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1. Introduction

S.S. Schrikhande [2], [3], W.S. Conner [4] and AJ. Hoffman [5] determined

all of the graphs with intersection matrices B(2t—2, t—2y 2) for t^2 and B

(2ί-4, t-2, 4) for t^4.

The lattice graphs of dimension 2 with intersection matrices B(2t—2> t—2,2)

for £̂ >3 and the triangle graphs with intersection matrices B(2t—4, t—2, 4) for

t^>6 have the remarkable property that for any three vertices which are not

joined to each other, no vertex is joined to all of these three vertices.

The purpose of this paper is to prove the following.

Theorem 1. Let Γ be the regular graph of diameter 2 satisfying the follow-

ing conditions:

1. For any two vertices which are joined to each other, the number of the vertices

joined to them is constant.

2. There exist three vertices which are not joined each other.

3. For any three vertices which are not joined to each other, no vertex is joined

to all of these three vertices.

Then, Γ is one of the following graphs:

a) L2-graphs, that is, the lattice graphs of dimension 2 with intersection matrices

B(2t-29t-2y2)fort^3.

b) T2-graphs, that is, the triangle graphs with intersection matrices B(2t—4,

t—2, 4)fort^6.

c) the graph defined by 27 lines on cubic surface with intersection matrix B

(16, 10, 8).

d) Li-graphs, that is, the graphs such that for any two vertices which are not

joined to each other, the number of the vertices joined to them is one or two. The

number of the vertices of the graph is 5 h2 for h^2, and the graph exists uniquely

for any integer h7>2.
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Z/2-graph when In = 2

2. General definitions and notation

1,2-graph when h=4

An undirected linear graph Γ is a pair (V, B) where V is a finite set and

B is a subset of the unordered pair of the elements of V. The elements of V

are called vertices. We say that a vertex a is joined to a vertex β if the unordered

pair of a and β is an element of B.

We define for any vertex a of V

Δ(α) = }, Γ(α) = F\Δ(α)\{α} .

Γ=(K, β) is regular if the number of the vertices of A(a) is constant for any

vertex α, and is of diameter 2 if for any two vertices a and γ such that γ is

not joined to α, the intersection of Δ(α) and Δ(γ) is not empty and B is a

proper subset of the set of all the unordered pairs of V. The regular graph Γ

is strongly regular when the number of vertices joined to each of two distinct

vertices a and β depends only on whether or not a is joined to β.

For the strongly regular graph Γ=(V, B) of diameter 2, we put

|Δ(α)ΠΔ(/8)| =
for /3eΔ(α)

for

We call the matrix with three parameters k, a and c

(0 1 0

B(k9 a, c) =

0 k—a— 1 k—c

the intersection matrix of the strongly regular graph.

The following condition is necessary for the existance of the strongly regular

graph of diameter 2 with intersection matrix B(ky a> c)

(i) k=2c, a=c—ίy or

(ii) (a—c)2+4(&—c)=s2 for some integer s, and

m=— {(k-ί+c-a) (s+c-a)-2c}
2cs

is a positive integer.
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The matrix B(k, a, c), c^l, is feasible if three parameters satisfy the condi-
tion (i) or (ii), and is realizable if there is the strongly regular graph of diameter
2 with intersection matrix B(k, a, c).

3. Proof of the Theorem 1

Let Γ—(V, B) be a regular graph of diameter 2 satisfying the conditions of
Theorem 1. We put

\A(a)\ =k, \A(a)ΓiA(β)\ = a for β(ΞA(a) and

@ = { |Δ(α)nΔ(γ)|J α,

Let δ be the vertex of A(a) Π Δ(γ), where γGΓ(α). Then, we have by the
condition 3 of the Theorem 1,

Δ(δ) = {Δ(δ) Π Δ(τ)} U {Δ(δ) ΓΊ Δ(α)\Δ(τ)} U {α, 7} .

Therefore, if we set | Δ(δ) Π Λ(α)\Δ(γ) | =x9 then we have

(1) k = a+x+2

In addition, we have

(2) |Δ(α)ΠΔ(7) |^α-*+l, |Δ(α)Π Δ(γ)ΠΔ(δ)| = a-x

I. At first, we show that &={a—x+2} or {a—x+1, a—x+2}.
If <g>={a—x+l}={c}, then k=2a—c+3. From the condition that the

intersection matrix B(2a—c-\-3, a, c) is feasible, we have

i) 2a—c+3 = 2c, a+l = c or

ii) {a—c)2+4(2a—c+3—c) = {a—c+4)2—4 = s2, for some integer s.

