ON A CERTAIN NUMERICAL
INVARIANT OF LINK TYPES

BY
KUNIO MURASUGI

1. Introduction. Let I be an (oriented) tame link (') of multiplicity x in a
3-sphere S*, and let L be a diagram, i.e. the image under a regular projection
of §% into S%. To L we can associate an integral square matrix M, called the
matrix of a link I ([13], [14], also see §3). The quadratic form f(x;,x5,-,X,)
associated to the symmetric matrix M 4+ M® induces some invariants of the orig-
inal link type, where M’ denotes the transposed matrix of M [19], [22].

In this paper, we shall especially consider the signature o(f) of the quadratic
form f(x,,---,x,) associated to M + M". The invariance of ¢(f) was proved by
Trotter for u =1 [22]. For the general case, it is not so difficult to prove that
it is also an invariant of the link type (Theorem 3.1).

In §3, we shall define the matrix of a link for the convenience of the reader.
In §5 we shall show that for any alternating link the signature is calculated im-
mediately from the matrix. Then, from the properties of the matrix of a special
alternating knot, it follows:

THEOREM 5.5. Any special alternating knot is not amphicheiral unless it is a
trivial knot.

§§6-8 are concerned with slice knots or links, which were first defined by
Fox and Milnor [4]. In determining the signature of a link (?) of this kind, the
nullity of the matrix plays an important role. The nullity is determined easily
from the Alexander matrix [3, II] rather than the matrix of a link. This is the
reason to establish some relations between them in §4. In §8, the concept of a
slice knot is generalized to the case of links, and a slice link in various senses
will be defined. Cf. [5]. In particular, we obtain the following necessary con-
dition for a knot to be a slice knot.

THEOREM 8.3. If a knot is a slice knot, then the signature is always zero.
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(1) Alink/ of multiplicity s consists of 4 ordered, oriented circles /y, +--, !, imbedded in the
3-sphere 3. Two links / and ! are of the same type or isotopic if p = u’ and there exists an
orientation preserving homeomorphism f of $3 onto itself such that £ | §; = J; and f | I; is also
orientation preserving, i = 1,2, ---,u. A knot is a link of multiplicity 4 = 1. For any link, we
select a “point of infinity” «o € §3 — I and consider $3 — o as a Cartesian product R! x R! x R1,

(2) By the signature of a link / is meant the signature of the quadratic form f(x;, «++, Xa)
associated to the matrix M + M’, where M is the matrix of I. See (3.10) in §3.
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Since the signature o1 «he product knot (in the sense of [17]) is the sum of
that of eachcomponent (Corollary 7.4), this theorem implies almost immediately

THEOREM 8.9. The granny knot is not a slice knot(®).

Thistheorem was proved recently byJ.J. Andrews by means of the Minkowski unit

It is well known [18], [21] that given a link ! there exists an orientable tame
connected surface in S* spanning 1. Therefore we may consider a locally flat

connected surface in the upper half space of S* spanning /. The minimum genus
h* of these surfaces is a link invariant. §9 is devoted to prove the following:

THEOREM 9.1, The absolute value of the signature of a link of multiplicity u
is not greater than 2h* + u— 1.

Finally it would be interesting to investigate the relationship between the sig-
nature and other invariants of a knot. This last section will be concerned with
the unknotting number of a knot. The unknotting number is a knot invariant
which was first introduced by Wendt in 1937 [23]. Up to the present, only a few
results have been found [10], [23]. In §10 we shall prove

THEOREM 10.1. The absolute value of the signature of a knot is not greater
than twice the unknotting number.

. This theorem assures the existence of a prime knot whose unknotting number
is a given natural number n. For example, the torus knot of type (2n + 1,2) has

the unknotting number n.
The author acknowledges his gratitude to Professor Fox for his kindly sug-

gestions.
2. Equivalence of matrices. We begin with definitions of equivalence of two

matrices.
DEeriNITION 2.1. Two n x nintegral matrices are said to be s-equivalent if one

is transformed into the other by a finite sequence of certain operations
AZ! (i =1,2,3) defined as follows:
A;: A-> TAT', with T integral and unimodular,

r A 00
Ay:A—-> 10 0101/, g; being integers,
L 41+ ¢ 00
[ 04,
A
A3: A- (; .q"
0 00
L O 10

(3) The granny knot is the product of the trefoil knot with itself [4].
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If two matrices to be considered are symmetric, then they are said to be
S-equivalent if one is transformed into the other by a finite sequence of opera-

tions AT, AEL:
0
¥ } |
10
From the definition, it follows

(21) If M and N are s-equivalent, then their symmetrized matrices,
M + M* and N + N', are S-equivalent.

Any integral symmetric matrix A can be expressed in a diagonal form by a
unimodular matrix R of rational numbers, i.e.

A

Ay: A > 0

a
a, 0
RAR' = , a; being rational numbers.

l 0 '.an

Then we can define 6(A), the signature of A, as follows:
DEFINITION 2.2.

o(4) = X signa,,
i=1

where signa; = a,/|a;| if @, # 0, and sign0 = 0.

It is clear that

(2.2) a(A) is an invariant of the S-equivalence class.

As one practical method to calculate the signature of a given matrix, the fol-
lowing well-known theorem will frequently be used [9].

(2.3) Let A be a symmetric matrix of rank n. Then there is a sequence
Ao =1,A,A,, -, A, (called the a-series), of principal minors of A satisfying
the following conditions:

(1) Ayisanix iprincipal minor of Ay, (i=1,2,---,n—1).

(2) No two consecutive matrices A; and A, are both singular.

The signature of A is, then, given by

n—1

2.9) a(4) = sign(detA,; - detA,,,),
i=o0

where detA, =1.

3. The matrix of a link. Let I be a link in S of multiplicity p and let Lbe
a diagram of I. Let p be a regular projection of S3 into S2. The orientation of
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Lis determined by that of I. Lis a 1-dimensional complex in S 2 To define the
matrix by means of Lwe consider the following two cases.

Case 1. L is connected.

L consists of some number, n say, of vertices ¢,,c,,---,¢c, and 2n edges
e5,e5,+,€,,, that are oriented and closed. Then the set of all ¢; is divided into
some subsets Ty, T,,---, T, in such a way that

(3.1) (1) T;is an m-circuit(*).

(2) T,is a cycle with respect to the orientation of L.

(3) The inverse image p '(T) NI has m components. T; will be called a
Seifert circuit. On the other hand, Ldivides S?into n + 2 regions ry, 73, -+, ps 25
that are open and connected. The Seifert circuits are classified into the following
two classes:

DEFINITION 3.1. T; is of the first type if it bounds a region r;. Otherwise T;
is of the second type.

If L contains no Seifert circuit of the second type, then Lis called a special
diagram of 1. 1 is called a special alternating link if I possesses a diagram that
is special and alternating.

Now let C,,C,,-,C,, be Seifert circuits of the second type in L. Since | C;|
is a simple closed curve in S2, it divides S? into simply connected domains
|Ci|* and | C;|. Let D(yy, -+, 7,) be the closure of |C;|"* M -+ N | Cp|"™ Where
y; denotes + or — . Then it is easy to show that

(3.2) Only m+1 of the sets D(y,-,7,) are nonempty. Let them be
D{,Dy,+*,Dp .y, called the Seifert domains. The boundary D; of D; consists
of some Seifert circuits of the second type, and D; and D; (i # j) have at most
one Seifert circuit of the second type in common.

Further, r,,r,,+--,r,, , are classified into two classes, « and §, in such a way
that

(3.3) r; belongs to the class B, or r; is a B-region, if F;is a Seifert circuit of
the first type. Otherwise, r; belongs to the class «, or r; is an a-region.

This classification possesses the following properties [13].

(3.4) (1) Notwo B-regions are adjacent, i.e. the boundaries of two B-regions
have no edge in common.

(2) If two a-regions are adjacent, then the common edges belong to some
Seifert circuits of the second type.

Now at each vertex ¢ in L, at most four different regions meet, and at least
two among these four regions are a-regions and contained in the same Seifert
domain, D; say. Then we say c belongs to D;. It is clear that

(4) An m-circuit T is a 1-complex with m=> 1 edges whose underlying space, denoted by
| T|, is a simple closed curve; a 1-complex P is a cycle with respect to an orientation if inthe
free abelian group generated by the vertices of P, Eeel’ {(terminal end point of e)— (initial
end point of )} = 0. See [1].
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(3.5) Every vertex belongs to one and only one Seifert domain.

Let L, = D;nL and consider p~'(L;)) =/;. I; consists of some number of
arcs in [. Especially for any vertex ¢, p ~'(c) consists of two points ¢ *and ¢’ (5).
If a vertex c is in D; but does not belong to D;, then two points ¢* and ¢’ that
are in the boundary of /; can be joined by a segment ¢ in S* such that
p(c® Uc® Uc") =c. Thus we obtain a link /; from J; such that p(l) =L,. It
should be noted that L; has no Seifert circuit of the second type,i.e. L;is a special
diagram of I;. We shall denote it symbolically, disregarding order, by

I=lixlyxonly,,.

Similarly, L= L, # Ly % - % L, .

Now for each vertex ¢ of L, we shall define three indices n, € and d.

DEerFNITION 3.2. (1) Let ¢ belong to a Seifert domain, D, say. Then n(c) is de-
fined as + 1 or — 1 according as the rotation to make the overpass through ¢
coincide with the underpass in an a-region contained in D, is clockwise or counter-
clockwise.

