1.1.5, we denote by &, p,) the field k, = Q(/p1,
/P2, v/) given by (1.1.3) and call kp, ,,} the Rédei extension over Q associated to a set
{p1, p2} satisfying (1.1.1).

The following theorem shows that the Rédei extension k{p, p,1/ Q is characterized by the
information on the Galois group and the ramification given in Theorem 1.1.4.

THEOREM 1.1.7 ([A, Theorem 2.1]). Let p1 and p> be prime numbers satisfying the
condition (1.1.1). Then the following conditions on a number field K are equivalent:

(1) K is the Rédei extension kp, p,}-

(2) K is a Galois extension over Q such that the Galois group is the dihedral group Dg
of order 8 and prime numbers ramified in K / Q are p1 and p> with ramification index 2.

1.2. The Rédei triple symbol. Let pi, p> and p3 be three prime numbers satisfying

(1.2.1) pi=1 (mod4)(i=1273), (ﬁ)zl(lfi#jSS).
pj
Let k{p,, p,) be the Rédei extension over @ associated to a set {p1, p2} (Definition 1.1.6).

DEFINITION 1.2.2.  We define Rédei triple symbol [p1, p2, p3] by

1 if p3is completely decomposed in k{p, p,1/ O,

Lp1. p2. psl = { -1 otherwise.

The following theorem is a reciprocity law for the Rédei triple symbol:

THEOREM 1.2.3 ([R], [A, Theorem 3.2]). We have

[p1, p2, p3]l = [pi. pj, Pl

for any permutation {i, j, k} of {1, 2, 3}.

2. Milnor invariants. In this section, we recall the arithmetic analogues of Milnor
invariants of a link introduced by M. Morishita ([Mol, 2, 3]) and clarify a meaning of the
Rédei extension and the Rédei triple symbol in Section 1 from the viewpoint of the anal-
ogy between knot theory and number theory. The underlying idea is based on the following
analogies between knots and primes (cf. [Mo4]):
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knot prime
K:8'— R3 Spec(F ) < Spec(Z)
link finite set of primes
L=KU-- UK, S={p1,..., pr}
X,=R3\L Xs = Spec(Z) \ S
Galois group with restricted ramification
link group Gs =7 (Xs) = Gal(Qs/ Q)
Gr=m(Xp) Qs : maximal extension over Q
unramified outside S U {oo}

In the following, we firstly explain Milnor invariants of a link and their meaning in
nilpotent coverings of $3 ([Mi2], [Mu]). We then discuss their arithmetic analogues for prime
numbers where the Rédei triple symbol is interpreted as an arithmetic analogues of a triple
Milnor invariant. The analogy also suggests that a natural generalization of the Legendre and
Rédei symbols, called a multiple residue symbol [py, ..., p,], should describe the decompo-
sition law of p, in a certain nilpotent extension over @ unramified outside py, ..., p,—1 and
oo (oo being the infinite prime).

2.1. Milnor invariants of alink. Let £ = KjU---UJ, be alink with » components
in R and let X, = R3\ £ and G, := m1(X ) be the link group of £. Let F be the free
group on the words x1, ..., x, where x; represents a meridian of /C;. The following theorem
is due to J. Milnor.

THEOREM 2.1.1 ([Mi2, Theorem 4]). Foreachd € N, there is yi(d) € F such that

d d
GC/G(L)Z(XI,---,/WHXI,)’E )]Z"‘Z[xray;gd)]zla F(d)=1>a

y]@ — y;d+1) mod F@
) . . . . ()
where y; isa word representing a longitude of Kj in G /G ;"

Let Z({Xy, ..., X,)) be the algebra of non-commutative formal power series of variables
X1,..., X, over Z, and let

M:F— Z{Xy,..., X))
be the Magnus homomorphism defined by
M) =1+ X;, M(xi_l):zl—X,'—l—Xiz—---,1§i§r.
For f € F, M(f) has the form
(0.¢]
M(f)=1+Y" > plrin HXi - Xi,

n=11<iy,...,in<r
where the coefficients u (it - - - in; f) are called the Magnus coefficients.

Let Z[ F] be the group algebra of F over Z and let ez[r) : Z[F] — Z be the augmenta-
tion map. We note that the Magnus coefficients can be written in terms of the Fox derivative
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introduced in [F]:

. h . anf
w(r--in; f) = 8Z[F]<8xi1 "'8xin)‘

For the word y](d) in Theorem 2.1.1, we set
. . . . d
Dy in) = iy s 7).

Since (i1 - --in; f) =0for f € Fifd > n, by Theorem 2.1.1, 1) (I) is independent of
d if d > |I|, where |I| denotes the length of a multi-index I. Define (1) := u'“(I) (d >
1). For a multi-index I with |[I| > 2, we define A(]) to be the ideal of Z generated by
w(J) where J runs over cyclic permutations of proper subsequences of /. If |I| = 1, we set
w(l) :=0and A(I) := 0. The Milnor w-invariant is then defined by

w(l) :=puI) mod A(I).
The fundamental results, due to Milnor, are as follows.

THEOREM 2.1.2 ([Mi2, Theorems 5, 6]). (1) w(ij) = 1k(K;, K;) (i # j).
Q) If2 <|I| <d, u(1) is a link invariant of L.
(3) (Shuffle relation) For any I, J(|I|,|J| = 1) andi (1 <i <r), we have

Y F(Hi)=0 mod gcd{A(Hi)| H € PSh(I, J)}

HePSh(1,J)
where PSh(1, J) stands for the set of results of proper shuffles of I and J (cf. [CFL]).
(4) (Cyclic symmetry). £(iy -+ +in) = @(i2 - - ipi1) = -+ = @A@ni1 - in-1).

