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The purpose of this paper is to show that the various differentiability con-
ditions for the norm of a normed linear space can be characterised by continuity
conditions for a certain mapping from the space into its dual. Differentiability
properties of the norm are often more easily handled using this characterisation
and to demonstrate this we give somewhat more direct proofs of the reflexivity
of a Banach space whose dual norm is strongly differentiable, and the duality
of uniform rotundity and uniform strong differentiability of the norm for a
Banach space.

The author wishes to express his thanks to Professor G. Szekeres under whose
supervision part of this work was done towards a doctoral thesis submitted to the
University of Newcastle, N.S.W.

1. The characterisation of differentiability of the norm

NOTATION. We denote by

X a normed linear space over the real or complex numbers;
X* the dual space of X, and X** the dual of X*;
X the natural embedding of X in X**;
S the unit sphere of X; i.e. S = {xeX: \\x\\ = 1};
B the unit ball of X; i.e. B = {jceZ: ||x|| ^ 1};
S*, B*, S**, B**, S, & the unit sphere and unit ball of X*, X* *, X respectively;
D(x) the set of fe S* which attain their norm at x e S, i.e. given x e S,

D(x) = {feS* :f(x) = | | / | | } ; (by the Hahn-Banach theorem, D(x) is
non-empty for each x e S).

DEFINITIONS. We say that

X is smooth at x e S if D(x) contains only one point;
a mapping x ->fx of X into X* is a support mapping if, for each xeS
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and real X ^ 0,fx e D(x) and fXx = Xfx (in general there are many such mappings
possible on X but when X is smooth there is only one);

the norm of X is

(i) weakly {Gateaux) differentiable at x e S if for real I,

exists for all y e S,

(ii) strongly (Frechet) differentiable at xe S if convergence to the limit in (i) is
uniform for all yeS,

(iii) uniformly strongly (uniformly Frechet) differentiable if convergence to the limit
in (i) is uniform for all (x, y)e Sx.S;

X is uniformly smooth if, given £ > 0 there exists a 6 > 0 such that for
every xe S

\\x+y\\ + \\x-y\\ < 2 + s\\y\\ when \\y\\ < 5;

X is uniformly rotund if, given e > 0 there exists a S > 0 such that, for
x,yeS, \\x-y\\ < e when \\x+y\\ > 2-8.

Our aim is to establish the following result:

THEOREM 1. The norm ofXis

(i) weakly differentiable at xe S if and only if, when X has the norm topology and
X* the weak * topology, there exists a support mapping x -*fx which is con-
tinuous on S at x,

(ii) strongly differentiable at xe S if and only if, when X and X* have the norm to-
pologies, there exists a support mapping x -> fx which is continuous on S at x,

(iii) uniformly strongly differentiable if and only if, when X and X* have the norm
topologies, there exists a support mapping x -*fx which is uniformly continuous
on S.

V. L. Smulian has given similar equivalent conditions [6, p. 91], [7, p. 645]
for differentiability of the norm. However several recent developments have sug-
gested that some of Smulian's work can be extended and proved by simpler methods.
D. F. Cudia [3, pp. 297 — 307] has lately shown that differentiability properties of
the norm are closely related to continuity properties of a certain set-valued mapping
which he calls a spherical image map. When the space is smooth, the support map-
ping corresponds to the spherical image map. Part (iii) of the theorem has been
given by Cudia [3, p. 304] but parts (i) and (ii) are a local form of his global re-
sults [3, p. 302 and p. 304], and as such are an improvement of his work. But the
techniques associated with the support mapping certainly have the advantage in
providing a simple and direct proof.
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The proof of Theorem 1 will be apparent from the following sequence of
lemmas.

We begin by showing that the differentiability properties of the norm are im-
plied by corresponding continuity properties for the support mapping.