(2) For any region r,, if ¢ is not in 7;, then d, (c) = 0. Otherwise d,(c) is de-
fined as follows. Let r; be the region that is opposite to r; with respect to c.

(i) If i =j, then d,(c) = 0.

(ii) If i #j, then d,(c) =1 or 0 according as r; is on the left with respect to
the direction of the underpass at ¢ or not.

Suppose r;, and hence r;, is contained in D,. Then ¢, (c) is defined as fol-
lows.

(3) (i) If cis not in #;, or does not belong to D, or if i =, then ¢, (c) =0.

(ii) Otherwise, &,(c) =2d,(c)—1.

By means of these indices, the matrix M of 1 with respect to L is defined as
follows:

DEerFINITION 3.3. M is a block matrix:

M = (Mipij=12,m+1>
) jii=1,2, m+1

M; = (agq))p.q=l,2,“'.m’
where w; denotes the number of a-regions contained in D;, and
—ap) = Zn(e)dx, (),

where the summation extends over all vertices that are in the intersection of the
boundaries of two different a-regions X, and X,, both contained in D;, and

(5) The one of ¢” and ¢® with the larger z-coordinate is the overcrossing and the other is
the undercrossing. The small segment of / containing the overcrossing or undercrossing will be
called the overpass or underpass.
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g=- ¥
a=1;p#q
(2) Mij = (bp(-:j))r=1,"°,w1;s=1,"' wj (l #J)’
- b:(-:j) =X ’I(C)dx,(c)ex,(c)a

where the summation extends over all vertices that are in the intersection of the
boundaries of two a-regions X, and X, contained in D; and D; respectively.
From the definition we see immediately
(3.6) Each row and column in My; corresponds to each a-region contained
in D;.
(3.7) At least one of My; or M, is a zero matrix for i # j and
wi wy
Y = ¥ p = 0.
r=1 s=1
Case II. L consists of p (=2) connected components IY,..., @,
The matrix of 1 with respect to L is defined as follows.

MWD
M(Z)

M(P)
M@

where M® (i =1,..., p) denotes the matrix of I = p~'(I") with respect to
I, and M®*V denotes a p x p zero matrix.

Here we shall introduce some notations which will be used in the future.

Let N be an m x n matrix. Then by

py - p,)
N (QI S
isdenoted the r x s matrix consisting of p;th row, ---, p,th row and q,th column,
.-+, gsth column, of N. In particular, by N(p;, -+- p,) is denoted the r x r matrix

N )

Py > Py

N(h I /3
q: -+ gs

is denoted the (m — r) x (n — s) matrix obtained from N by striking out p,th
row, -+, p,th row and g,th column, ---, g,th column, and in particular,

Further, by
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7 Pyt D
Now let M =(M;;) be the matrix of I with respect to L, and let M* be the
principal minor of M obtained by striking out the row and column containing
a diagonal element a{?, in each M, (i =1,2,---,m + 1). In other words, we
can choose m + 1 positive integers ¢y, --,¢gn4+, Such that M* =M(q, ** qms1)-
M* will be called the L-principal minor of the type (¢y,-*,qm+1) Of M.
If L consists of p connected components, then M* is defined as follows:

[ pgthx )

M(Z)*
M* = ’

M(p)*

M(p+1)* J

.

where M®* (1 <i < p) denotes the L-principal minor of M with respect to
P, and M®*Y*denotes the (p—1) x (p—1) zero matrix.
From the definitions we see immediately that
(3.8) detM* is independent of the choice of diagonal elements a
More precisely,
(3.9) The s-equivalence class of M* is independent of the choice of aﬁ?’,‘.
Moreover, we have the following

()

ri,ri®

THEOREM 3.1. The s-equivalence class of M* is an invariant of link types,
and so is the S-equivalence class of M* + M*".

This theorem can be proved as follows. If two link diagrams represent two
links of the same type, then one is deformed into the other by finite sequences
of certain deformations QF' (i =1,2,3) defined in [16, p. 7]. Consequently
to prove the theorem, it is sufficient to show that no deformation Q! alters
the s-equivalence class of the matrix. Proof can be given in various stages. Since
the treatment on each stage is an elementary matter, we omit details.

Thus since the s-equivalence class of M* depends only on the link type, we
shall call it the L-principal minor of l. From Definition 2.2 and (2.2) we see

(3.10) The signature o(M* + M*') isan invariant of thelink type of I which
will be called the signature of | and denoted by a(l).

(3.11) The nullity(5), n(M* + M*"), of M* + M*' is also an invariant of
the link type of I; n(M* + M*") 4 1 will be called the nullity of | and denoted
by n(l).

(6) By the nullity n(A) of a matrix 4 is meant the number of columns minus the rank of 4-
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4. Alexander matrix. Let G be the group of a link I of multiplicity u, i.e.
G = n,(S* — ). Gis a quotient group of a free group X of finite rank by a normal
subgroup. The associated homomorphism of X onto G is denoted by ¢: X — G.
The natural homomorphism from G onto its commutator quotient group G/G’
is denoted by Y. G/G’ is a free abelian group of rank u generated by ¢,,---,1t,,
which are specified as follows. t; is the element of G (mod G') which is represented
by an oriented loop w in S3 — [ such that the linking number of w with the jth
component of /is equal to + 1 or 0 according as j = i or not. Further, the natural
homomorphism from G/G’ onto an infinite cyclic group Z generated by ¢ is
denoted by v, i.e. v(t;) =1t for i =1,2,---,u. These three homomorphisms ¢,
¥ and v are uniquely extended to ring homomorphisms between the integral
group rings JX, JG, J(G/G’) and JZ. These ring homomorphisms will be de-
noted by the same letters.

In the preceding section, we knew that the S-equivalence class of an integral
symmetric matrix M* 4+ M*' is an invariant of a link type. Moreover, the equiv-
alence class of a matrix M — tM‘over JZ, in the sense of Fox [3, II, p. 199],
is an invariant of link type. This follows immediately from the proposition:

(4.1) If two integral matrices M and N are s-equivalent, then M — tM'
and N — tN* are equivalent over JZ.

This result follows almost at once from the definition of equivalence and

s-equivalence.

THEOREM 4.1. Let | be a link. Then there exists a link 1’ isotopic to | such
that the group G of I’ possesses a presentation G={(x,---,X,: ry,--+,1,) satisfying

4.2) |6 (‘;—;)

where M denotes the matrix of I’ with respect to its diagram L' and 6 = vwW¢.

=M —tM',

Proof. It is not difficult to show that any link can be deformed isotopically
to a link !’ that has a connected and special diagram L'.

Now as is shown in (3.3) we can divide all regions of S? that are divided by
L, into two classes, o« and . Let n and m be the number of a- and f-regions.
Then we associate the generators x; and y; of a free group X of rank n + m to a-
regions and f-regions respectively. Let ¢;,---,c, be double points of L' on the
boundary of a -region B;. Then dj (c;) depends only on B;. Thus we can classify
all B-regions into two classes B, and B, as follows:

(4.3) Ifdg(c;) =0 then B; belongs to B,. Otherwise B; belongs to B, .

Now take a f-region, B, say, belonging to B, , and fix it. Next to every double
point ¢ of L', we associate an element w(c) of X as follows: Suppose that the
four regions g;, g;, g, and g, meet at ¢ in such a way that we pass through these
regions in the cyclic order just named as we go around the point ¢ counterclock-
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wise. Among these regions, just two nonconsecutive regions, g; and g, say, are
B-regions. Suppose g; belongs to B,. Then w(c) is defined as y,x; 'y,x; 'or
yix; 'yux; ! according as n(c) =1 or — 1. Since Lhas n + m — 2 double points,
we have n + m — 2 elements wy,---,w,,,,_, of X. Then G has a presentation

(44) G= (xl’ X Vi s Ymt Wi s Whim-2s yl)
This is known as the Dehn presentation of the group of a link. It is easy to show
[12] that

@.5) 0(x)=t,fori=1,---,n, and

6(y;) = t* or 1 according as B; belongs to B, or not.

The next step is to eliminate all y;. Let H be the graph(?) of L and let H*
be the dual graph. Take a maximal tree Tin H and fix it. Each vertex of Tis the
center b; of B; and each edge contains one and only one double point of L. For
any vertex b;, there is a unique path P,; from b,, the center of B,, to b;. By
means of this path P, ;, a given y; can be written in the form: y; = u;y,u;’, where
u; is an element of the subgroup X, of X generated by x,,---,x,. Since y, =1
in G, we can eliminate all y; and m relators from (4.4), and we obtain the fol-

lowing presentation:

(4.6) G=(x“...’xn; Rl’...’Rn_l),

where the R, are nontrivial relators that are obtained from some w, by replacing
y; by uuj.

Now consider a maximal tree of H* which is disjoint to T. Such a tree exists
and it is determined uniquely. We denote it by T*. T* is a dual tree of T. Vertices
of T* are centers of a-regions. Since R; corresponds to a double point, c; say,
that is not contained in T, and since these double points are contained in
T*, we see each R, one-one corresponds to each edge, f; say, of T*. Let fy,---.f,
be edges incident to a vertex v, of T*. Since f; contains only one double point,
cj say, we can assign a relator, R; say, to f;. Let &; be the set of all elements of
the free group X; of the form: Rf;R‘,-’j---Ri‘;”, where (i; i, i,) isapermutation
of (12---p) and §; =¢,,(c n(c;), W, denoting the a-region whose center is v.
Select an element S, from each &; as its representative. Then {S,,---,S,} con-
stitutes a complete system of defining relations of G, for T* is a maximal tree.
In other words, we obtain the following presentation of G:

“.7 G =(xg,»%,: Sy, S,).