EXAMPLE 2.1.3. For a multi-index / (|I| > 2), w(I) = w(l) is an integral link
invariant if ©(J) = 0 for all multi-index J with |J| < |I|. For example, let £L = K1 UK, UK
be the following Borromean rings:

Then (1) = 0if |I| < 2 and hence u(I) € Z for |I| = 3. In fact, we have u(ijk) = £1 if
ijk is a permutation of 123 and wu(ijk) = 0 otherwise.

Move generally, let £ = K; U --- U K, be the following link, called the Milnor link
([Mil, 5]). We easily see that the link obtained by removing any one component KC; from L is
trivial. So u(I) =0if |[I| <n —1and u(I) € Z if |I| = n. For instance, u(12---n) = 1.
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!

Ky
%)

Kr

Next, we recall that Milnor invariants may be regarded as invariants associated to nilpo-
tent coverings of S3. For a commutative ring R, let N, (R) be the group consisting of n by n
unipotent uppertriangular matrices. For a multi-index I = (i1 ---i,)(n > 2), we define the
map p; : F — Nu(Z/A(I)) by

af 2 f oy
! S(E) 6(8)(,-]8)(,-2) 8(‘K)x"l”'fmin—l>

pr(f)=| : : mod A(1),

af
! 8(3){,‘”71 )

0 0 1

where we set ¢ = ez[r) for simplicity. It can be shown by the property of the Fox derivative
that p; is a homomorphism.

THEOREM 2.1.6 ([Mo4, Theorem 8.8], [Mu]). (1) The homomorphism p; factors
through the link group G . Furthermore it is surjective if iy, . . ., ip—1 are all distinct.

(2) Suppose that iy, ...,i,—1 are all distinct. Let X; — X be the Galois covering
corresponding to Ker(py) whose Galois group Gal(X;/X ) = Ny(Z/A(I)). When A(I) #
0, let M; — S3 be the Fox completion of X; — X ¢, a Galois covering ramified over the link
Ki, U---UK,; _,. For alongitude B;, of K;,, one has

1 0 - 0 @wl
0 1 - 0
pr(Bi,) =
: 1 0
0 1

and hence the following holds:
n() =0<«<= K, is completely decomposed in M — s3.

2.2. Milnor invariants for prime numbers. Let S = {p{,..., p,} be a set of r
distinct odd prime numbers and let Gg := nft(Spec(Z) \ S). In order to get the analogy of
the link case, we consider the maximal pro-2 quotient, denoted by Gs(2), of Gg which is
the Galois group of the maximal pro-2 extension Q(2) over @ which is unramified outside
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SU{oo}. Here we fix an algebraic closure Q of Q containing Qs(2). We also fix an algebraic
closure Em of Qp; and an embedding 0 — Ep,- for each i. Let @, (2) be the maximal
pro-2 extension of @, contained in 0 pi- Then we have

0, (2) = Qp (5, 3/pi In=1)

where {n € @ is primitive 2"-th root of unity such that ;22,S = ¢y (t > ). The local
Galois group Gal( @, (2)/ @ ,) is then topologically generated by the monodromy 7; and the
extension of the Frobenius automorphism o; defined by

@2.1) ww) = o (P = o P
oit) =&l a (P = XY/pi
and 7;, 0; are subject to the relation t;” o, 0] = 1.

The embedding @ <> @, induces the embedding Qs(2) <> @, (2) and hence the
homomorphism 7; : Gal(@),(2)/ Q) — Gs. We denote by the same 7;, o; the images of
7, o; under ;. Let F denote the free pro-2 group on the words x1, . . ., x, where x; represents
7;. The following theorem, due to H. Koch, may be regarded as an arithmetic analogue of
Milnor’s Theorem 2.1.1.

THEOREM 2.2.2 ([K2, Theorem 6.2]). The pro-2 group Gs(2) has the following
presentation:

Gs) = (1., x5 | X iyl = =2yl = 1),

where y; € F is the pro-2 word which represents o;.
Setes ;= max{e | p =1 mod2° (1 <i <r)landfixm = 2°(1 < e < eg).

Let Z>({(X1, ..., X)) be the algebra of non-commutative formal power series of variables
X1, ..., X, over Z, the ring of 2-adic integers, and let

M:F— Zry(X1,..., X, ))*
be the pro-2 Magnus embedding ([K1, 4.2]). For f € F, M(f) has the from
M) =1+ > AGr-in HXiy - Xy,
1<iy,...,in<r
where the coefficients fi(iy - - - ip; f) are called the 2-adic Magnus coefficients. We let
My: F — Fy({X1, ..., X,)*

be the mod 2 Magnus embedding defined by composing M with the natural homomorphism
Zo((X1, - X)) — Fa((X, .00 X))

Let Z2[[F]] be the complete group algebra over Z, and let €2 I1F]] Zz[[F]] — Z) be
the augmentation map. In terms of the pro-2 Fox free derivative ([1], [O]), the 2-adic Magnus
coefficients are written as

A . anf
iy --ins f) = S Anal <m> '
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For the word y; in Theorem 2.2.2, we set
iy - i) i= - ins y;j)
and we set, for a multi-index 7,
U (D) :=(I) mod m .

For a multi-index with 7 with 1 < |I] < 2°5, let A,,(I) be the ideal of Z/mZ generated by
(2;5) (1 <t < |I]) and up, (J) (J running over cyclic permutation of proper subsequences of
I). The Milnor 1z, -invariant is then defined by

(1) = (1) mod Ap (1)
The following analogue of Theorem 2.1.2 is due to Morishita.

THEOREM 2.2.3 ([Mo3, Theorems 1.2.1, 1.2.5]). (1) ¢/ = (B2),, where & is the
primitive m-th root of unity given in (2.2.1) and (%)m is the m-th power residue symbol in

Qp:-

2) If2 < |I| < 2%, w,,(I) is an invariant depending only on S.