LEMMA 1. The norm of X is

(i) weakly differentiable at xe S if there exists a support mapping x -> fx on X
such that, for real X,

lim R e (/'+*(?> -IM) = O

^o \\\x + Xy\\ \\x\\l
for all ye S.

(ii) strongly differentiable at xe S if convergence to the limit in (i) is uniform for
all yeS;

(iii) uniformly strongly differentiable if convergence to the limit in (i) is uniform for
all (x, y) e S x S.

PROOF. Given any support mapping x -*fx on X, then for x,yeS and real
; > o,

\\x + X y \ \ - \ \ x \ \ ^ \ f J 2

X\\x\\

X\\x\\

But also

||x|l < \\x+Xy\\2-\fx+Xy(x)\

~ X\\x + Xy\\

^ Re {fx+,y

(2)

X\\x + Xy\\

Re tWy)}
||x+Aj>||

For /. < 0 these inequalities are reversed. It follows that if a support mapping sa-
tisfies continuity conditions (i), (ii) or (iii) then the norm satisfies differentiability
conditions (i), (ii) or (iii) respectively, and the Gateaux differential of the norm at
x in the direction y is Re {/x(^)}/||x||.

It is evident that this lemma establishes the sufficiency conditions for (i), (ii)
and (iii) of Theorem 1.

We will need the following well known result.
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LEMMA 2. If the norm ofXis weakly differentiable at xe S then X smooth at x.

PROOF. From inequality (1) we deduce that, for any y e S and a l l / e D{x),
I ^ M H W I s Re {f{y)] for x < 0>

A,

and

Re {f(y)} ^ l l f + M z M for X > 0.
A

But lim^o {Il* + A>i|-IMI}M exists, and so Re{f(y)} is constant for all feD(x).
As every fe X* can be defined in terms of Re {/}, it follows that D(x) is singleton,
i.e. X is smooth at x.

The following is an adaptation of an argument of F. F. Bonsall, B. E. Cain
and H. Schneider [2, p. 88].

LEMMA 3. If X is smooth at xe S then every support mapping x -»fx is con-
tinuous on S at x when X has the norm topology and X* has the weak * topology.

PROOF. Suppose that there exists a support mapping x -*fx which is not con-
tinuous on S at x. Then there exists a weak * neighbourhood U of/x such that, for
every positive integer n, there exists a yn e S satisfying/>,n£ U when \\yn — x\\ < \jn.
By the Banach-Alaoglu theorem B* is weak * compact. Since/„_ e S* for every n,
there exists for {fyn} a weak * cluster point/e B*. But

x) -fyn{yn)\

Since/is a weak * cluster point of {fyj and \\x—yn\{ < l/n, then \f(x)—\\ can be
made arbitrarily small for proper choice of n. Therefore f(x) = 1 and fe D{x).
Since X is smooth at x,f = fx. Therefore/, is a weak * cluster point for {/,,„}.
But t/is a weak * neighbourhood offx sofyn e [/for some n. But this is a contra-
diction. Therefore every support mapping x -*-fx is continuous on S at x.

The necessity condition for (i) of Theorem 1. follows immediately from
Lemmas 2 and 3.

We now explore an implication of strong differentiability of the norm. The
result was given by Smulian [7, p. 645] but we follow the simpler proof indicated
by R. R. Phelps [5, p. 981].

LEMMA 4. If the norm ofX is strongly differentiable at xe S, then all sequences
{/„} e S* such that lim,,.,„/„(*)= ||x||, are norm convergent to fx where
D(x) = {fx}.

PROOF. It is obvious that the norm is strongly differentiable at x e S if and
only if

https://doi.org/10.1017/S1446788700008387 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008387


110 J.R.Giles [5]

= forall

3 - 0

Suppose that there exists such a sequence {/„} which is not norm convergent t o / x .
Then for some subsequence {fnk} we can choose r > 0 and a sequence {yk} e S
such that Re {(/nfc — fx){yk)} > 2r. For every sequence {xk} e 5,

Choose jct = (1/r) Re { | |x | | - / n t (x)}^, then

Re {O*-/x)(* + **)} ̂  Re {( / , - / J (
Therefore

\\x + xk\\-\\x\\-Re{fx(xk)} ^^

for all such xfc although xt ->• 0. But this contradicts the fact that the norm is
strongly differentiable at x. Therefore {/„} is norm convergent to fx.

