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(Comm. by Zyoiti SUETUA, M.Z.A., Feb. 12, 1966)

1. Introduction. In a recent paper 1, Z. Opial proved the
following interesting integral inequality:

Theorem. Let y(x) be of class C’ on Oxh, and satisfy
y(O)-y(h)-O, y(x)>O on (0, h). Then

1 ]yy’]dx<-- oY"dx.
The constant hi4 is best possible.

C. Olech [2 showed that (1) is valid for any function which is
absolutely continuous on [0, h, and satisfies the boundary conditions
y(O)--y(h)=O, and Olech’s proof of (1) was much simpler than that
of Opial. P. R. Beesack [3 gave an even simpler proof of (1) under
the hypotheses of Olech, and he also gave more general inequalities
of the same type. Later, many simpler proofs were given by N.
Levinson [4, C. L. Mallows [5, and R. N. Pederson [6.

By Mallows’ method of the proof of (1) we shall give a simple
proof of some results of Beesack 3, and show how this method can
be used to yield generalization of Opial’s and Beesack’s inequalities.

2. On the inequality 2 yy’ldx<K pyndx.

Let us define z(x)-fly’(t)ldt, a<x<Z. Then

for a< x<X, and we have

2 y(x)y’(x) dx2 zz’dx-z(X).
Now by the definition of z(x) and Schwarz’s inequality

z(X)--(f:, y’(x)[ dx)< Ip-(x)dxI:py’dx.
There is equality only if y-A p-(t)dt, A being a constant. Similarly,

define z(x)- 1 y’(t) dt, X<x<b. Then ly(x)I<--z(x) for X<x<b,
and

2 yy’ldx<2 --zz’dx-z(X) y’ldx p-dx py’dx.
X X X X

There is equality only if y=B p-(t)dt, with B constant. Now, we

take X such that

(2) K= I:p-(x)dx- Ixp-(x)dx,
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then we get
Theorem 1. Let p(x) be a positive and continuous function

and let y(x) be an absolutely continuous function on (a, b)with
y(a)-- y(b)--O. Then

2 YY’I dx<K py’2dx,

where K is defined by (2). Equality holds only if
y(x)-A p-(t)dt (a<x<X), y(x)-B p-(t)dt (Xx<b).

Opial’s inequality (1) is a special case of Theorem i that a=O,
b=h, and p(x)=l.

3. On the inequality 2 q lyy’ldx p-dx pqy"dx.

Lemma 1. Let p(x) be a bounded, positive and non-increasing
function defined on a<x<b. Let y(x) be absolutely continuous on
a<x<b, with y(a)=O. Then

I b--aI( a p yy’ dx.
2 py’2dx.

Poo. Define z(x)-
/p(t)

y’(t) dt (a< x< b). Then

1 p(t) ly’(t) ldt-Vp(x)
for a<x<b, so that

By Sehwar’s inequality,

There is equality only it p=eonstant and y=Ax with A eonstant.
Lemma 2. Let p(x) be a bounded, positive and non-decreasing

function defined on a<xb, and let y(x) be an absolutely conti-
nuous function on a<x<b, with y(b)=0. Then the inequality (3)
holds. Moreover, there is equality only if p-constant, y--B(x--b),
with B constant.

Proof. Define z(x)---- p(t) y’(t) dt (a<x<b). Then

ly(x) l< z(x) for a<x<b, so that

.2Ip yy, _2Ibzz,dx__z(a) (Ib/p(x) y’(x) dx/"
By Schwarz’s inequality (3) follows immediately. There is equality
only if p=constant, y=B(x--b) with B constant.
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From Lemma 1 and Lemma 2, follows immediately
Theorem 2. Let p(x) be a bounded, positive and monotonic

function defined on axb, and le y(x) be an absolutely continuous
function on a<xb, with y(a)=y(b)=O. Then the inequality (3)
holds. If p--constant, then the constant 1/2 can be replaced by
1/4, and hen Opial’s inequality (1) is obtained by letting
and b=h.

We shall now prove a generalization of Beesack’s theorem.
Theorem 3. Let p(x) be positive on axX, with p-dx<

and let q(x) be bounded, positive and non-increasing on axX;
y(x) be any function which is absolutely continuous on a<x<X,
with y(a)- O. Then

(4) 2 q lyy’ldx p-dx pqy’dx.

There is equality only if q- constant, y=A p-(t)dt or y=0.

Proof. Define z(x)-f:/q(t)ly’(t)]dt. Then z’(x)-/q(x)
for a< x<X. Since q(x) is non-increasing on a< x< X, we have

y(x) ] Y’(t) dt / q(t) y’(t) dt z(x)q(x)-.
Hence

f2 q YY’ dx<2 zz’dx-z(X)- / q(t)

By Schwarz’s inequality, we get (4). There is equality only if q=
constant or y= 0.

Similarly, we have

Theorem 3’. Let p(x) be poitive o X<x<b, with dx<
X

y(x) be any function which is absolutely continuous on Xx<b,
with y(b)-O. Then

(5) 2 q yy’ dx p-dx pqy’dx.
X X X

Moreover, there is equality only if q-constant or y-0.
Theorem 1 is a special case of the combination of Theorem 3 and

Theorem 3’, taking q= constant.