(3) Letr beaninteger suchthat2 < r < 2°. For multi-indices I, J suchthat |I|+|J| =
r — 1, we have, forany 1 <i <n,

Z T,(Hi)=0 mod g.c.d{A(Hi)| H € PSh(I, J)}.
HePSh(1,J)

EXAMPLE 2.2.4. LetS = {p1, p2, p3} be atriple of distinct prime numbers satisfying
the condition (1.2.1) and let m = 2. Then uy(I) = 0 if [I| < 2 and hence, for |I| = 3,
Ax(I) = 0and uy(I) = pua(l) € Z/2Z. The following theorem interprets the Rédei triple
symbol as a Milnor invariant.

THEOREM 2.2.4.1 ([Mo2, Theorem 3.2.5]). Under the above assumption on {pi,
P2, p3} we have

[p1. pa. p3l = (=1)2012)
For example, D. Vogel ([V1, Example 3.14]) showed that for S = {13, 61,937} u>(I) =0
(1] < 2), uo(I) = 1 (I is a permutation of 123), ua2(ijk) = 0 (otherwise). In view of
Example 2.1.3, this triple of prime numbers may be called the Borromean primes.

937

\O)/
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Finally, we give an analogue of Theorem 2.1.6 for prime numbers. Let I = (i1 - - - i),
2 < n < I° and assume A, () # Z/mZ. We define the map pgn, 1) : F - N,(Z/
mZ)/An(1)) by

3f 32f 3}171}('
! g(m)m 8(5””13)”2 )m o 8(‘r’xil 0, )m
af "2f
toe(@), o elm),
O, (f) = .- . : mod A, (1),
0 U e(m)
¢ 3)5[”71 m
1

where we set e(a),;, = EZ1F1) (o) mod m for @ € Zl[[I:"(l)]]. It can be shown by the property
of the pro-2 Fox derivative that p(,,, ) is a homomorphism.

THEOREM 2.2.5 ([Mo3, Theorem 1.2.7]). (1) The homomorphism pm, 1y factors

through the Galois group Gs(2). Further it is surjective if i1, . .., in—1 are all distinct.

(2) Suppose thatiy, ..., i, are all distinct. Let K, 1y be the extension over Q corre-
sponding to Ker(poun, ). Then K, 1)/Q is a Galois extension unramified outside
Diy»> - -+» Pi,_; and oo with Galois group Gal(K, 1/ Q) = N,(Z/mZ)/Ay(I)). For a
Frobenius automorphism o;, over p;,, one has

10 o 0 T
| 0
Pan,1)(0i,) =
0 1 0
1

and hence the following holds:
(1) =0 <= pj,is completely decomposed in K1)/ Q.

EXAMPLE 2.2.6. Letm = 2and K = K¢ ). For § = {p1, p2}, pi = 1 (mod 4)
(i =1,2)and I = (12), we have

K = Q(J/p1), Gal(K/Q) = No(F2) = Z/2Z, (—1)*2(12) = (%) .
2

For S = {p1, p2, p3} satisfying the condition (1.2.1) and I = (123), we have
K = kip.p}» Gal(K/Q) = N3(F2) = Ds, (=1)"*"* = [p, p2, ps3].

Theorem 2.2.5 suggests a problem to construct concretely a Galois extension K,/ Q
unramified outside py, ..., p,—1 and oo with Galois group N, (F>) and to introduce the mul-
tiple residue symbol [p1, ..., p,], as a generalization of the Legendre symbol and the Rédei
triple symbol, which should describe the decomposition law of p;, in the extension K,/ Q and
coincide with (—1)#2(12m 1p the next section, we solve this problem for the case n = 4.
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3. Construction of an N4(F;)-extension and the 4-th multiple residue symbol. In
this section, under certain conditions on three prime numbers p1, p2, p3, we construct con-
cretely a Galois extension K over Q where all ramified prime numbers are p1, p» and p3 and
the Galois group is N4(F3), and introduce the 4-th multiple residue symbol [p1, p2, p3, p4l
which describes the decomposition law of ps4 in K/ Q. We then show that [p1, p2, p3, p4l
coincides with (—1)#2(1239) where 1, (1234) is the 4-th arithmetic Milnor invariant defined
in 2.2. We keep the same notations as in the previous sections.

3.1. Construction of an N4(F,)-extension. Let p;, p» and p3 be three prime num-
bers satisfying the conditions

. Pi . .
i =1 d4 =1,2,3), —)=101=< <3),
G.LD P (mod 4) (i ) <p,-> (I=<i#j=<3)
(pi,pj.pk] =1 i, j, k} ={1,2,3}).
We let

{ki = Qi) (i =1,2,3), kij :=kik; = Q(/pi, yPj) (1 =i <j<3),
k123 1= kikoks = Q(/p1, /P2, /P3) -

For simplicity, we set k := k; in the following. Let p> be one of prime ideals of Oy lying over
p2. Then as in Lemma 1.1.2, we can find a triple of integers (x, y,z) witha = x + y/p1
satisfying (1), (2) in Lemma 1.1.2 such that

(o) = p4 (m being an odd integer) ,  kip, p,} = Q(/P1, /D2, V).

In the following, we fix such an « once and for all.
For a prime p of k, we denote by (?) the Hilbert symbol in the local field &y, namely,

(@, ky(Vb)/kp)Vb = (“’ b) Vb (a,bek)),
p

where ( ,kp(\/z) [kp) : kpX — Gal(kp(\/Z) /kyp) is the norm residue symbol of local class
field theory.