These cases collapse.

We assume that for the vertex γx of Γ(α), | Δ(α) Π A(y1)\ =c>a—x+ί and
Γ(α) Π Γ(7i) is not empty.

There is at most ^/2-vertices of Δ(α) Π ̂ (Ύi) which are joined to each other.
Hence, for any vertex δ of A(a)\A(fγ1)9

If δ is joined to all vertices of Δ(α)\Δ(γ1)\{δ}, then we have

a-x = 2(a+1)-A = 21 Δ(α) Π Δ(δ) | + 2 - k

^ \A(a)\A(Ύl)\ ^ |Δ(α)ΠΔ(72)| ^a-x+

This is impossible.
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Therefore, for any vertex δ of Δ(α)\Δ(γ1), there is the vertex δ' of Δ(α)\
Δ(7i)\{δ} such that δ' is nlot jointed to δ. From the condition 3 of the Theorem
1, we have

Δ(α) Π Δ(7θ Π Δ(δ) Π Δ(δ') = φ

Hence, we obtain

I Δ(α) Π Δ(7θ ΓΊ Δ(δ) I = -11 Δ(α) Π Afo) I .

Counting in two ways quadrilaterals (α, OΊ, δ, β) yβeΔ(α)Π Δ(ry1)Π Δ(δ), we
have

I V\ -(I F | -Λ-l)(A-β)e/2 = | F | -(| F | - f t - 1 ) . * . * ,

that is,

2Λ?—k = c .

From (1), we conclude

c = a—x+2.

II. We suppose that @={α—x+2}={c}.
If £=2, the graphs with intersection matrices B(2a-\-2y a, 2) satisfying the

conditions of the Theorem 1 are only the lattice graphs of dimension 2 with
intersection matrices B(2t—2y t—2, 2) for t^3 from [2].

If c=4 y the graphs with intersection matrices B(2a, a, 4) satisfying the con-
ditions of the Theorem 1 are only the triangle graphs with intersection matrices
£(2f-4, ί—2, 4) for t^6 from [4], [3], [5].

Now, we assume that c^6.
Let β19 β2 be vertices of Δ(α) such that β2 is not joined to βx. Then, we

have

I Δ(α) Π A(β1) Π A(β2) I = 2a+2-k = 2^+2-(2α-t:+4) = c-2 .

Therefore, |Δ(A)nΔ(/32)ΠΓ(α)|=l.
Let {7}=Δ(/91)nΔ(A)ΠΓ(α). Then, Δ(α)nΔ(γ)={Δ(«)nΔ(A)nΔ(A)}U
{ŷ i> A} a n d for each vertex ξ of Δ(α) Π Δ(yβi) Π Δ(/52), there is only one vertex
ξ' of Δ(α) Π Δ( A) (Ί Δ(/32) such that ξ' is not joined to ξ.

Let δ be the vertex of A(a) Π Γ(/31)\{/β2}, then we have

iΔ^nΔ^OΠΔ^nΔίδ)! = y - 1 , |Δ(α)nΓ(A)nΔ(δ)| = y - l .

Furthermore, all vertices of Δ(α) Π Δ(yS1) Π Δ(β2) Π Δ(δ) are joined to each other.
Hence, let η be a vertex of Δ(α) Π Δ^yβJ Π A(β2) Π Δ(δ), then we have Δ(α)Π
Δ(δ)nΓ(/8a)ΠΔ(i7)Φφ and Δ(α)nΔ(δ)nΓ(/52)nΓ(τ?)φφ. Therefore,
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and A

Since IΔ(α)ΠΓ(A)ΠT(v)\ + | Δ ( α ) ( Ί Γ ( / 3 2 ) Π T ( v ) | = α - c + 3 - l = α - c + 2 ,
we may assume | A(a) Π Γ(/32) Π Γ(^) | ^(α—c+2)/2.

Let p be a vertex of Δ(α) (Ί IXA) Π Γ(Ϊ?), then p is joined to all vertices of

Δ(α) Π Γ(/32) Π Γ(η). Hence, | Δ(α) ΓΊ Γ(A) Π Γ(i?) I ̂ | — 1

Thus we have

(a-c+2)l2^ I Δ(α) Π Γ(A) Π Γ(7) 1^-^—1,

that is

(3) α^2(έ:-2)

Hence we have

k = 2a-c+4^3c-4<3c.