4. On the inequality (re+n) YY’ldxn(b--a)
Lemma :. Let y(x) be absolutely continuous on axX, with

y(a)-- 0. Then

(6) (n+l)I]y’y’ dx(X-a)I: ly’(x l+dx, n_l.

Moreover, equality holds only if y=A(x-a), with A constant.
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Proof..Define z(x)- ly’(t)ldt. Then ly(x)l<z(x)fora<x<X,

a.nd we have

(n+l) lyy’l dx<(n+l) zz’dx=z+l(X) y’(t)[ dt

By HSlder’s inequality, (6)follows immediately. There is equal_ity
only if y=A(x--a), with A constant.

Lemma 4. Let y(x) be an absolutely continuous function on
a x< X, with y(b)- O, then

(7) (n+l) YY’ldx(b-X) IY’I+ldx, n>l.
Moreover, equality holds only if y=B(x-b).

Proof. Define z(x)- l Y’(t) dt" Then z’(x)-I y’(x) for

X<x<b, and y(x) <-z(x). Hence

(n+l) yy’ldx<(n+l) (-z)z’dx-(-z(X))+- y’ldt
X X X

By HSlder’s inequality, (7) follows immediately.
Take X=(a/b)/2 in I.emma 3 and Lemma 4, then we have
Theorem 4. Let y(x) be an absolutely continuous function on

a< x< b, with y(a)-- y(b)- O. Then

( 8 2(n/ 1) 1YY’ dx<(b-a) y’ I+ldx, n> 1.

We note that Opial’s inequality (1)is the special case with n--l,
a-0, and b-h.

Corollarly. Let y(x) be as in Theorem 4, and let P(y)-, aky(x)k, with ak > O, k-l, 2, n. Then

f(9) P(Y(X))’ dX< b-a P _b a Y’] dx.

txampleo Let y(x)-x(a-x), with 0<a<l/2, and let P(y)-
y(x). Then the relation (9) becomes (x-1)(2+3x)< log x in the

=1 2x(x /l)
interval (1, ).

Lemma ;. Let y(x) be an absolutely continuous function on
a< x< X, with y(a)- 0, then

(10) (n+l)I: .yy’ dx<n(X--a)I:ly’ I+dx, nl.

Proof. Define z(x)- y’(t) Idt. Then z’(x)-- ly’(x)I for

a< x< X, and by HSlder’s inequality

<(X-a)"- (z(x)).
Hence

(n+ 1) YY’" dx < (n+ 1) (X-a)("-ll" z z’dx

n(X_a)(,-),(z(X)),+).
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By HSlder’s inequality, (10) follows immediately.
Lemma 6. If y(x) is absolutely continuous on X<x<b, wi$h

y(b)-O, then

(11) (n/ l) [YY’ dx<n(b-X) Y’ "+dx,
x

Proof. Define z()-- Y’() d. Then

X< x< b, and then

Hence

z’(x)- y’(x) for

y(x) < y’(t) dt < (b- X)(-)’( z(x)).
(n/l)

x
YY"I dx<(n/l) (b-X)(’-)(-z)z’dx

n(b-X)(-)( z(X))(+).

(-z(X))("+)"- y’ dx <
xdx) z

y’

(b--X)" Y’()

Therefore (11) follows immediately.
If we take X=(a+b)/2 in Lemma 5 and Lemma 6, then we

have the following
Theorem 5. If y(x) is absolutely continuous on axb, with

y(a)-y(b)-O. Then

(12) yy’"ldx<
2(n+1) lY’(X)I’+*dx, n)l.

We observe that Opial’s inequality (1) is a special case obtained
by taking n= 1, a- 0, and b- h.

In order to generalize Theorems 4 and 5 we prove the following
lemmas.

Lemma 7. If y(x) is absolutely continuous on axX, with
y(a)-O. Then

(la) (m+) ’ld(X-a) I’()*d, m,

Proof. Define z(x)-:y’(t)l"dt. Then z’(x)- {y’(x)I" for

a x4 X, and then

iy(x) l y’()ld$ d Y’()Id (X-a)(-)(z(x)),
Hence

hus (18) follows immediately.
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Lemma 8.
y(b)--O. Then

(14) (m/ n) YY’" dx<n(b-X)
x

Proof. Define z()- Y’() d.

x<b, and

Hence

If y(x) is absolutely continuous on X<x<b, with

Y’ +dx, m, n> 1.

Then z’(x)-I y’(x) for

Y(X) < y’(t) dt<(b-X)"-)"(-z(x))".

(re/n) lyy’" dx<(m/n) x(b-X)("-l)"(-z)l"z’dx
n(b-X)("-)"( z(X))+1.

Thus (14) follows immediately.
If we take X-(a+b)/2 in Lemma 7 and Lemma 8, we have
Theorem 6. If y(x) is absolutely continuous on a< x< b, with

y(a)-- y(b)-- O, then

m+ 2 I Y’ +dx, m, n>l.

Opial’s inequality (1) is a special case that re=n=1, a--O, and
b=h.
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