LEMMA 3.1.2. For any prime p of k, we have

(w)Zl‘
p

PROOF. We consider the following five cases.
(Case 1) p is prime to p2, p3, 2, oo: Then we have o, p3 € Up, where U, is the unit

group of kyp, and hence (%) =1.
(Case 2) p = p2: Let 7 be a prime element of ky,,. Write o = u7w"™2, uy € Up,. Then

we have
(52)-(52) (57)
b2 P2 p2
= (”;Jm) (u1, p3 € Up,, my is odd)
2
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_ (. kpy, (P3)/ kpy) /3
A/ P3
Since (r, kp,(\/P3)/kp,) is the Frobenius automorphism over p> in k(/p3)/k,

(ks (VP ) (VP3) = VB3 by () = (53) = 1.

(Case 3) p | p3: Let oo be a prime element of ky,. Write p3 = usw, up € Up. Then we

I
-(5) (5

)

< ) (uz, a € Up)
(o, kp (V) [ kp)
= T .

Since p is decomposed in k(\/cx)/ k by [p1, p2, p3] = 1 and (@, ky (/) / kp) is the Frobenius
automorphism over p in k(o) /k, (w, kp (V) / kp) (Vo) = a.

(Case 4) p = oo: Since p3 > 0, (%£2) = 1.

(Case 5)p | 2: If p = (2), the above cases and the product formula for the Hilbert symbol

yields (“ 1’3) =LIfQ)=p-p (p #9), ky = ky = Q2 and so we have

<0l,P3):<0lP3>_( 1)ﬂ3_1a_—1:1‘ 5
p p’

PROPOSITION 3.1.3. Assume that the class number of k is 1. Then there are X, Y, Z €
Ok satisfying the following conditions:

(1) X?—p3¥?—az?>=0,

2) gedX,Y,2) =1

PROOF. By Lemma 3.1.2, we have o € Ny (/53)/ kp (kp(\/P3)>) for any prime p of
k and so there are Xy, Yy € kp such that X; — p3¥y = a. By the Hasse principal, there
are X,Y € k such that X2 — p3172 = o from which the condition (1) holds by writing
X = %, Y = % with X, Y, Z € Ox. Since O is the principal ideal domain by the assumption,
we may choose X, Y, Z € Ok so that the condition (2) is satisfied. d

For k13 = Q(/p1, /P3), let U be the unit group of O,,/(4) and U(2) the 2-Sylow
subgroup of U. Similarly, let k| := Q(\/p1, /) and define U’ := (Ok;3/(4))x and U’(2)
to be the 2-Sylow subgroup of U’.

LEMMA 3.1.4. The group U (2) is given by

3+ /Pi+ /P35 + /PID3
U<2>=<—1>x<m>x<m>x< VPt Jf p”’3>
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~Z/2Z X Z]2Z x Z/2Z x Z/2Z .
Similarly, U’ (2) is given by

U'(2)=(~1) x (/1) X
~Z/2Z X Z]2Z x Z]2Z x Z/2Z .

ﬁ)x<3+m+g/&+m>

PROOF. Since 2 is unramified in the extension k13/ Q, we have the decomposition (2) =
¢y - - - ¢-. Therefore the order of U is given by

ITI_Nc¢i(Nei — 1) = N()IT/_;(N¢; — 1) = 16m

1

and so U has the order 16m, where m is an odd integer. Let A := {+1 mod (4), +,/p1
mod (4), £,/p3 mod (4), &,/p1p3s mod (4)}. Since p; = 1 mod 4, each element of A
has the order 2 and so A C U(2). We show that the order of A is 8. Suppose /p1 = /p3
mod (4) for example. Then ,/p1 — /p3 = 4B for some B € Oy,,. Taking the norm Ny, g,
we obtain

—P1—p3 «/P1P3
16 + 8 € OQ(«/PIIB) = {

p1p3

a,be”Z,a=b modZ},

which is a contradiction. Similary, using the structure of O, and Oy, we can check that any
two elements in A are distinct. Hence we see that U (2) = AUA-{(3+./pP1+./P3+/P1P3 )/2
mod (4)}. Replacing p3 by «, the assertion for U’(2) can be shown similarly.

LEMMA 3.1.5. Assume p; = 5 (mod 8). Then there is a unit ¢ € ka of the form
e=s+1t/p1,s,t € Z,s =0,t =1 (mod 2). Such a unit ¢ satisfies ¢ = +,/p; mod (4)
inUQR)and U'(2).

PROOF. Since p; =1 (mod 4), the fundamental unite; = M (s1 =1 (mod 2))
of k satisfies Ny g(e1) = —1. If sy = t; = 0 (mod 2), we let ¢ := &1 = s + t./p1,
s:=s1/2,t:=11/2 € Z, where we haves =0, =1 (mod 2), since s2—p1t2 = —1. Since

e=s+t/p1 =s+s/p1+(—s)/prands +s./p1 € 40, ¢ = £,/p1 mod (4).
Suppose s; = #; = 1 (mod 2). Since p; =5 (mod 8), we have s7+3p1t7 =357+ pit =0
(mod 8) and so

s si67 +3pit) + 11 Bsi + pit}) /i

81 = 8 =5+ t\/p_,
where s = sl(sl2 +3p1t12)/8,t =1 (3s12+t12)/8 € Z. Since Nk/Q(sf) =—-l,e= 8? satisfies
the desired conditions. O

The following theorem may be regarded as an analogue of Lemma 1.1.2.

THEOREM 3.1.6. Assume that the class number of k is 1 and p1 =5 (mod 8). Then
there are X, Y, Z € Oy satisfying the following conditions:

1) X?2—ps¥Y?2—aZz?=0,

2) gedX,Y,Z2)=1,(Z,2) =1 (resp. g.cd(X,Y,Z) =1, (¥,2) = 1),
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(3)  Thereis i € Ok, (resp. A € Oy ) such that \> = X+Y /p3 mod (4) (resp. > =
X + Z/a mod (4)).