This means that there are not four vertices which are not joined to each
other. Let y19 y2 be vertices of Γ(α), Ύ2^^(Ύi)- Then, we have

T(a) = {Γ(α) Π A(Ύl)} U {T(a)

Hence,

(2a-c+4)(a-c+3)/c = 2(2α-

Thus we have

2α-3<:+4 = 0 or α—2^+3 = 0

From (3), when we set c=2d, we have

a = ̂ -c-2 = Zd-2y k = 4d.

We note that the complement of the intersection matrix B(4d, 3d—29 2d)
is 5(2^+2, 1, d+1). We show that the intersection matrices B(2d+2, 1, d+l)
for d>4 are not realized.

Let 7 be a vertex of Γ(α), then vertices of Δ(α) Π A(γ) are not joined to
each other and | Δ(α) Π Δ(τ) | = d-\-1. Therefore, vertices of Δ(γ) Π Γ(α) are not
joined to each other and | Δ(γ) (Ί T(a) \==d+ί. Let /β be a vertex of Δ(γ) Π T(a)>
then /? is joined to only one vertex of Δ(τ) Π Δ(α). Thus, let βu β2 be two
vertices of Δ(γ) Π Γ(α), then we have

d^ I Δ(A) Π Δ(A) n Δ(α) I ^d-

Therefore



394 M. NUMATA

|Δ(A)nΔ(A)ΠΓ(α)\{γ} | = 0 or 1.

Let βi be vertices of Δ(γ) Π Γ(α), ί=l,2,3,4. Then, U (Δ(/3t ) ΓΊ Γ(α)\{γ})

cΓ(α) Π Γ(γ). Thus, we have

{d+\-\)+(d+\-\)-\+{d+\-\)-2+{d+\-\)-?>^/id-2,

that is,

This is impossible for
When d=4y the intersection matrix B(16> 10, 8) is realized and satisfies the

conditions of the Theorem 1 from [1].
When d=3, the intersection matrix £(12, 7, 6) is not feasible.
When d=2 or 1, the graphs with intersection matrix Z?(8, 4, 4) or 6(4, 1, 2)

do not satisfy the condition 2 of the Theorem 1.

III. We suppose that &={a—x+l, a—x+2}.

Step 1. We show that a-x+1 ^ — .

Assume that a—x-\-l>—. Then, it is trivial that there are not four

vertices which are not joined to each other. Let α, 7X and y2 be not joined to
each other, and \ A(a)Γ\ A(y1)\ =a—x+2. We note that all vertices of A(a)\
Δ(fγ1)\Δ(y2) are joined to each other. If | Δ(α)Π Δ(γ2)| =a—x+l, for any
vertex δ of Δ(α)\Δ(γ1)\Δ(γ2) and for any vertex v of A(a) Π Δ(γ2), we have
I A(a) Π Δ(72) Π Γ(δ) | = | {ΔtαOVMγJvAtΎ,,)} n T(v) I >0.
Therefore,

|Δ(α)ΠΔ(γ 2) | = \ A(a)\A(y2)\A(Ύl) | .

Hence we have

k
a—x+1 = I A(a) Π Δ(7i) | < — .

This is a contradiction.
Thus, we obtain that \A(a)ΠA(y2)\=a—x+2 and \A(y1)Γ\A(y2)\=a

—x-\-2. From the fact that there are not four vertices which are not joined
to each other, we have

\V\-k-ί= \A(y1)\ + \A(y2)\-\A(y1)ΠA(y2)\-\A(yί)nA(a)\

-\A(y1){JA(a)\+2.

Therefore, | Δ(^) Π Δ(α) I + I Δ(α) Π Δ(^2) | + | A(v2) Π Δ ^ ) I are constant
for any two vertices ηly η2 of Γ(a) such that ηx is not joined to η2.
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Hence, for the vertex γ 0 of T(a) such that | A(ά) Π Δ(γ0) | =a—x+l, 70 is
joined to all vertices of Γ(α)\{γo} Therefore, we have

Γ(α) = {y» 72} U {A(Ύl) Π Δ(γ2)} .