It is not so difficult to show from (4.5) that (4.7) is a presentation of the re-
quired type. q.e.d.

(7) Take a point in each a- or 8-region and fix it. [t is called the center of a region. Then
by the graph (or the dual graph) of L is meant the 1-complex obtained by connecting the centers
of a-regions (or of f-regions) with the double points Ilying on their boundaries by simple arcs.
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From this theorem, we see

(4.8) The nullity of the reduced Alexander matrix(®) at t = —1 is equal
to the nullity of its link.

Moreover, denoting the reduced Alexander polynomial of I’, hence of I, by
A(%), we have from Theorem 4.1,

(4.9) eA(t) = tidet(M* — tM*),

where A is an integer so that the least degree of a term of A(t) is zero,and e = + 1.

In particular, if Lis a diagram of an alternating link, then we can prove that
A =0 [13]. That is to say,

(4.10) eA(t) = det(M* — tM™"), or, equivalently, det M* # 0.

In the following to fix A(¢), we may assume that A(1) = 0. Therefore, since
det(M* — M*) =0, always we may assume in (4.9) and (4.10) that ¢ = + L.

5. Signature of alternating links. A link [ is said to be splittable if there
is a 2-sphere S? < S% — I such that both components of S* — S? contain points
of 1. More precisely, we say that / is split into n components ,,---,1,, or n links
ly,-++,1, are separated from one another, if there are n—1 disjoint 2-spheres
Si,++,8,—1 = 8>—1 such that each component of S*— | J/Z} S; contains one
component I; of 1. I is denoted, then, by I=1,0-.- 0l,. Similarly, a diagram L
of 1is said to be separated if L consists of n, say, disjoint 1-complexes in S2.

A link to be considered in this section is assumed to be nonsplittable unless
otherwise mentioned.

LemMmA 5.1. If Il is an alternating link, then A(—1)#0 and sign A(0)
=sign A(—1).

Proof. Since I is an alternating link, A(f) # 0 [1]. Thus we can write
A(®) =co+ ¢yt + -+ +cgt’, d 2 1, where (—1)*I¢;c; 2 0, for any i,j [1], [13].
Since cq # 0, we have c)A(—1) = ¢y L o(—=Dle; =c2 + X4, (—1)icoe; = ¢5 > 0.
Therefore we see that A(—1) # 0 and signc, =sign A(—1). q.e.d.

LemMA 5.2. If | is a special alternating link, then |o()| is equal to the
degree of A(1).

Proof. Let Lbe a diagram of I, which is special alternating. Then the n x n

(8) For any presentation G = (xy, +++, xn: ry, +*+, 1,,) Of the group of alink/, its # X m
Jacobian matrix aty, A =|\y(dr./0x,)| is called the Alexander matrix of I [3,11]. By the
dth elementary ideal, £,(4%¥)(d= 1), of A®Y is meant the ideal generated by the minor deter-
minants of 4 of order n—d. Since &, is an invariant of a link type /, it may be called the
elementary ideal of /. In particular, £,(4%) will be called the dth reduced elementary ideal, de-

noted by £,(0). £ (J) is a principal ideal and its generator A(¢) is called the reduced Alexander
polynomial [1].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] ON A CERTAIN NUMERICAL INVARIANT OF LINK TYPES 397

L-principal minor M* of the matrix M of I with respect to L has the following
properties [13]:

(5.1) (1) No elements on the diagonal of M* are zero and they are of the
same sign €.

(2) All elements except those in the diagonal of M* are of the same sign — ¢
or 0.

(3) The sign of the sum of all elements of each row and column is ¢ or 0.

(4) For any m, 1 £ m £ n, there exists the number g such that the sign of
the sum of the first m elements on gth row and gth column in M* is ¢.

Then we can show that det M* > 0 [13]. Since eM* + ¢M*" and all its prin-
cipal minors have the properties (5.1) (1)—(4), we see that det[(eM* + eM**)(12.--i)]
>0, 1 £i<n. Thus to calculate the signature ¢ of the matrix eM* + eM*,
we can select a o-series of eM* + eM*'as A; = (eM* + eM*)(12---i),1 < i< n.
Therefore, |o(l)| =|a(eM* + eM*)| =| X7Z;sign(detA,-detA,. )| =n. Since n
is the rank of M*, i.e., the degree of A(¢), Lemma 5.2 is proved.

Lemma 5.2 is extended to any alternating link as follows.

THEOREM 5.3. Let I=1;%l,%---xl,,,. Then

m+1 wi—1

o) =X X signa}),
i=1 p=1

This formula simplifies the calculation of ¢(l) for alternating links.

Proof. Let W;and W; be two different a-regions in a Seifert domain D,. W;
and W; are said to be connectible if there are two points P;and P;on W;and W,
respectively and if these two points can be joined by a simple polygonal arc o;;
such that

(5.2) «;; is contained in a B-region B except for P; and Pj, i.e., &;; does not
intersect Lexcept at P; and P;.

a;; will be called a joining arc between the connectible regions W; and W;.
Now let us replace «;; by a sufficiently narrow (untwisted) band g such that two
arcs, B, and B, say, among the four arcs 8, B,, S5 and f, contained in B, are
in W; and W, respectively, and that §, and B, are in B. Since B is a f-region,
B can be oriented in such a way that the orientation induced on § from B is con-
sistent with that of 8; and ;. Thus we obtain an oriented link I’ = (I — (8; U B3))
U (B, U B,). The link type of I’ is independent of the choice of «;; satisfying (5.2).
I’ will be called the link obtained by connecting W; and W;. Since a diagram L’ of
I’ is of the form L' =(L— (8 v B3)) w(B; v B4), p(B;) = B;, the number of the
a-regions in S? — L is one less than in S?— L. And the L-principal minor N*
of I’ is given as follows.

(5.3) If M* is the L-principal minor of ! of type (q;,*:*,qm+1), then
N* = M(q, “ qg—1qk, 95,9k +1 " dm+1) » Where q,, and g, are the order of row
and column corresponding to W; and W;in M.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



398 KUNIO MURASUGI [May

We are now in position to prove the theorem. We may assume without loss
of generality that the a-regions Wy, ---, W, in D, are ordered in such a way that

(5.4) W;,, is connectible with at least one of W,,---,W; for j=1,...,
w,—1.

It is clear that a diagram of the link obtained from an alternating link by con-
necting two «-regions is also alternating. Let us define f(r) = X/-,(w;— 1),
r=1,---,m+1 and f(0) =0. Set F,=M*(f(m+1)—s+1,---,f(m + 1)) for
s=12,--.,f(m+1). For any 5, 1 £ s < f(m + 1), there exists a unique integer
rsuch that f(r)<f(m+1) —s+ 1 <f(r+1), 0<r<m+ 1. Then det(F,—tF%)
will be considered as the reduced Alexander polynomial, denoted by A(¢), of
the alternating link /). I, is the link whose diagram L, is obtained from L
by considering each of r Seifert domains D,,---,D, as one f-region and by con-
necting (°) f(m + 1) — s — f(r) + 1 connectible a-regions Wy,---,Wyini1y-s— iy +1-
Therefore from (4.10) and Corollary 1.40in [13], we have

sign(detF,) = signA(0)
(5.5)

m+1
= Sign [detAZr+1,r+ 1(1 2. NW,i 1) _1_[+2 det Muu(wu)] >

where n=f(m+ ) —s—f(ry+1.
Since the sign of any diagonal element in M;; is constant and since it depends
only on i, we can denote it by &. We have then

wre1—n—1 Wm+1—1
11 Emt1 A(s)(O)

(5.6) 5 m+1 N
=detfe, 4 My, (121w, 4 1)] H+2 det[e, M, (w,)].
u=r
Since each factor in the right-hand side in (5.6) is positive (cf. Lemma 5.2), it
follows
sign(detF,) = signA,(0)

5.7 = gy ey

= sign(a,‘,’ffj,u "'“‘5::.131,wm—1“‘1'1+2)"'a3':,.t11)—1,w...“—1)-

Since for any s, 1 s <f(m + 1), det(F,+ F.)#0 from Lemma 5.1, we can
select a series of principal minors F, + F; of M* + M*' as its o-series. Then
from (2.4) and (5.7), it follows

(9) It is clear that the link type of a link obtained by connecting some number of connectible
a-regions is independent of the order of connection.
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f(m+1)-1
o(M* + M*) = 2 sign[(det(Fs+ FY)-det(F,,, + F'y ;)]

s=1

= X sign(detF, detF,,,)

. +1 +1
= X SIgn(afl'.,_lj,“---)(af,'+2,),,+2---)
s
= X signa{" .. q.e.d.

s

REMARK. Theorem 5.3 is valid for a splittable alternating link.
From Lemma 5.2 and Theorem 5.3, it follows

THEOREM 5.4. Let | be an alternating link and let l=1,%---x1,,,.
Then

o) =o(l)+ - +0(lus1).