PROOF. By Proposition 3.1.3, there are X, Y, Z € O satisfying (1) and (2).

Case (Z,2) = 1: Letf := X +Y,/p3 and 0 := 6 mod (4). Then we easily see
0 € Ok, and 0 € U since (Z,2) = 1. Let n be the order of 6 in U.

(i) Suppose n # 0 (mod 2). Then it is easy to see that there is A € Oy, such that
A2 =6 mod (4).

(i1) Suppose n = 0 (mod 2). By Lemma 3.1.4, % # 0 (mod 2) and 5% e U(2). Write
0% = by + ba/pi + b3 /D5 + ba/pips, bi € Q. Since Ny i(0) = X2 — p3¥? = aZ?,
Niyy/k(0%) = (@Z?)%. Since @ = x + y/pr = x —y + 2y - Y2 = | mod (4),
@Z??% =(Z7)> =1 mod (4). Therefore we have
(3.1.6.1)
(b1 + bay/P1 + b3/P3 + bay/p1p3) - (b1 + b2y/p1 — b3/p3 — bay/pip3) =1 mod (4).

We claim that 2 = —1 or + / p1 mod (4). Suppose this is not the case. Then, by Lemma

314,07 = +p3, £/pipzora- 3+ . /p1+/p3+/P1p3)/2 (a € A) mod (4) and so
the coefficients of ,/p3 or ,/p1p3 are not 0. Since any element of U (2) has order 2, we have

(b1 + bon/p1 + b3y/P3 + ba/pP1p3) - (b1 + b2/p1 —b3/p3 —ba/p1p3) #1 mod (4),

which contradicts to (3.1.6.1). Therefore, by Lemma 3.1.5, thereis ¢ € (’)kX suchthate07 = 1
mod (4)ande? = 1 mod (4). Replacing (X, Y, Z) by (¢X, €Y, £Z), (1), (2) holds obviously,
and (3) is also satisfied because ¢/ mod (4) has the order % # 0 (mod 2).
Case (Y,2) = 1: Let 0’ := X + Z./a. Replacing 6 by 6’ and p3 by «, the above proof
works well by using Lemma 3.1.4. g
Leta = (X, Y, Z) be a triple of integers in Oy, satisfying (1), (2), (3) in Theorem 3.1.6

and fix it once and for all. We let

0:=X+Yyp5 if (Z,2)=1,
0 =X+ZJa if ¥,2)=1,

and set
01 :=06, 0y =0,
0:=X—-Y,/p3, 0, =X—Zu,
03:=X+Y./p3, 0,=X+7Zva,

94:=X—7,/p, 94:7—7\/5,
where X, Y and @ are conjugates of X, ¥ and o over Q respectively.
DEFINITION 3.1.7. We then define the number field K by

_ ] 2(/p1, /P2, /D3 VOO ,N0103,4/61) if (Z,2) =1,
Q(/P1. /P2. /P3.\[0165. /0165, Jo))  if (¥, 2)=1.

K =K,
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For the latter use, we set, for the case of (¥,2) = 1,
m = (0] +8)" =2x + 2y /7.
= (\/9’{_\/@2 =2X —2Y /3,
s = (85 +6) = 2X + 27 /73,
ny = (@—J@Z)z —2X -2V /3.
THEOREM 3.1.8. (1) We have
K:!Q(w—,@,@,d@ if (2,2)=1,
Q(,/6]. /63,65, \J;) = @y, 2, s, i) if (D) =1,

(2) The extension K/ Q is a Galois extension whose Galois group is isomorphic to
N4(F»).

PROOF. (1) Case (Z,2) = 1: It is easy to see /02, /03 € K. Noting that

01020304 = Nk13/Q(91)

= Ni/o(Niy5/k(61))
= N/g(aZ?)
=ph* (heZ),

(3]

(3.1.8.1)

we have /05 € K and hence Q(+/01, /02, /03, +/0s) C K. Next we show the converse
inclusion. Write 01 = a) + a2 /p1 +a3/p3 + as/p1p3 (a; € Q). By considering the prime
factorization of the ideal (¢ Z?2) in k;, we find @ Z?2 ¢ Z. Then, by the equality 616, = aZ?,
we find that the number of i (1 < i < 4) with q; = 0 is at most one. Since 6; + 6, =
2(a; + a2 /p1), 01 + 03 = 2(a1 + az/p3) and 01 + 04 = 2(a1 + aa/pP1P3), /D1, /P3 €
Q(V01, V02, V05, +/01). By (3.1.8.1), we get K C Q (01, /02, /B3, /0s).

Case (Y,2) = 1: First, let us show Q(/0], /6. /0%, /6)) = Q(/n1. /2. /73,
+/N4). By the definition of n;’s, obviously the inclusion D holds. Since /71 + /12 = 2 9{,
NIV 2\/92, S+ s = 205, /03 — /na = 2,/6;, we obtain the converse
inclusion C.

Next, we show K = Q(\/?, \/?, \/?, \/971). It is easy to see \/?,\/9? € K. Since
0,0} = X>—aZ? = p3Y2, wehave 040, = X —aZ = p37 . So,0,0,0,0, = p2(¥7)2 € Q
and \/OZ € K. For the converse inclusion, it suffices to show K C Q(\/n1, /12, /13, \/114)-
By considering the prime factorization of the ideal (@(2Z)?) in ky, we find «(22)* ¢ Z. By
Niyzyo(m) = 4p>h? and the argument similar to the case of (Z,2) = 1, we have /p; €
Q1. /2. /T3, /) (i = 1,2.3).