From I Δ(γα) Π Δ(γ2) | =a—x+2> for any vertex 7 of Δ(7j) Π Δ(γ2), there is the
vertex <γ' of Δ ^ ) (Ί Δ(γ2)\{7} such that 7' is not joined to γ. This contradicts
the existance of 70.

Step 2. Now, we assume that for some vertex 7 of Γ(α), I Δ(α) Π Δ(γ) |

From (1), (2), we have

x+ - y + y
Let βly β2 be vertices of Δ(α)\Δ(7), β2^T(β1), Then, from the condition

3 of the Theorem 1, we have

Δ(α) Π Δ(7) Π Δ( A) Π A(β2) = φ and

{Δ(α) Π Δ(7) Π ΔίA)} U {Δ(α) Π Δ(<y) Π Δ(A)} = Δ(α) Π Δ(γ).

Each vertex of Δ(α) Π Γ(/81)\Δ(7) is joined to all vertices of Δ(α) Π Γ(A) Π
Δ(γ), and not joined to any vertex of Δ(α) Π Γ(/32) Π Δ(γ). Let δ be the vertex
of Δ(α) Π A(β,) Π A(β2). If there is the vertex ξ of Δ(α) Π Γ(A)\Δ(7) such that
ξ is not joined to δ, then δ is not joined to any vertex of Δ(α) Π T(βi) Π Δ(γ) and
joined to all vertices of A(a) Π Γ(/92) (Ί Δ(γ).

If δ is joined to all vertices of {Δ(α) Π Γ(A)\Δ(γ)} U {A(a) Π Γ(/32)\Δ(γ)},
there is the vertex 77 of Δ(α) Π A(βx) Γl Δ(y52)\{δ} such that η is not joined to δ.
From \A(a)Γ\Γ(β1)\A(j)\ + \A(a)ΓίΓ(β2)\A(fγ)\=2x+2—c>c there is the
vertex p of {A(a) Π Γ(A)\Δ(7)} U {Δ(α) Π Γ(/92)\Δ(7)} such that p is not joined
to η.

If p is the vertex of A(a) Π Γ(/?1)\Δ(γ), then 77 is not joined to any vertex
of Δ(α) Π Γ(/?!) Π Δ(γ) and joined to all vertices of A(a) Π Γ(/32) Π Δ(γ). If p is
the vertex of A(a) Π Γ(/52)\Δ(γ), then 77 is not joined to any vertex of Δ(α) Π
T(β2) Π Δ(γ) and joined to all vertices of Δ(α) Π T(β1) Π Δ(τ).

Hence, δ is not joined to any vertex of Δ(α) Π T(β2) Π Δ(γ) and joined to all
vertices of Δ(α) Π Γ(/3j) Π Δ(γ), or δ is joined to all vertices of Δ(α) Π T(β2) Π
A(y) and not joined to any vertex of A(a) ΓΊ Γ(^!) (Ί Δ(γ).

From the fact mentioned above, each vertex of Δ(α)\Δ(7) is joined to all
vertices of A(a) Π Γ(/5i) Π Δ(γ) and not joined to any vertex of A(a) Π T(β2) (Ί
Δ(γ), or joined to all vertices of A(a) Π Γ(/32) Π Δ(γ) and not joined to any vertex

If Δ(α) Π Δ(γ) Π Γί/β,) is not empty, for i= 1, 2, let ?7f be a vertex of A(ά) Π
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Δ(γ) Π Γ(/3, ), for ί = l , 2. Then we have

k-c= |Δ(α)\Δ(γ)| = |{Δ(

= 2x.

Thus, from (1) we obtain

c = a—x-\-2 .

This is the contradiction.

Therefore, each vertex of Δ(α)\Δ(γ) is joined to all vertices of Δ(α) Π Δ(γ)
or not joined to any vertex of Δ(α) Π Δ(γ). We define 2 the set of the vertices
of Δ(α)\Δ(γ) which are joined to all vertices of Δ(α) Π Δ(γ). Then, all vertices
of 2 are joined to each other. Hence, all vertices of 2 U {Δ(α) Π Δ(γ)} are
joined to each other and 1 2 U {Δ(α) Π Δ(γ)} | = a+1. Therefore, we have

* = 2(α+l), @ = { 1 , 2} .