This theorem is not necessarily true for nonalternating links.

Now let I’ be the reflected inverse, the so-called mirror imaged link, of a link
I, and let M and M’ be the matrices of ! and I’. Then it is clear from the defi-
nition that M'* 4+ M'*" is S-equivalent to —(M*+ M*), and hence
o(l') = — o(l). Thus we have

(5.8) If 1 is amphicheiral, i.e. if ] and 1’ are of the same type, then
a()=0.

From Lemma 5.2 and (5.8), it follows

THEOREM 5.5. If | is a nonsplittable special alternating link, then 1 is not
amphicheiral unless | is a trivial knot.

This was a conjecture of the author [15].
Finally we prove the following

THEOREM 5.6. Let k be any knot. If |o(k)|=2m (mod4)('®), then
[A(=1)| = (=)™ (mod4).

Proof. As we noted at the end of §4, the Alexander polynomial A(t) of k is
given by

A(t) = t*det(M* — tM*),

where A is an integer and A(0) # 0. Therefore | A(—1)| = |det(M* + M*')|. Let
det(M* — tM*) = co + ¢t + -~ + ct®, where dis even, ¢; =¢,_; (0 S i < d) and
¢, may be zero. Since |a(M* + M*)| =2m (mod4), from the definition there
is a unimodular matrix R of rational numbers such that

(19) For any knot k, a(k) is always even.
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‘a,
—aj

(5.9 R(M* + M*)R' = " ,

8b4q+ 2m 7

where a,;, aj and b, > 0('!), e = £ 1 and d =2n + 4q + 2m. Thus we see that
det(M* + M*t) = (— 1)" 84q+2mal ana{ an:bl ot b4q+2m = (_ 1)"01 ot b4q+2m'
Therefore we see
(5.10) sign[det(M* + M*)] =(-1)".

On the other hand, since det(M* + M*) = X4_,(—1)’¢; and det(M* — M*")

= X4_oc; =1, it follows that

@2-1 )
det(M* + M*) =2 X (_l)lcj+(_1)d/20n+241+m—1
j=0

(5.11) 2(‘”22):—l (=D e; +(—1)**™ [1 -2 (mflc, ]
j=0 i=o0
= (—=1)"""(mod4).
Therefore we obtain from (5.10) and (5.11),
|A(-D)| = |det(M* + M*")]
= sign[det(M* + M*")] - det(M* + M*')
= (=1)(=1)"*"i(mod 4)
= (—1)" (mod4). q.e.d.

This theorem implies that if |a(k)| = 2 (mod 4) then the square free part of
| A(— 1)| must contain a prime number p of the form 4s + 3. Therefore, in this
case the nonamphicheirality of a knot is shown by means of the Minkowski
unit C, of the quadratic form [7], [16]. However if o(k) = 0 (mod 4), the Min-
kowski unit may be powerless. The knots 954 and 9,5 are in this case ('2) [16].

(1) For,det(M* + M*") # 0.
(12) The signatures of these knots are =+ 4.
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6. Nullity of links of some kind. Let ! be a splittable link: I =1,01,, [, being
links. Take a small arc a; on each /; and join a, and «, in S by a band fthat does
not intersect ! except at «; and a,. We can give a direction to # so that
(I, — ) u(ly — ay) (B — a; — ay) =1’ is an oriented link. I’ will be called the
link obtained by joining 1,,1, at «;,, by a band # and denoted by I’ =1, ®1,.
Although the type of I, @1, is not determined by that of each I;, we shall see
later that some invariants are determined by that of each ;. It is clear that

(6.1) The multiplicity of 1, @1, is less than that of l,01, by one.

The product I, # 1, of I, and I, in the sense of [8] and [17] is a kind of }; @ 1,.
This joining operation will be extended to the multiple case as follows. Let
I=lolo---ol,, nz22. Then I, §l, D ---@l, is a link obtained from ! by
joining consecutively /; and ;4 (i=1,---,n—1), at a; and «;,, by a band 8,
where «; and «af are disjoint arcs on [;, and §; meets ! only in «; and a,,,. In
this section a link of this kind will chiefly be considered.

First we shall prove the following

LemMa 6.1.  The nullity of a link 1 is not greater than its multiplicity p.

Proof. It is well known [18], [21] that ! can be spanned by a connected
orientable surface F in S3. Let the genus of F be k. Then the reduced Alexander
matrix A(f) of I is equivalent to a (2h + u — 1) x (2h + u) matrix [21]

(Au(t) A () 0)
A1) Ap(@® 0 ’

where A4,,(t) is a 2h x 2h matrix. Since det4,,(1) =1 [21], detA4,,(—1) #0,
which implies rank A(—1) = 2h. Thus we see n(l)=n(A(—1))<2h+u—2h=p.
q.e.d.

The following lemma is fundamental in the following sections.

LeMMA 6.2. Let I be a link consisting of p links I,,---,1, of the form:
[=l0®1,@® - @1, where I; o and 1;; (k>0) denote links and trivial
knots respectively, and these 1; , (k>0) are separated from one another (m; may
be zero). Then

@ o) =nly o0Vl ,).

(2) If n(l) =d, the dth reduced elementary ideal () of 1 is of the form:
&) = 8y o U W ) (Of(t™Y), where f(t) denotes an integral polyno-
mialon t and f(1) = + 1.

Proof. Let G be the group of l,i.e. G = #n,(S* — I). We shall first give a pre-
sentation of G. We may assume without loss of generality that the diagrams
L; (k >0) of I, ; are circles in S*and that the diagrams L, , of I, , are separated
from one another in such a way that one of two components into which S2 is
divided by L; ; (k > 0) contains no diagrams L, ,.
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Now starting from the well-known Wirtinger presentation of G, after apply-
ing Tietze transformations, we have finally the following presentation (cf. [21]).
G = (ai,j,k’ 1fisu,05jsm,, 1§k§}-i,1,

Bijp» 15isp, 05jsEm—1, 15k ;:

Riox, 1Sisu, 1=5k=shy,
©62) Sy 1SiSp, 1Sjsm, 1SksSi,,

Ty, 15isp, 0SjSm—1,15k=sy ;- 1,

Ui,j’ léléﬂ’ Oé.’é.mi_l)

Bis
1) ()] :P_D B,
b Bl,j,l v
[ /
59— Ly o~ |—|—5-
- Y
Q1,fua0,y Q.51 a5k Qik+1
Bij-s @
3) .
Boar 2 —P 9P a;.q.r
- Bl‘.j-"l,v,.j-,
AT A /
- B WY Y i I'HF
AW [y d N T I
(V) J
1,00 10y %o+t s Bijx+r Bijuez
P i Y
S P NN
,////,/ /’,f \\\\ \\\\ \\
Ay LR TN
ll // /ﬂ,- ; \\ \\ \\
I / / J v\ \
A LR W
1] Vi
Y IR

’ /
I ! '
R *Ur l . at.j+1.¢,,,,,,| lLf Gijtrai,,, 41
al.rj,l 7
Yy
, b b
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(1) a;,;, are elements of G represented by loops going once around arcs of
l; ; in the positive direction.

(2) B;;, are elements of G represented by loops going once around bands
B;; positively(!®) that connects l;;with [; ;. . See Figure 1.

(3) Relators are of the forms (¢ = + 1):

(i) For k< 4;,,

& -1 -t

Riox = 4i,04Xp,0,%,04+1Xp g,
and

R = To.Bra

10,410 = 4,0,4,09i,0,181,0,15
where X, ,. = a,,, or B,,,. See Figure 1(1)(2).
(i) For k# o0y ;, 4 ;,
Si,j,k = 4a; ]kqur xjk+prq re

and
— -1
Si,]m;; - ai..i,dwai,]m-ﬂ'lBi,.f—1,Vi,j—1’

Si,j,lg,, = ai,],l,,,ai—,},lBi,-jfl .
See Figure 1(1)-(3).
(iii) Ti,] k= Bi,],kXp q,rBi Jk+ IXp q,r>
where X, . = a,,, or B,,,. See Figure 1(4).
(iv) Uij = ui,jai,j,lg,,ui—.jlai:—ji1,cn,j+1+l9

where U, ; are relators corresponding to loops v; ; in Figure 1(5).

Let A(t) be the reduced Alexander matrix corresponding to the presentation
(6.2) of the group G of link I [3, I1].

Now we shall study the contribution made to A(f) by the various type of rela—
tors. From now on, all the derivatives will be considered to be evaluated in
JZ(t), and only the nonzero contributions will be described [3, I]. Remark that
0(a; ;) = tand 0(B,; ;) = 1.

(6.3) 1) For k# Ao,

OR; 0% 1 ORy,0,x - —
0.0 04, o x4 ’
a0,k 31,0,k+1

6=0or +1 according as X,,,=B,,,0ra,,,

OR; 0% 3
—r = g(t—1) or t°—1
aXP,qp" ( )

according as é = 0 or not.

(13) B,,, is oriented in the direction from /; ; to /; ;1.
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Fol' k = )»i'o,
OR; o x =1 OR, 0x =1 OR; o = —1
0a; o x ’ 0a; 0,4 ’ aBt,o,n
2
asi.j'k = 1 aS',‘I'k — _ 1.
da; ;x ’ 0a; 5y 41
For k# 0, 4,
0S5
a—Bp,q,r = g(t—1),
asi.]m.l = 1 aSiJ.h.; = —1
(3) aB‘J-l’v"]_l aB‘J.l
0T, 4 =
aB‘,j'k ’

8=0o0r +1accordingas X, ,.=B,, . 0r a,,,.