(2) Case (Z,2) = 1: First, K/Q is a Galois extension, because K is the split-
ting field of IT* (T? — 6;) = Myccaitys0)(T? — 0(61)) € Z[T]. Next, let kio3 =
O(/P1. /P2, VP3)s Ki = k123(v/0162) and K> := K;(4/0103). Since 6304 = 6,6, and
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V0304 = h/p2//0102 € K1, Ki/ki23 is a Galois extension. Let us show [K : ki3] = 2.
Define o € Gal(k;23/ Q) by

o 1 (VP1, VP2 V/P3) = (=P, —/P2. V/P3) -

Let 6 € Gal(K1/ Q) be an extension of o. Then we have
(6 (v/6162))> = & (6162) = 6304
and 80 6 (/0107) = £+/6364. Therefore we have

5’2(\/9192) = 6 (£+/60304) = 6 (£h/p2/y/0102) = —/6165.

Since 52 |k,;,= id, +/0102 & k123 and hence [K : ki23] = 2. Similarly we can show that
K»>/K is a Galois extension and [K> : K1] = [K : K»2] = 2. Hence we have [K : Q] =
KoKy« Ki1[Ky « ki23llki23 © Q] = 64.

Case (¥,2) = 1: K/Q is a Galois extension, because K is the splitting field of
T (T? = ni) = HycGaitkyy 0)(T? — o (1)) € Z[T]. Let K| := ki3(/7i72) and E} :=
k123(m) By the argumet similar to the case (Z,2) = 1, we have [K : Q] =
K5NKy : K{NK] : kiosllkios © Q] = 64,

Finally, by the computer calculation using GAP, we have the following presentation of
the group Na(F):

G=0=9=@Gip’=1
Ny(F2) = <g1, 25| @@ = (@25n)' = (Geg)! =1 >
(91929392)°93)° = 1
where g1, g» and g3 are words representing the following matrices respectively:

1 1 0 0 1 0 0 O 1 0 0 O
o100 o110 lo10 0
"=loo1o0]" 2 loot1o| 2710011
0 0 0 1 0 0 0 1 0 0 0 1
Case (Z, 2) = 1: We define 11, 12, 13 € Gal(K/ Q) by
11 (D1 /D2 /D3 V0102, V0163, /01, 02, /O3, \/04)
> (—/P1s /P2 /D3> VO304, /0103, /03, /04, /01, /02)

n: (JPI J_ 73 /0102, 1G5, B1. /5. /B /B3)
NG

2,«/9193,«/9—1,«/5,«/@,«/@)
= (VP1. /P2 —/P3: V0102, V0204, /62, /1, /04, \/63) .
2

Then we can easily check rl =15 = r3 = (Tn)? =id, (n)* = (un)* = (nnr)* =
id, (1i721372)%13)? = id. Thus the correspondence t; — ¢; (i = 1,2, 3) gives an isomor-
phism Gal(K / Q) =~ N4(F>).

Case (¥,2) = I: Wenote K = Q(/P1, /P2, /P3, /NN2, /N1N3, \/71), because
JMna = 4h/p2//n1m2 € K. Then the assertion can be shown in a way similar to the case
(Z,2) = 1, by replacing 6; with n;. O

73 (\/_\/_\/_3’

D>
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Next, let us study the ramification in our extension K/ Q. First, we recall the following
well-known fact on the ramification in a Kummer extension.

LEMMA 3.1.9 ([B, Lemma 6]). Let [ be a prime number and E a number field con-
taining a primitive I-th root of unity. Let E({/a) (a € Of) be a Kummer extension over E of
degree l. Suppose (a) = q™a where q is a prime ideal in E which does not divide I, (4, a) = 1
and l | m. Then q is unramified in E(J/a)/E.

THEOREM 3.1.10. All prime numbers ramified in the extension K/ Q are p1, p2 and
p3 with ramification index 2.

PROOF. Case (Z,2) = 1: Let us study the ramification in the extension k13(+/81)/k13.
Since (7 — 2500y (7 — 2=/0y — (7 = 5)2 - ()2 = 72 57 4+ 21 — U with 2, 250 ¢
Ok, we find A+§/0—1 € Oy, Since the relative discriminant of )‘+§/E in k13(x/01)/ k13
is given by

2
o N C I S VA R
lLﬁ - 2 2 —Ur

we find that any prime factor of 2 is unramified in k13(v/01)/k13.
Next, let us look closely at the prime factorization of the ideal (61) in k13. We let

(61) =Q7'QF -9y

be the prime factorization of (61) and let q; = Q; Nk. Since N, /k(0) = X? — p3Y? = aZ?,
we have

(3.1.10.1) Nis/ (@) = (@Z%) = pira?,

where a := (Z) is an ideal in k. Now the prime factorization of ¢; in k13/k has the following
three cases:
() qi =9QF  Nigye(Qi) = i,

(i) qi = Qi Niyy/e(Q0) = 2,

(i) q; = QiQ;  Niy/e(Qi) = dis Niys/e(Q)) = q

Case (i): If ¢; is odd, it contradicts to (3.1.10.1). Hence ¢; is even.

Case (ii): Since 61 € Q; and q; = Q;, 02 = a1 + a2 /p1 —az/p3 —as/p1p3 = X —
Y./p3 € Q;. Since p is decomposed in k13/k, we see, by (3.1.10.1), Z € ;. Further, since
; is not a prime factor of 2by (Z,2) =l and 2X =61 + 6, € Q;,2Y . /p3 =01 — 62 € Q;
and X, Y, Z € k, wehave X, Y, Z € q;, which contradicts to g.c.d(X, Y, Z) = 1.