Step 3. We assume that @={1, 2}, k=2a+2.
We define the largest subset L of V line such that all vertices of L are joined

to each other. Then, we have the following properties
i) each vertex is contained within exactly two lines

ii) each line consists of exactly α+2-vertices
iii) two vertices are contained within at most one line
iv) there are not three lines such that any two of them intersect.
v) if for two vertices a, β there is not the line containing them, there are

two lines A, B such that A contains a, B contains /9, and A intersects with B.
Now, we choose the line 1^= {/0, /„ •••, /Λ+1} and the line L t which con-

tains /x , Lj φL^, ί=0, •••, tf+1, and the line Bj which intersect with Lo,

j= 19 ..., a+1. Let tii= \B{\\JL,| and ni( =

W e p u t

= {^1, •••, xn. } and Bf Γ\Lsk = φ, k = 1, •••, w,
Q

Any vertex is contained within at least one of L^, L o , •••, Lα+n> Bly •••, Bα+1

from the property v).

F r o m @ = { 1 , 2}, we have

« ί 0 >0.

We choose the line X{ containing xiy Xi^BiQ> t=ly •••, «f 0, and show that
any line is one of LM, Lo, •••, LΛ + 1, ^ •-, Bα+ly X19 ••, XW | 0.

We assume that there exists a line X different from the lines above. Then,
there exists the line Bh which intersect with X. Let {x}=X ΓΊ Bh. Then, the
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vertex x is not joined to the vertex xi9 i=l, • ••, niQ. From Biλ(ΊBiQ=XΠBi(ί

=XΓ\Xi=φ, z = l , •••, niQ, by the property v), we have

Therefore,

This contradicts the maximality of ni(J.
The vertex x{ is not joined to the vertex lJk, z=l , "',njo, k=l, # ,wf 0.

From the fact that L^ Π B^^L^ Π X{=LjkΠ Bio=φ, we have LiA Π I , φ φ , *= 1,
—, Λf 0, Λ=l, •••, Λfo, by the property v).

On the other hand if L^Ljk, A=l, •••, nio, then Ly Γlβf 0 Φφ, β/0Π
Therefore, we have Ly Π Xi=φ by the property (iii). Hence, we have

j] =a+2-niQ, ί = l , .. .,n, o .

Change the places of L and Lo, we have a-{-2—niQ=nio, that is

For any positive even number a, the graph satisfying the conditions exists
uniquely. Automorphism group of the graph is transitive, imprimitive and
rank 6 on the vertices of the graph. The number of the vertices of the graph

is equal to 5 f ^ i - ) . q.e.d.
n \ 2 /
Theorem 2. Let Γ=(V, E) be the connected regular graph satisfying the

conditions 1, 2 and 3 of the Theorem 1 and the diameter ofY is at least three. Then
we have

1). k=2(a+l), @={l}or
2). Λ=2(fl+l),@={l,2}or
3). Γ /ί isomorphίc to the graph induced by the vertices and the edges of the

icosahedron.
(We put

k= \A(a)\,a= |Δ(α)ΠΔ(/3)| for £e=Δ(α),

@ = {|Δ(α)ΠΔ(7)| | i (α, 7) = 2, α,

Proof of Theorem 2.
Let α, 7 and δ be the vertices such that d(a, δ)=3, d(a, 7)=2 and ̂ (7, δ ) = l ,
and S be the vertex of A(a) Π Δ(7). Since any vertex of A(a) Π Δ(7) is not joined
to δ, all vertices of A(a) Π Δ(7) are joined to each other. Therefore we have

|Δ(α)nΔ(7)l =2a
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Next time, we have

Δ(£) ΓΊ Δ(δ) c {Δ(τ)\Δ(α)} U M Π A(€)

Therefore,

2a—k+3<k—a— 1 ,

that is,

Case I. We suppose that & > — α + 2 .

Then, we have

|Δ(α)\Δ(γ)| = k-(2a-k+3)>a+ίy and

|Δ(α)\Δ(γ)| -2 = k-(2a-k+3)-2>2a-k+2 .

By the same way to the proof of the step 2 of the Theorem 1, we conclude that

k = (2a+2), Θ = { 1 } or @ = { 1 , 2 } .

3
Case II. We assume that k=—a-\-2.

Ad

When a=2, it is easy to prove that the graph Γ is isomorphic to the graph
induced by the vertices and the edges of the icosahedron.
We assume that α>2.
Since | Δ ( Γ ) \ Δ ( γ ) | = β + l , Δ(α)\Δ(γ) is not complete. Let β and β' be two
vertices of A(a)\A(y) which are not joined to each other. From that α>2, we
have

Δ(α) Π Δ(/3) Π Δ(/50^Δ(α)\Δ(γ)\{A β'} .