If the norm of X is strongly differentiable at x e S then it is weakly differen-
tiable there and it follows from Theorem 1 (i) that there exists a support mapping
x->fx on X which has the property that the sequence {fXn} is weak * convergent
tofx for all sequences {xn} e S which are norm convergent to x. Therefore

Mm fXn(x) = \\x\\

for all such sequences {xn} and by Lemma 4. it follows that {fxj is norm conver-
gent to fx. That is, when X and X* have the norm topologies then the support
mapping x -*fx is continuous on S at x. So then the necessity condition for (ii) of
Theorem 1. is implied by Lemma 4.

With some economy of argument the following lemma gives a considerable
amount of information. The proof that property (iii) implies property (iv) is
given by H. Nakano [4, p. 202] and is included for completeness sake and because
it is so brief.

LEMMA 5. For X, the following conditions are equivalent:

(i) there exists a support mapping x->fx which is uniformly continuous on S when
X and X* have the norm topologies,

(ii) the norm of X is uniformly strongly differentiable,

(iii) X is uniformly smooth,

(iv) X* is uniformly rotund.

PROOF.

(i) => (ii). We have mentioned that this result is a consequence of Lemma 1 (iii).
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(ii) => (iii). Since the norm of X is uniformly strongly differentiable, it follows that,
given e > 0 there exists a S > 0 such that

{/OQ}l £ a n d

\\y\\ 2

|||x-y||-||x||+Re{/,(y)}l < £

\\y\\ 2

for every xe S and \\y\\ < 5. Therefore

IMI
o r

for every xe S and \\y\\ < 5; i.e., Xis uniformly smooth.

(iii) => (iv). Since Xis uniformly smooth, given e > 0 there exists a S > 0 such that

for xeS and \\y\\ < S. Choose f,geS* such that | | / - # | | ^ e. From the
definition of the norm of X*, there exists a yeX such that | | j | | = 5/2 and

(f-g)(y) > hd.
Then we have

= sup{(f+g)(x):xeS}

= sup {f(x + y) + g(x-y)-(f -g)(y) :xeS}

->>||-ie<5 :xeS}

Therefore X* is uniformly rotund.

(iv) => (i). For every support mapping x-*fx on X, the following primitive par-
allelogram law holds:

(3) 2(||X|

This implies that for x, y e S

4 ^ | |/x+

But when X* is uniformly rotund then, given £ > 0 there exists a 5 > 0 such that,
for / , , / , eS*,

Wfx-f, II < e when ||/x+/,|| > 2-5.

https://doi.org/10.1017/S1446788700008387 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008387


112 J. R. Giles [7]

Therefore, when ||x—y\\ < <5,

< \\fx+f,\\+s->
i.e. ||/X+/J,|| > 2 — 3, and we conclude that \\fx— fy\\ < e. The support mapping
x -*fx is uniformly continuous on S.

Lemma 5 includes the specific statement of (iii) of Theorem 1.

2. Applications of the characterisation

The characterisation of differentiability of the norm given in Theorem 1 is
particularly valuable when we use it in conjunction with the subreflexivity property
of Banach spaces. Using this technique we establish some important known re-
sults in an elementary way.

NOTATION. We denote by D(S) the set of fe S* which attain their norm
on S, i.e.

D(S) = U{D(x) :xeS}.

DEFINITION. We say that X is subreflexive if the set o f / e X* which attain their
norm on S is norm dense in X*; (clearly, X is subreflexive if and only if D(S) is
norm dense in S*).