T x
aBi,j,lH- 1
ou,
day;a,,
ou; ;

aa‘.]"‘l,ﬂmn*’l

= —1.

G(u,,,) + (1 - t) -a_,Ta_-
sJshilrg

C))

2
= —1+0-05; b

JEtlepe1ti

If x # Bi,7,20,, 0T Qi j+1,00,501+10 then

aUu _ a“i.f
S Paial Challir mad

For convenience sake, we introduce the following notations. For 1 <i,a < u,

a(l 0 a, ﬂ) — I aRi.O.k s
08489 V1585000, 157520
for 0L p<m,.
. OR; 0.1
Ry(i,0:0,p) = | === ,
o 2 " 0B, ., ulsksz..o. 1575,
for0=fsm,~1,
a5, !
a(l’l a’ ) = “ ‘J’k | ’

cﬂ Y "15kSi,y, 15753,
for 1sjsm,, O_S.-péma'
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’
12kSA4i,,1 275 Vesp

for1<jsm, 0=f=m,—1.

Sy(i,j:a,p) = “ Z_SB%

bl

T(.j:0f) = | 0T

0a, 5., "1§k§w.;-l.1§7§lmﬂ

for 0<jsm-—-1,0<5psm,.

TB(i’j: a, ﬂ)

s
18kSvi,;—1,1578va,p

for1£jsm—-1,05B8sm,—1.

lland*
0B, 4,y

b
15jSmi—1,187S82q..p

U(i,0: 2, B) “ Uy

aa“tﬂﬂ‘

for1<Bsm,.

oU, ;

0B, ., "1§J‘§m-1,1§7§va.a

Ug(i,0:0,B) = " ,
for 1gpsm,—1.

Now, from (6.3) we see easily that
(6.9) (1) R,(i,0:a,p)=0 if B+#0, and the matrix

R(1,0:1,0) -+ R,(1,0:1,0)

R(1,0:1,0) "R (p,0:,0)

is the reduced Alexander matrix of l; o U -+ Ul .
(2) S i,j:a,B) =0 if (i,)) # (¢, ), and S,(i,j:i,j) are (A ; x 4; ;) matrices

of the forms:
1 -1
01 0
1 -1
-1 0 0 1

(3) Ta(isj:a’ﬂ) = Ofor any (is]) and (“93)-
(4) TB(i’j:asﬁ) =0 l:f (i’j) # (a$ﬂ) and TB(iaj:i’j) are (vi,j - 1) X vi.j ma-
trices of the forms:
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- tam.l -1

ferr —1 0

téw,e -1 J

where £ =v; ;—1 and 6, ;,=0o0r £1.
Thus A(t) is of the form

R, Rg
S, Sp
0 T,
LU, U

Now consider the matrix S,(i,j:i,j). Add the first column to the second and
then the second to the third and so on, and then add all rows to the last. Thus
S,(i,j:i,j) is transformed into the (4; ; — 1) x (4; ; — 1) identity matrix bordered
by one zero column and row. By applying such a transformation to all S,(i,j:i,j),
A(t) is transformed into the matrix that is equivalent in JZ(¢) to the following

R,(i,0:2,0) 0 Ry(i,0:a, B)
0 0 Si(irj:a B)
40 = 0 0 Ty(irj: @, B)

U,3i,0:0,0) U(i,0:a,B) Ug(i,0:0,8)

where S’ and U’ are defined as follows:
(6.5) Sp(i,j:a,p) are 1 x v, 5 matrices of the forms:

' LA L ey B8
Si(i,ja,B) = (2 OSeik .. ¥ Lk )

k=1 aBa,ﬁ,l k=1 aBa,B.Va,p

U.(i,0:a,B) are m; x 1 matrices of the forms:

e U0
y=1 aaa.ﬂ.r
U(i,0:a,8) = .

L an,mi-l

Y Uim-1

Ly=1 0844,
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We remark that the sub-matrix || U;(i,0:.8) |1 <iesu,1585m. i the square
matrix of degree X4., m;.

Next consider the matrix Tg(i,j:i,j). Add the first column that is multiplied
by t~%71 to the second and then the second multiplied by ¢ ™% to the third
and so on. Thus Tp(i,j: i,j) is transformed into the (v; ; — 1) x (v; ; — 1) identity
matrix with one zero column. By applying such a transformation to all Ty, A(1)
is transformed into the matrix that-is equivalent to the following

R(i,0:2,0) 0 Ri(i,0:a,8)
A'() = ” 0 0 Sg(i,j:aB) 1,

U,(i,0:¢,0)  U.i,0:a,8) Uy(i,0:a,8)
where Si(i,j:a,B) is a 1 x 1 matrix of the form:

Va,8 A,
(66) Slé(imj:a’ﬂ) = (2 t"v E ——-asi'j’k ),
y=1

k=1 a,B,v

Let us denote
Ugice) = | Ui(i,0:,8) |1 spsm,
and
Sp(iza) = [ Spj . B) |1 57smi05psme-1-

Both matrices are m; x m, matrices. | Si(i:@)| is a square matrix of degree

Xioim.
Now to prove Lemma 6.2, we shall prove the following:
6.7) ULi:a)t = — Sg(a:i),

where the bar over a symbol denotes the so-called conjugation [6] of a matrix
M in JZ(t) that replaces t in M by t~*.
Proof of (6.7). Let us denote

Ui(i:0) = [ %pq]l1spsmo 1505m.
and

Slé(a:i) = " yr,s"lgrgm 1SsSmyg*
Then we must prove that x, , = ~ y, ,.

From (6.5) and (6.6) it follows that
(6.8) (1) Fori#a,ori=aand |qg—p|>1,

y=1 08,4, 6a «.4,7

_ % an,p—l _ t)z 3u,,p 1
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and
Vi,p - Ay, Vi,p-1
yq,? = E Z aB -'l- (t_l) Z ‘"v)’(a,q:i,l’—l,}’),
y=1 k=1 i,p—1,y y=1
Visp~1
where n, = — X,_,0,,-1 ¢ and
1 & 08,

a,q,k

a,q:i,p—1,9) = >
(e, q:i,p—1,7) 1.5 B0,

(2) Fori=aand |g—p|=1,

A,p-1 an Ai,p-1 au‘ -1

X,y = 2 —PIl gy, +(1-1 X ,
p.rt y=1 0851, (W) ) y=1 08;p_ 1,
e 9U, du
X,, = L el o 1+(1—:)): Ll
p.p y=1 0a; 5, r=1 aainr
Visp-1 At.n asi x s
Yoo = I AT L st = Pt ietiy (1-1) ¢, (1),
y=1 k=1 ip-1,y
Vip as, v
yp,p+l = Z t”v E aBi'p' = _to"p-l, "p+(t—1)¢p,p+1(t)°
y=1 k=1 i,p,y

First we consider the case where i # a or i =« and |p— g| > 1. Since

-1 aui,p 1 _ -1 Ouy p—y
=(1-t )2 T =1 (t I)ZT’

2,9,y Y @,q,7

to prove (6. 7) it is sufficient to show that
6.9 -1 2 auim' 2 "y .3
( ) —t Ha . = & yegiip-1y).

Y «,q9,7 k4

Let us denote
Oty,p—1 & ta
(6.10) ¥ il ettt + oo + gyt
a¢.q.7
and
(6.11) T "y(a,q:i,p—1,7) = 6,45 4 - + 8,47
s

b4

Then from (6.3)(2)(4) and (6.8)(1), d,¢;,{;.f,d, and , are interpreted as follows.
(6.12)(1) d is the absolute sum (%) of the number of times that the band

(14) Let P and N be the number of times that a band § crosses (under or over) some L,
from left to right and from right to left respectively. Then P + N and P — N will be called the
absolute sum and algebraic sum of the number of times that § crosses (under or over) L, ;.
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Bi p-1 crosses under L, ,. That is to say, each term of the left hand side of (6.9)
appears each time §; ,_ crosses under L, ,.

(2) & =+1or —1 according as ; ,_, crosses under L, , from right to left
or from left to right.

(3) Let us suppose that s,t" corresponds to a crossing of §; ,_, and L, ,.
Then —{; is the algebraic sum(**) of the number of times that the sub-band
B’ of B; ,- 1 bounded by this crossing and the arc a/ ,, at where B; p-1 s attached
to I; (%), crosses under any L, , plus (¢; — 1)/2.

(6.13)(1) f is the absolute sum of the number of times that the sub-band
Bi.p-1,y Of Bi,—1 corresponding to an element B; ,_, , of G (see Figure 1(4))
crosses over L, ,. That is to say, each term of the right hand side of (6.9) appears
each time B, ,_, , crosses over L, ,.

(2) 4. is + 1 or —1 according as f; ,_,, crosses over L, , from right to left
or from left to right.

(3) Suppose that §,t** corresponds to a crossing of §; ,_,, and L, ;. Then
Xx is the algebraic sum of the number of times that the sub-band g of f; ,_,
bounded by this crossing and «; , crosses under any L, ; plus (w, — 1)/2, where
@y is + 1 or — 1 according as L, , crosses between #; ,_, ,and §; ,_; ,+, from
right to left or from left to right, and w, =+ 1 if another band passes through
between them.