By the same way to the proof of the step 2 of the Theorem 1, we conclude that
each vertex of Δ(α)\Δ(γ) is joined to all vertices of Δ(α) Π Δ(γ) Π Δ(/5) and not
joined to any vertex of Δ(α) Π Δ(γ) Π Δ(β'), or joined to all vertices of Δ(α) Π
Δ(γ) (Ί Δ(yβ/) and not joined to any vertex of Δ(α) Π Δ(γ) Π Δ(/β), or not joined
to any vertex of A(a) Π Δ(γ). It is easy to prove that A(a) Π Δ(γ) Π A(β) and

Δ(α) Π Δ(γ) Π A(β') are not empty from that k=—a+2.

Let η be the vertex of A(a) Π A(y) Π A(β) and v' be the vertex of Δ(α) Π Δ(γ) Π
A(β'). We have

|Δ(α)\Δ(γ)\Δ(i7)\Δ(i/)l = 1 .

Let p be the vertex of Δ(α)\Δ(γ)\Δ(^)\Δ(^/). p is joined to all vertices of
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Δ(α)\Δ(γ)\{p} and not joined to any vertex of A(a) (γ)
Now, we show that @— {2a—k-\-3}. We define Γ(α) the set of the vertices
which are distant 2 from a. Let yr be the vertex of Γ(α). If 7/==7, I Δ(α) Π
Δ(7') I =2a—k+3. If y' is the vertex of Γ(α) Π Δ(γ), since yf is joint to δ, δ is
not joined to any vertex of A{ά) Π Δ(γ'). therefore, we have

( ) ( θ =2a-k+3.

If y' is the vertex of Γ(α)\Δ(γ)\{γ}, we have

By the existance of p, we obtain

|Δ(α)nΔ(τOI = 2a-k+3 = k-a-1 .

Thus, we conclude that | T(a) \ =k. If there exist two vertices ξ and ξ' which
are not joined to each other and | A(ξ) (Ί Δ(^) | =2α—k-\-4, then we have

V = {ξ} U Δ(?) U T(ξ) and | Γ(f) | < k .

This is impossible.
Count by two ways the number of the pair of the vertex of A(a) Π Δ(??)\Δ(7)
and the vertex of Δ(α) Π Δ(??/)\Δ(γ) which are not joined to each other. Then
we have

|Δ(α)nΔ(γ)nΔ(/3')l = Δ(α) Π Δ(γ) Π Δ(/S) | = \(2a-k+3).

We divide the set Δ(α) Π Δ(^) into three subsets A(a) Π Δ(/S) Π Δ(γ), Δ(α) Π
Δ(τ7)\Δ(γ) and Δ(α) Π Δ(γ)\Δ(/3). Each vertex of Δ(α)ΠΔ(i?)\Δ(γ) is not
joined to any vertex of Δ(α) Π Δ(γ)\Δ(/9), and | Δ(α) Π Δ(γ)\Δ(/9) | < | Δ(α) Π
Δ(?7)\Δ(7) I because that β>2. Now, p is the vertex of Δ(α) Π Δ(y5) and joined
to all vertices of {A(cή Π Δ(/3)\Δ(γ)\{p}} U {β} and not joined to any vertex of
A(a) Π A(β) (Ί Δ(γ). Therefore there exists not vertex of Γ(α) such that is
joined to β and p.

For any vertex of Δ(α)Δ(γ)\{p}, the above holds. Thus, let σ be the vertex of
Δ(p)\Δ(α)\{#}, then we have

This is a contradiction. q.e.d.

EXAMPLE.

Let G=SΩ be the symmetric group on Ω=={0, 1, •••, 2r} for r^>2, and the

subgroup H=Srfz2 of G be the wreath product of the symmetric group of

degree or a.nd the group of order 2 and act on {1, •••, 2r}.
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We choose the subset E of the unordered pair of {Hx}x<=G such that (Hx, Hy)

is the element of E if and only if xy1 is the element of HσH

Then, Γ=({Hx}x^G, E) satisfies the conditions 1, 2, 3 of the Theorem 1 and the

diameter of Γ is at least three and @=1.
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