Case (iii): Suppose B and 3’ are prime factors of p,. Since the exponent m in (3.1.10.1)
is odd, one of P and P’ appears odd times in the prime factorization of (9;). Let 3 be
that one. When Q; # P, assume ¢; is odd. By (3.1.10.1), Q! also appears odd times in
the prime factorization of (61). Therefore we have 6 € QiQQ = q; and 6, € ¢;, and so
2X =01+ 6 € Q;,2Y/p3 = 61 — 6 € Q;. This deduces X, Y, Z € g;, which contradicts
to g.c.d (X, Y, Z) = 1. Thus ¢; must be even.
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Getting all together, we find that (61) has the form 31202 (m1: odd). Then, by Lemma
3.1.9, ramified finite primes in k13(+/61)/k13 must be lying over p,. Similarly, we see that
ramified finite primes in k13(v/6;)/k13 (i = 2,3, 4) are all lying over p,. This shows that
any ramified finite prime in the extension K = k13(v/01, v/02, +/03, /04)/ k13 is lying over
p2. Since k13/ Q is unramified outside p1, p3, we conclude that all ramified prime numbers
in K/ Q are p1, p> and ps3.

Finally, we show that the ramification indices of p;’s in K/ Q are all 2. We easily see that
this is true for p; and p3, because the ramification indices of p; and p; in k13/ Q are 2 and
any prime factor of p; or p3 is unramified in K /kj3. So it suffices to show our assertion for
p2. Let py; be a prime factor in k13 of py which is ramified in k13(+/61)/k13. Since we have
P2 = Qiz in k13(+/81), by considering the prime factorization of the ideal (6;) in k13(+/61),
we see by Lemma 3.1.9 that £; is unramified in k13(+/01, /0;). Therefore any prime factor
of p, ramified in k13(+/01)/ k13 is unramified in k13(/01, /02, /03, /04)/ k13(+/61). Thus
the ramification index of p; is 2.

Case (Y,2) = 1: As in the case of (Z,2) = 1, we consider the prime factorization of
(67) in k|5. Then, by a similar argument, we find that (6;) has the ideal decomposition of
the form 9% where any prime factor of ' is lying over p3. This shows by Lemma 3.1.9
that any ramified finite prime in k13(\/97{ )/ ki is lying over p3. Similarly, we see that finite
ramified primes in ki3(\/9>£)/ki3, kTB(\/OZ)/E and I<T3(\/971)/k713 are all lying over p3. Hence
all ramified prime numbers in K/Q are p1, p» and p3. The assertion on the ramification
indices of p;’s can also be shown by an argument similar to the case of (Z,2) = 1. O

THEOREM 3.1.11. We have

K — L Krpakipy ) (VOO i (Z,2) =1,
= v
k{[’lﬁpz}k{mﬁﬁz}(\/ 91) if (¥,2)=1.

PROOF. Case (Z,2) = 1: First we have

Q(mv\/p_svele2):Q(\/p_f\/p_f VO[ZZ)
= 0(/Pp1, VP2, V)

= k{phpz} .

Next, it is easy to see that Q(./p2, /D3, +/0103) is a dihedral extension over Q of degree 8.
Since all prime numbers ramified in Q(,/p2, /D3, +/6183)/ Q are p> and p3 with ramification
index 2 by Theorem 3.1.10, we have

OV p2, VP3,V0103) = kips s}

by Theorem 1.1.7. Hence we have

K = k{PIsPZ}k{P&PZ}(\/@_l) .
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Case (Y,2) = 1: Noting that n; = 2X + 2Y./p3, m» = 2X — 2Y./p3 and 3 =
2X +2Y . /p3, we have

Q(/P1, VP2, Vmm2) = Q(JP1., /P2, V4 Z?)
= Q(/p1. V/P2. Vo)

:k{pl,Pz}'

By the same argument as in the case of (Z,2) = 1 replacing 6; with n;, we have Q(/p2,
VD3, /M N3) = kip, p,). Hence we have, by Theorem 3.1.8,

K = Q(/m, v/, /13, /n4)
= Q(J/P1, /P2, NP3, V0125 /11035 /1)
:k{plypz}k{m,m}(\/a)' t

3.2. The 4-th multiple residue symbol. Let p1, p2, p3 and p4 be four prime num-
bers satisfying

p1=5(@mod8), pi=1(mod4) (i =2,3,4),
2.1 '
(3.2.1) <ﬂ) =1(<i#j<4¥, [pipj, ]l =10, j k: distinct),
Pj
and we assume that the class number of k1 = Q(,/p1) is 1.

Let K be the field defined in Definition 3.1.7.
DEFINITION 3.2.2.  We define the 4-th multiple residue symbol [ p1, p2, p3, p4] by

1 if p4 is completely decomposedin K/ Q ,

[p1, P2, P3, pal = {_1 otherwise.

We let
L= { O(J/P1, /P2, /D3, /0102, /6103)  if (Z,2)=1,
T QP P2, /P e, i) i (Y, 2) =1.
Case (Z,2) = 1: Let 11, 72, 13 € Gal(K/ Q) be as in the proof of Theorem 3.1.8 and we
let

E1 =010+ 0304, & = /0163 + /0204, & =01+ + 03+ bs.
Then, the subfields of K/ Q which corresponds by Galois theory to the subgroups generat-
ed by 71, 72, 73 and (11727372)* are Q (/P2 /73 €1, /0163, &), Q(/P1, /P3. /02, V03,

V1), Q(/P1, /P2: /0102, &, &3) and F, respectively. By the assumption (3.2.1), p4 is
completely decomposed in the extension F'/ Q.

Case (Y,2) = 1: We let 11, 12, 13 € Gal(K/ Q) and &1, &, & be defined by replac-
ing 6; in the case (Z,2) = 1 with n; (1 < i < 4). Then, as in the case (Z,2) = 1
the subfields of K/ Q which corresponds by Galois theory to the subgroups generated by

11, 72, 13 and (11727372)% are Q( /P2, /D3 €1, /T1713: €3), Q(J/P1. /P3+ /112 /T3 /T12)s
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O /P1, /P2, /12, &2, E3) and F, respectively. By the assumption (3.2.1), ps is com-
pletely decomposed in the extension F/ Q.