Let us denote by P;j,, (or Q::},’) the algebraic sum of the number of times
that a band B, ; crosses over (or under) an L, ; (f > 0). Then from the assumption
on a diagram of [ it is easy to show that

(6.14) P:,"{,= —Qi’f;,for i#toa,ori=aand B£j+1.

Further, I can be deformed isotopically so that (6.14) holds for all (i,j) and
(@B).

We are now in position to prove (6.9). From (6.12) and (6.13) it follows that
if the band B, ,_, successively('®) crosses over (or under) L, ,, then two terms
corresponding to these crossings cancel each other. Suppose that §; ,_; alter-
natingly crosses L, ,, and that B; ,_, first crosses under L, , and then crosses
over L,,. Letet® and 6¢* be the terms corresponding to these crossings
which are terms in (6.10) and (6.11) respectively. Then it is easy to show that
e ==0and y =—{ — 1. Thus these two terms cancel each other in the equation
(6.9). In this way, two terms in (6.9) cancel each other. This proves (6.9).

In the case where i =« and p =g + 1, from (6.8)(2), we can prove (6.7) by
almost the same way. Thus proof of (6.7) is completed.

Now we consider the matrices U, = | U (i:®) ||, <5,0<,020d Sp=||S5G:0)||1 <t 0
From (6.3)(4) and (6.8) it follows that [Ui:a)],-; =0 if i # « and

(15) By, , may cross over or under other bands.
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"L o |

o .. J
L 1 -1
Thus we have det(U)),-, = + 1. Hence U, and Sy are nonsingular. Denoting
detU., =f(1), from (6.7) and the form of 4"(t), we obtain Lemma 6.2.

The following lemma is proved by almost the same method as is used in Lem-
ma 6.2.

[Ua’(i: i)]t =1 =

LemMma 6.3. n(l;®1)=n(,)+n(l,)—1. Moreover, if n(l,)=a, and
n(l,) = b, then

Errp-1ly ® 1) = SN &I OF Y,
where f(1) = + 1.

This lemma was proved in [20] for the special case where /, is a knot and I,
is a trivial knot.

LemMma 6.4. n(ljol,) = n(ly) + n(l,).
Proof is easy from the definition.

7. Signature of links of some kind. Let / be a link consistingof u knots ky,--, k,,.
By joining two knots, k; and k; say, by a band B, we have a link /' consisting of
p—1knots ky, -+, ki—y, k', Kjs1s -5 Kj—q, Kj4q, -+, k,. Then the signatures of /
and !’ are related to their nullity as follows.

Lemma 7.1. (1) [n(I) —n()| = 1.
) If |n() - n()| =1, then o(l) =o(l'), and otherwise |o(l) — o(ln| =1.

Proof. Let L’ be a diagram of I’, i.e. an image of a regular projection p of I'.
The image p(B) of a band B is divided into a number of a- and S-regions. We
can take a projection p such that L' is connected and that there exists a f-region B
in p(B) as is shown in Figure 2. Two a-regions W, and W, adjacent to a f-region B
belong to the same Seifert domain and they are connectible. It is clear that a

W,
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diagram L of I can be represented by that obtained from L' by connecting
W, and W,. Therefore, by the definition, the matrices M and M’ of / and I’ are
given by (cf. (5.3))

by, by
M =(1\/‘;“)§_44£)’ M’ = | by by, Mj, s
21 22 L Mél M;Z

where a;; = b,y + by, + b,; + b,, and M,, = M, . The first and second rows
and columns of M’ correspond to W, and W, respectively. Let us take the L-prin-
cipal minor M* and M'* of M and M’ as follows:

M* = M(l‘h“'qmﬂ) = Mzz(‘]z—l"'qmn—l)
and
M'* = M,(1q2+1"'qm+1+1)'

Consider the symmetrized matrices N and N’ of M* and M'*. N is a principal
minor of N'. To determine the signatures of / and I’, our consideration will be
divided into several cases.

Case 1. detN #0.

Let r =rank N. Hence n(N)=0. Let Ay, A;,:-,A, = N be a o-series of N.
Since N is a principal minor of N’, rank N’ Zrank N = r and rank N' < r + 1.

(i) Supposerank N’ =r,i.e. n(N') = 1. Then det N’ = 0. Thus we may select
a g-series of N’ as that of N. We have, then, n(N’) — n(N) =1 and 6(N’) = 6(N).

(ii) Suppose rank N’ =r + 1, i.e. n(N’) =0. Since det N’ # 0, we select a
o-series {A;} of N’ as follows:

A; = Ai’ i=0,1,"‘,r, and A:'Fl = N’.
Then we see that
o(N’) = o(N) + sign(detA,-detN') = o(N) + 1.

Thus in this case the lemma is true.
Case II. detN =0.
Let s =rank N and let n(N) = q. There is a unimodular integral matrix T

such that
P 0
TNT' = ( ),
00

where P is an s x s matrix and nonsingular. Thus we see

2by, [ Py Py )
10y, 10y | P
fYvlR- | |

Pylo o
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where Py = (b, - b)) and P, = (b4 b,,,) are 1 x s and 1 x ¢ matrices re-
spectively. Since P is nonsingular, it follows that s <rankN’'<s+2. Let
Ag, Ay, -+, A, = P be a g-series of P. We select a g-series {A]} of N’ as follows:

(i) Ifrank N’ =s + 2, there is a nonzero element, b, say, in P,. A; is de-
fined, then, as follows:

A: = Ai’ i=0515""s’

Pl)
p

2by, | Py by
P, | P 0

0 0

and

) 2b
s+1 = Dgyy =( P;Z

and

I
As+z =

bs+l

Then we see
(7.1)  o(N') = o(N) + sign(det A} -detA,, ,) + sign(detA;, ; -detA;. ).

Since sign(detA)) = —sign(detA,, ,), the last two terms in (7.1) cancel each other.
Hence o(N’)=0(N). In this case n(N)=s+qg+1~(s+2)=qg—1 and
n(N)=gq. Thus n(N)— n(N')=1.

(ii) If rank N’ =5+ 1, then P, =0 and D, , is nonsingular. Thus {A}} can
be defined as follows: A/ =A;, i =0,1,-.-,s, and Al,,; = D,,,. It is clear that
|o(N) — 6(N")| =1 and n(N) = n(N"). ‘

(iii) If rank N’ =5, then P, =0 and D,,, is singular. Thus A; is defined
as A;. Then o(N) =6(N’) and n(N’) —n(N) =1.

Thus the lemma is completely proved.

From the definition of the matrix of a link, it follows immediately that

LemMmA 7.2. o(lyol,) = o(l)) + 6(l,).
Lemma 7.3. a(l; @1;) =0o(l,) + 6(1,).

Proof. Apply Lemma 7.1 to the case I=1,01l, and I’ =1, ®l,. Since, from
Lemmas 6.3 and 6.4, n(l,01,) = n(l,) + n(l,) and n(l;®1,) = n(l,) + n(l;) — 1,
we see from Lemma 7.2 that o(l; ® I,) = o(l;0 1) = o(l})) + a(ly).

g.e.d.

CoroLLARY 7.4. 6(l; #1,) = a(l}) + 6(1,).

8. Slice links. Let Hy, ), Hy, 4y, Heapy and Hy, 5 (—0 S a,b < o0) be sub-
spaces of the 4-sphere S* defined as follows:
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Hipy = {x = (x1,%2,%3,%,)| a<x,<b},
Hpp = {x| as<x,<b},
Hygpn= {x| a<x,<b},
Hp = {xl a<x,Zb}.

In particular, H, means a hyperplane Hy, ,;.

Consider a polyhedral locally flat connected orientable surface('®) Fin general
position in S* and cut it by the family of hyperplanes H,,— o0 <t < o0. We
can assume without loss of generality that there are only finite number of ¢-values
that are singular. A singular hyperplane may intersect F in an isolated point,
which may be either a maximum or minimum for the height, called an extreme
point, or it may intersect F in a graph with just one node, which is of order
four. These nodes are called saddle points. Extreme points or saddle points
will be called singular points.

Let a link I be the boundary of F. Then F is said to be in normal position
in S*if F is placed in such a way that

(8.1)(1) F < Hy_, , for a sufficiently large n>0 and Ic FNH,.

(2) All minimal points lic on H_,.

(3) All maximal points lie on H,.

(4) Allsaddle pointsarein H(, , and they are ordered in order of their heights.

1t is obvious that given a surface F we can deform it into a surface that is in
normal position.

Now a knot kis called a slice knot if k is a cross section of a locally flat 2-sphere
F in S* with H, for some ¢, —c0 <t < oo [4]. The object of this section is to
give a necessary condition for a given knot to be a slice knot by means of the
signature of the knot. Up to the present the following conditions are known
(") [4].

(8.2) If k is a slice knot, then its Alexander polynomial is of the form
F(Of(t™") and its Minkowski units are always + 1.