E. Bishop and R. R. Phelps [1 ] have proved the significant result that every
Banach space is subreflexive.

The following improves a result given by Smulian [8, p. 550].

THEOREM 2. For a Banach space X, if the norm of X* is strongly dijferentiable
on S* then D(S) = S* and X is reflexive.

PROOF. Since X is a Banach space it is subreflexive. Therefore, for every/e S*
there exists a sequence {/„} e D(S) which is norm convergent t o / . Since the norm
of X* is strongly differentiable there exists a unique support mapping f-+Ff of
X* into X** and {jcn} is norm convergent to Ff where xn = Ffn e § for n = 1, 2 , . . . .
But § is complete, therefore Ff e § and it follows t h a t / e D(S) and D(S) = S*.
Since X* is smooth, the set of F e X** which attain their norm on S* is X. Also
since X* is a Banach space it is subreflexive. Therefore, X is norm dense in X**.
But X is a norm closed linear subspace of X**. Therefore X = X**, i.e. X is
reflexive.

The duality of uniform strong differentiability of the norm and uniform ro-
tundity for a Banach space has been proved by Smulian [7, p. 647]. By the 'duality'
of these concepts we mean that the following theorem holds.

THEOREM 3. For a Banach space X,

(i) the norm of X is uniformly strongly differentiable if and only if X* is uni-
formly rotund, and
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(ii) X is uniformly rotund if and only if the norm of X* is uniformly strongly dif-
ferentiable.

In Lemma 5 the equivalence of conditions (ii) and (iv) establishes (i) of
Theorem 3. It follows from (i) of Theorem 3 that if the norm of X* is uniformly
strongly differentiable then X** is uniformly rotund and this implies that X is uni-
formly rotund. The remainder of the proof will be given in Lemma 7, but to de-
velop this we will need the following preliminary result.

LEMMA 6. Let a Banach space X have a support mapping f~*Ff of X* into
X** such that on D(S), Ff — x where x eD(f) n §. If this support mapping / - > Ff

is uniformly continuous on D(S) when X* and X** have the norm topologies, then
D(S) = S*.

PROOF. Since X is a Banach space it is subreflexive. Therefore, for every/e S*
there exists a sequence {/„} e D(S) which is norm convergent to / . Since the
support mapping f-+Ff is uniformly continuous on D(S), {$„} is a Cauchy
sequence in § where xn = Ffn e § for n = 1, 2, • • •. But § is complete, therefore
there exists an x e § such that {%„} is norm convergent to x. Now

| / (*)-l | ^ \f(x)-f(xn)\ + \f(xn)-fn(xn)\

and SO/(JC) = 1, i.e. fe D(S). Hence D(S) = S*.

Following the same argument as that used in the proof of Lemma 5, (iv) => (i)
above, we prove the associated result.

LEMMA 1. If a Banach space X is uniformly rotund then the norm of X* is uni-
formly strongly differentiable.

PROOF. Consider a support mapping /->• Ff of X* into X** such that on
Z)(5f), Ff = % where x e D(f) n §. Using the primitive parallelogram law (3)
for X*, we have for ft,f2e D(S)

4 ^ HA+/2II ll*l+*2ll + ll./i-/2ll 11*1-*2ll-

From the uniform rotundity of X we derive that the support mapping / -»• Ff is
uniformly continuous on D{S). It follows from Lemma 6 and Theorem 1 (iii) that
the norm of X* is uniformly strongly differentiable.

It should be noted that uniform strong differentiability of the norm and uni-
form rotundity are only truly dual in Banach spaces. Although it is evident that
(i) of Theorem 3 holds for every normed linear space, the necessity condition for
(ii) does not hold unless the space is complete. This can be seen from the fact that
uniform rotundity of X implies reflexivity only if X is complete [9, p. 110], but
from Lemma 5 the uniform strong differentiability of the norm of X* implies that
X** is uniformly rotund and consequently that Z i s reflexive.
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