Let B34 be a prime ideal in F' lying over p4 and let o3, = (%) € Gal(K/F) be the

Frobenius automorphism of ‘B4. Note that B4 is decomposed in K/F if and only if p4 is
completely decomposed in K/ Q. So we have, by Definition 3.2.2,

O‘qg4 = idK s

1
2. =
(3.2.3) [p1, p2, p3, p4l {_1 o, # idg .

Let S := {p1, p2, p3, pa}. Then, by Theorem 2.2.2, we have

Gs(2) =Gal(@s(2)/ Q)

-1 -1
=(x1,x2,x3, x4 [ x]" [yl = = [, yal = 1)

Let F be the free pro-2 group on xq, X2, x3, x4 and let T : F (2) - Ggs(2) be the natural
homomorphism. Since K C Qs(2) by Theorem 3.1.10, we have the natural homomorphism
Y :Gs(2) > Gal(K/Q). Letp :=mo ¢ : F— Gal(K/ Q). We then see that

px) =1, ¢)=n, ekx3)=13, @) =1.
Therefore the relations among 71, 72 and t3 are equivalent to the following relations:

p(x1)? = p()? = p(x3)? = p(x1x3)> =1, @@y =1,

3.2.4
24 p(x1x2)* = 9(x2x3)* = p(x1x2x3)* = @((x1x2x3x2)2x3)> = 1.

On the other hand, by the assumption (3.2.1), we have ,(1234) = p,(1234).

THEOREM 3.2.5. We have

[p1, p2, p3, pal = (—=1)P21239

PROOF. By (3.2.3), we have

@(ys) = { ! if [p1, p2, p3, pal =1,
(mnnn)’ = e((@xexsx)®) i [p1p2, p3,pal = =1,

By (3.2.4), Ker(¢) is generated as a normal subgroup of F by

2 .2 .2 2 4 4 4 2 2
X1, x5, x5, (X1x3)7, X4, (x1x2)", (x2x3)", (x1x2x3)" and ((x1x2x3x2)"x3)
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and one has
Ma((x)?) = (1+ X)? =1+ X7,
Mr((x2)?) = (14 X2)* = 1 + X3,
Ms((x3)?) = (14 X3)> = 1 + X3,
Ma((x123)%) = (1 + X1)(1 4 X3))* = 1 mod deg > 2,
Ma((xi1x2)*) = (1 + X)) (1 + X2))* = 1 mod deg > 4,
Ma((x2x3)") = (1 + X2)(1 4 X3))* = 1 mod deg > 4,
M ((x1x2x3)*) = ((1+ X1)(1 + X2)(1 + X3))* = 1 mod deg > 4,
M (((x122x3%2)%x3))
=1+ X7+ XIX34+ X1 X3 + X1 X5 + X3X7 + X3X; mod deg > 4.
Therefore 2 ((1); %), n2((2); %), u2((3); ), u2((12); %), n2((23); %), u2((123); %)  take
their values 0 on Ker(p). If o(y4) = 1, u2(1234) = p2((123); y4) = 0 by ¢(y4) €
Ker(p). If ¢(ys) = (mmmn)? = @((x1xx3x2)%), we can write y; = (x1x2x3x2)*R,
where R € Ker(¢). Then comparing the coefficients of X; X, X3 in the equality M>(y4) =
Mo ((x1x2x3x2)2) Ma(R), we have
u2(1234) = 2 ((123); ya)
= pa((123); (x1x2x3x2)%) 4+ p2((12); (x1x2x3x2)) 2((3): R)
+ n2((1); (x1x2x352)") 2 ((23): R) + pa((123); R)
=1.

This yields our assertion. O

EXAMPLE 3.2.6. Let (p1, p2, p3, pa) := (5,8081, 101, 449). Then we have
0 = 25+ 25+ 24/101,
6, = 25+ 2/5 — 24/101, ! Kipr.po) = Q(v/5, V3081, v/241 + 1004/5),

03 =25—=2v5+2V101, | k(py o) = Q(/808T, v/101, /1009 + 100v/101),
04 =25 —25-2101,

and

K = kipy.pa) - Kips.po) (V25 +24/5 +24/101) .
Then we have

(&)=t a=i#j=4. pipjpd=1 G jk: dstiney,

[p1, p2, p3, pal = —1.

In view of Example 2.1.3, this 4-tuple prime numbers may be called Milnor primes.
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5 8081 101 449

Finally, two remarks are in order.

REMARK 3.2.7. (1) By Theorem 3.2.5, the shuffle relation for arithmetic Milnor in-
variants (Theorem 2.2.3 (3)) yields the following shuffle relation for the 4-th multiple residue
symbol

l_[ [pi, Pjs P p1]1 =1,
(ijk)ePSH(I,J)
where I, J are multi-indices with |/| 4 |J| = 3 and PSH(Z, J) is the set of proper shuffles of
I and J,and 1 <[ < 4. Itis also expected that our 4-th multiple residue symbols satisfy the
cyclic symmetry, although we are not able to prove it in the present paper. We hope to study
the reciprocity law for the 4-th multiple residue symbol in the future.

(2) In this paper, we are concerned only with 2-extensions over ( as a generalization
of Rédei’s work. If a base number field k contains the group of /-th roots of unity u; for an odd
prime number / and the maximal pro-/ Galois group over k unramified outside a set of certain
primes S = {p1,...,p,} U {ploo} is a Koch type pro-I group, we can intoduce p;-valued
multiple residue symbol [p1, ..., p,] in a similar manner.
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