Let k be a slice knot, i.e. there exists a 2-sphere F such that F N H, = k for
some t. Put F in normal position. Let k, = F N H,. From (8.1)(1), k is a com-
ponent of a link ko = FNH,. Exactly, k, is of the form: k; = k0 ¢,0---0 ¢,
where ¢ denotes a trivial knot and m is the number of the minimal points. It
is easy to see that if H, ;) has no saddle point of F, then any two links k, and
k,, a <t,t’' <b, are of the same link type. If H, has a saddle point, then the
saddle point transformation gives rise to the following transformation on two
links k,_, and k.., for a sufficiently small number ¢ > 0:

(16) By a surface is meant a tamely imbedded 2-manifold with or without boundary.
(17) Recently the second condition was obtained by J. J. Andrews. See The Minkowski
unit of slice knots, Abstract 599-20, Notices Amer. Math. Soc. 10 (1963), p. 253.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



414 KUNIO MURASUGI [May
k'ok" - kK'@Kk"

or conversely. Moreover, it is clear that k,_, is of the form: k,_, =400, r
being the number of the maximal points. From these observations, we have
the following

LemMAa 8.1. If a knot k is a slice knot, then a knot of the type k@ ¢@® - ®
is isotopic to the knot of the type t @ -+ @, for some number of trivial knot ¢’s.

The definition and this lemma can be extended to links in the following form [5].

DEFINITION 8.1. (1) Alink [ of multiplicity u is called a slice link in the strong
sense if 1 is a cross section of a union of yu disjoint locally flat 2-spheres in S*.

(2) Alink !is called a slice link (in the ordinary sense) if l is a cross section
ofalocally flat 2-spherein S*.

(3) Alink lis called a slice link in the weak sense if I bounds a locally flat
(not necessarily connected) surface of genus 0 in H, ), — o0 <t< 0.

Lemma 8.2. (1) Ifalinkl=1k, u--- Uk,isaslice link in the strong sense,
then the link 1’ consisting of knots of the type k; ® 1@ --- @ ¢ is isotopic to the
link of multiplicity p of the type (1@ -+ @ )0 ---0(t @ - @), where all k;
and \’s are separated from one another.

(2) If a link lis a slice link, then the link 1” obtained from 1’, of the type
considered in (1), by joining suitably its components by bands is isotopic to a
link of multiplicity p’ (£ p) of the type (@ - D)o -0t @D+ D).

(3) If a link 1 is a slice link in the weak sense, then 1" constructed in (2)
above is isotopic to a knot of the type t @t ® - D.

Obviously, if a link is a slice link in the strong sense, it is a slice link in the
ordinary sense, and further it is also a slice link in the weak sense. The converse
is true in the restricted cases as follows [5].

(8.3) Ifkisaslice knot in the weak sense, then k is a slice knot in the strong
sense. If 1 is a slice link of multiplicity 2 in the ordinary sense, then it is a slice
link in the strong sense.

We are now in position to give some necessary conditions for a given link
to be a slice link in any sense.

THEOREM 8.3. If a knot k is a slice knot, then o(k) =0.
This is a corollary of the following

THEOREM 8.4. If lis a slice link of multiplicity p in the strong sense, then
n(l) = p and o(l) =0. Moreover, 2,(]) is a principal ideal that is generated by
an element of the form f(f(t™ "), f(H=+1.

Proof. For the link I’ of multiplicity 4 constructed in Lemma 8.2(1), we see
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o(I)=0[(ki @, 1 D Dty pm) V- Uk, D, D Dtym)]
= 6[(&@ cee @L)o "‘O(t @... @L)] =0.

Now from Lemma 6.2, we have n(l’) = n(l). Since I’ is isotopic to a link of
multiplicity p, whose components are separated from one another, n(l’) = pu.

Therefore n(l) =pu.
Next to prove o(l) =0, it is sufficient to show

(8.5) a() = o(l’).

Consider I" =(k; U -+ Uk)0; 001, ,, of the multiplicity u + X¥_ m;.
1" is obtained from /' by removing all bands connecting k; with 4,1, and ¢ ; with
4 j+1- Since n(I"y=n(k, v - Uk,) + Xhomi=p+ /-, m; and hence n(l")
has the greatest value, we se¢ from Lemma 7.1(1) that the nullity must increase
by one each time a band is removed. Thus from Lemma 7.1(2), we see that the
signature is unchanged. Therefore (") =0(l’). On the other hand,
a(I"y=o(l) + 0(¢y 1) + -+ + 6(t, m) =0(]). Thus we have o¢())=0. That
E,‘(l)=(f(t)f(t—l )) is clear from Lemma 6.2(2). This completes the proof of
Theorem 8.4.

TueorReM 8.5. If I is a slice link of multiplicity p in the weak sense, then
lo| s n— 1.

Proof. Since I’ constructed in Lemma 8.2(3) is isotopic to a knot of the
type t @ --- P, we see o(l') =0and n(l’) = 1. Consider a link I’ = (k; ¢ @ -+
@) v vk, @@ - Dy. I’ is obtained from I” by joining two compo-
nents consecutively by a band. Since n(l") =n(k, L - Uk,) £ u from Lemma
6.2, we have |o())| < u—1 from Lemma 7.1 and from the fact that ¢(I)=0. q.e.d.

(8.4

THEOREM 8.6. Let I be a link of multiplicity u consisting of v links 1,,--+,1,.
Suppose that every l; bounds a 2-cell C; in Hy, ) for a fixed t, — o0 <t < o0,
and that the C; are disjoint from each other. Then |a(l)| Sp—-v.

Proof. As we see in Lemma 8.2(3), a link of the type |, @ ¢ @® --- @ ¢ is iso-
topic to a link of the type ¢@--- @¢ and these links are separated. Therefore
from Theorems 8.4. and 8.5, since n(})2 v and |o(l))| <, ~ 1, p; denoting
the multiplicity of [;, we have

(8.6) o] = ‘El wm=-1= El m—v=p-~-v. q.ed.

From this theorem we have
CoRrOLLARY 8.7. Iflisa slice link of multiplicity p, then |o(D)| < 3(n—1).

Proof. Since /is a cross section of a 2-sphere F in S*, I bounds v and v’, say,
disjoint 2-cells in Hpg o) and H(_ o o;respectively. Therefore from Theorem 8.6,
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weseethat|o(l)| < p — vand|e(l)| £ p — v’.Since Fisa2-sphere,v + v/ = pu + 1.
Thus 2|o()|S2u—(v+v)=p—1. qed.
This corollary is strengthened as follows.

THEOREM 8.8. If lis a slice link, then a(l) =0.

Proof will be given in the next section.

Finally consider a product of k with itself. From Corollary 7.4, we see
o(k #k) = 20(k). Thus if k is a knot such that a(k) # 0, then a(k#k) # 0.
Therefore Theorem 8.3 implies that k#k is not a slice knot. In particular,
since for the trefoil knot k, o(k) = + 2, a(k # k) = 4 4. Thus we have

THEOREM 8.9. A granny knot is not a slice knot.

REMARK. It is well known that the product of k with its mirror image is
always a slice knot [4].

9. Genus of a link. Let [ be an oriented link of multiplicity p in S3. I always
bounds an orientable connected tame surface F in S* [18],[21]. The minimal
genus of these surfaces is called the genus of a link I, denoted by h(I). Then as
is well known, the following inequality holds [18],[21].

(9.1) The degree of the reduced Alexander polynomial of 1 is not greater

than2h + p—1.
Now since / bounds a surface F in S3, [ always bounds an orientable locally

flat connected surface F in the upper half space Hyg o) in S*. The minimal genus
of these surfaces is an invariant of the link types. It is denoted by h*(l). Clearly

for any link
9.2 0= h*(D) = h(D).

Moreover it is also clear
(9.3) A knot k is a slice knot if and only if h*(k) =0.
Thus in (9.2) the inequalities cannot be replaced by equalities. For example,

for the stevedore’s knot k [4], h*(k) =0 but h(k) =1.
The object of this section is to show a relation similar to (9.1). That is,

THeoREM 9.1. If a link I bounds v disjoint locally flat orientable surfaces
Fyin Hyo o), then

9.4) |e(D| = ZI;VI (genusof F)+u—v.

Consequently the following inequality holds:
9.5) o] S 2*() + p—1.
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Suppose that a link ! of multiplicity 4 bounds a connected surface F. Let p and
q denote the number of extreme points and saddle points in F. Then we shall
show first that

LeMMAa 9.2. 2g=¢q — p+ 2 — u, where g denotes the genus of F.

Proof. Proof will be completed by calculating the Euler characteristic x(F)[2,
p. 463, footnote (1)]. We may assume that F isin normal position. Consider the
l-complex K obtained by intersecting F with every singular hyperplane. Sub-
divide F by introducing the vertices and edges of K. Then any nonsingular
hyperplane H, meets an equal number of faces and edges of the subdivided
surface F. Since F is bounded by u disjoint simple closed curves, y(F) =2 — u — 2g
of F is equal to the Euler characteristic y(K) of K. On the other hand, by the
assumption, each saddle point is a common point of only two simple closed
curves through it. Thus we see y(K) =(p + g + u) — (29 + 1) = p — q. Hence we
obtain the required formula.

Let F be an orientable surface that consists of m connected components F;.
Then by the genus, g(F), of F is meant the sum of the genera of F;. Moreover,
v(F) denotes the number of connected components of F and p(l) the multiplicity
of a link /. Then from Lemma 9.2, we have immediately

(9.6) If I bounds an orientable surface F, then

2g(F) = q(F) — p(F) + 2W(F) — u(]),

where p(F) and q(F) denote the sum of the number of extreme points and saddle
points, respectively, of each connected component of F.

We are now in position to prove Theorem 9.1. Proof will be done by induction
on the genus of a surface F spanning [.

First of all, in the case where [ bounds a surface of genus 0, the theorem is
true from Theorem 8.6. Suppose that the theorem is true for the genus of a
surface < g, and that / bounds a surface F of genus g(F) = g. We may suppose
F is in normal position. Let F, = F N H, 3. F, is a surface spanning a link (or
a linear graph). Then it is clear

(9.7 If t <t', then g(Fy) = g(F,) < g(F-,) = g and v = W(F,) £ W(F,).

Now the genus of F, may be changed by one when the hyperplane H, passes
through a saddle point. So we divide the set of saddle pointsin Finto two classes U
and B as follows.

(9.8) Asaddle point s;in H, belongs to U if g(F,,,) < g(F,-.). Otherwise s;
belongs to B.

Let s, be the saddle point in % with the lowest heightand let s, be in H,.
Clearly for asufficientlysmalle > 0, g(F,,,) = g(F) — 1,where F,, ,= FNHy4 4 5.
Consider two links I, _,=FNH,_,and l,,,=FNH,,,. Then we shall show that

9.9 u(l¢+a) = u(l,-,) + 1 and v(F,,,) = v(F, -e)-
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Proof. Let p, and g, denote the number of extreme points and saddle points
of F,. We can see easily that p,_, = Pys,» 9o e =4Gu+ + 1, and from Lemma 9.2,
the genera of F,_, and F,,, are given by

28(Fy-p) =28(F) =qq- ¢ — Pa-c + 20(Fo- ) — plly- ),
and
2g(Fnz+e) = 2{g(F)_1} =qu-e— 1- Da-¢ + 2v(Fa+a) - Au(la+e)-

Therefore we see that

da—¢— Pa-et ZV(Fa—e) - :u(la—e) =qaeg— Pa-et ZV(Fa+e) - #(l¢+z) + 19

which reduces to

Z{V(Fa-a) - v(Fa+e)} = .u(la—e) - ﬂ(la+e) + 1.

If v(Fooo) < W(Fguo), 16 if W(F,_p) + 1 =v(F,yp), then p(l,_ ) — p(ly+ ) = =3,
which is impossible. Since v(F,_,) < v(F,,.) from (9.7), we have w(F,_,) = v(F,. ,)
and hence u(l,,,) = u(l,_) + 1.

Now applying the assumption of induction to F,,,, we have

la(la+e)l é 2{g(F) - 1} + ”(la+e) - V(F¢+e)
(9.10) =28(F) =2+ p(ls-) + 1 = (F,-,)

= 2g(F) + /‘(la—a) - V(Fa—-z) - L
On the other hand, since |o(l,-,) — 6(J;+,)| £ 1 from Lemma 7.1, we have
(9'11) |a(la—e)| = Ia(la+e)l +1 < 2g(F) + “(la—e) - v(Fa—a)'

Next we shall consider the changes of u(l,) and v(F,) when H, passes through
saddle points in H, ,), which belong to B. Let sz Hy be an arbitrary saddle
point in Fy, 0 < B < a. Since sz belongs to B, g(F,-,) = g(Fy,) = g(F) for a
sufficiently small ¢ > 0. Then we can prove the following (9.12) in the same way
as used in proof of (9.9).

(9.12) (1) u(lp+) = plly—,) — 1 if and only if W(Fy. ) =(Fs_)).

(@) u(lgse) =pls_,) + 1 if and only if v(Fgs,) = v(Fp-,) + 1.

From Lemma 7.1 and (9.12), we see

(9.13) (1) If W(Fps) = W(Fy_ ) then |o(lps ) — ol )| S 1.

(2) If w(Fgyp) =v(Fg_,) + 1, then 0(lgs ) = 0(lg—,)

Suppose that there are u saddle points of F in H, ,) such that the case (9.13)
(1) occurs when H, passes through each of them. Suppose that there are v saddle
points of F such that the case (9.13)(2) occurs. Further, since [/, is of the form
loy;0---0¢,, r being the number of minimal points, we see that there are r saddle
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points such that when H, passes through each of these r points the following
equalities hold:

014)  WFp_) =v(Fps s sl = ullp-) + 1, and o(lys ) = o).
Thus from (9.14) we have finally
[o(D| = |e(o)| S |o(-p)| +u—r
28(F) + pll,- ) = v(Fo-) +u—r
28(F) + {u(l- —v+u} = {W(Fe-)) —v} — 1
28(F) + p(lo) — v(Fo) — r
2g(F) + u(D) — v(F),

because u(l) = u(ly) — r and v(F,) = v(F). This proves (9.4).
Since v disjoint surfaces spanning a link [ can be connected by joining them
by cylinders without changing the genus, h*(l) always satisfies the inequality

[o(D)| < 2b*(D) + u(D) — 1.

IIA

(9.15)

Thus Theorem 9.1 is completely proved.

Proof of Theorem 8.8. Since [ is a slice link, there is a 2-sphere F such that
Fn Hy =1 F is contained in H;_, ,, for a sufficiently large number n > 0.
If H, (—n =1t < n) contains neither saddle points nor extreme points, then
each of the two surfaces F = F Hp, ,y and Fi.=Fn Hi_,  is of genus 0.

Now let s be a saddle point of F and let s € H,. Then we see that

9.16) o(l,-,) = 06(l,,) for a sufficiently small ¢ > 0.

For, if u(l,;,) =p(,_,)+ 1, then from (9.12) (2) we obtain = that
wWFly,) = wWF)+1. If u(l,,) =u(l,-,)— 1, then similarly we obtain that
W(F;+ ) =v(F;-,) — 1. Thus o(l,,,) = a(l,_,) in both cases. -

For an extreme point m e H,, clearly o(l,_,) = o(l,. ). Thus it follows that
o(l) =o(Fn Hy) =0a(l,_,) = 0a(to---01) =0, where y denotes the largest value of
the heights of extreme points. q.e.d.

For a special alternating knot k, since 2h(k) is equal to the degree of the
Alexander polynomial of k [1], [12], from Lemma 5.2 and Theorem 9.1, we have

THEOREM 9.3. For a special alternating knot k,
h(k) = h*(k).

10. Unknotting number of knots. Let k be a knotin S* and let K be a diagram
of k. K hasin general at least one double point. As is well known, any knot k can
be deformed into a trivial knot by employing a finite number of unknotting
operations T defined as follows [23].
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(T') Change an underpass into an overpass at a double point.

The minimum number of unknotting operations required to deform a given
knot into a trivial knot is called the unknotting number of k, denoted by u(k).
The object of this section is to show the following

TueoreM 10.1.  For any knot k, |a(k)| < 2u(k).

Proof. Let k, be the knot obtained by employing once an unknotting operation
upon k. Then it is easy to see that the symmetrized matrices N and N, of k and
k, with respect to their diagrams K and K, are given as follows.

a c¢| Ny ) a—2 ¢c+2|N;3\
(101 N=|cb J and Ny= | c4+2 b—2 j
Ni; | N, Ni, IN,,

The first and second rows and columns correspond to two a-regions W, and W,
that meet at the double point, at which the unknotting operation is applied.
Therefore, we may assume without loss of generality that L-principal minors of
N and N, are given by

b N} b—-2 N}
N*=( l2)andNi"=( 12).

Nt NI, N N3,

Let m be the number of rows of N3,. To prove Theorem 10.1, it is sufficient to
show that

(10.2) |o(k) — a(ky)| £ 2.

Proof will be done by dividing it into two cases.

Case 1. det N3, #0.

Then rank N3, =m. Let Ay, A,,+,A,, = N3, be the o-series of N%,. Then
since det N* 0 and det N} 5 0, the o-series of N* and N? are given by

(10.3) AO’AI’."’AM’N* and Ao,Al,"‘,Am,Nl*.

Therefore it follows |a(k) — a(k,)| < 2.

Case II. detN3, =0.

The matrix N3, is the symmetric L-principal minor of the matrix of a link !
obtained from k by connecting W, and W,. Since the multiplicity of ! is two, rank
N3, = m — 1. Hence there is an integral unimodular matrix T such that

PO
TN;th = ( ) )
00

where P is a nonsingular matrix of rank m—1. Consider two matrices Q and

Q,:
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b P, p
10 10
- (a5)w(o ) e
0T oT
tpe 0 0
and
10 10
(i) ) | e
0T oT
tpy 0 O

Then, denoting the o-series of P by Ag,A,,---,A,-4 =P, we can select the
a-series of Q and Q, as follows:

P 0
AO»AI""’Am = ( )9 A,,,+1|=Q, and
00

PO
( >, ’m+1 = Q.
0
Then it is easy to show that

(10.5) o(@)=0a(P) and o(Q,) =a(P).

Thus we see o(k) = 0(Q) = o(Q,) = a(k,). This completes the proof of
Theorem 10.1.

The following theorem is proved by a method similar to that used in proof of
Theorem 9.1.

(10.4)

I

AO’AI,"'sAm

THEOREM 10.2. For any knot k, h*(k) < u(k).
From Theorems 9.3 and 10.2, we have

CoroLLARY 10.3. For any special alternating knot k, |a(k)| = degree of
A(t) = 2h*(k) = 2h(k) < 2u(k).

From this corollary, we obtain
(10.6) The unknotting number of the torus knot of type (2n + 1,2) is just |n|.
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