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Abstract

In this paper, we look at the extension of Hedlund’s characterization of
cellular automata to the case of cellular automata in the hyperbolic plane. This
requires an additional condition. The new theorem is proved with full details in
the case of the pentagrid and in the case of the ternary heptagrid and enough
indications to show that it holds also on the grids {p, q} of the hyperbolic plane.

1 Introduction

Hedlund’s theorem, see [4] is a well known characterization of cellular automata in
terms of transformation over the space of all possible configurations. The theorem
says that the global transition function defined by the local rule of a cellular au-
tomaton is a continuous function on the space of all configurations of the cellular
automaton and that this global function also commutes with all shifts. The theorem
states that the converse is true. As a well known corollary of the theorem, we know
that a cellular automaton is reversible if and only if its global transition function is
bijective.

In the paper, we investigate the status of the theorem in the case of cellular
automata in the hyperbolic plane. We shall prove that it is not true, stricto-sensu:
there are cellular automata in the hyperbolic plane which do not commute with
all the shifts which leave invariant the grid of the cellular automaton. In fact, we
shall prove that the commutation with shifts entails another property of the cellular
automation which we call rotation invariance. Then, denoting C the space of
configurations for the considered grid, here the pentagrid or the ternary heptagrid.
We can state:

Theorem 1 A mapping F from C into C is the global transition function of a ro-

tation invariant cellular automaton on the pentagrid or the ternary heptagrid if and

only if F is continuous and if F commutes with all the shifts leaving the grid invari-

ant.
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Later, we shall extend the theorem to all grids of the form {p, q} of the hyperbolic
plane. During the proof, we shall prove that the considered shifts are finitely gener-
ated: in the case of the pentagrid and of the ternary heptagrid but also, generally,
for any grid {p, q}.

As we shall see, the main concern of the proof is the coordinate system for
locating the cells of the cellular automaton.

This problem is obvious in the case of the Euclidean plane: in fact, whatever the
grid, we may consider that we are in ZZ2 and the proof is almost word by word the
same as in the unidimensional case.

In the case of the hyperbolic plane, things are very different. First, there are
infinitely many tilings defined by tessellation, i.e. generated by the reflection of a
regular polygon in its edges and, recursively, of the images in their edges. Second,
there is no as general pattern as in the Euclidean plane to locate the cells of the grid.
In [6], a new tool was introduced which allows to better handle the problem. It gives
a general frame to locate the cells in any grid {p, q}, but the realization of the frame
for each tiling {p, q} generally depends of the tiling. There are a few exceptions.
Among them we have the case of the pentagrid and of the ternary heptagrid which,
up to a point, can be handled in the same way.

Just after this introduction, in the second section, we remind the reader with
the system of coordinates introduced in [6], also explained in [7]. Then, in the third
section, we look at the continuity part of the theorem. In the fourth section, we
prove that the shifts are finitely generated, extending the result to any grid {p, q}.
In the fifth section, we prove that the commutation with the shifts is equivalent to
the rotation invariance. In the sixth section, we prove the theorem and its corollary
about reversible cellular automata in the hyperbolic plane.

The reader is referred to [7] for an introduction to hyperbolic geometry which is
aimed at the implementation of cellular automata in the corresponding spaces.

2 Coordinates in the Pentagrid and in the Heptagrid of

the Hyperbolic Plane

As recalled in the introduction, the hyperbolic plane admits infinitely many tilings
defined by tessellation. This is a corollary of a famous theorem proved by Henri
Poincaré in the late 19th century, see [7], for instance.

Figure 1 sketchily remembers that the tiling is spanned by a generating tree.
Now, as indicated in figure 2, five quarters around a central tile allows us to exactly
cover the hyperbolic plane with the pentagrid which is the tessellation obtained
from the regular pentagon with right angles.

In the right-hand side picture of figure 2, we remember the basic process which
defines the coordinates in a quarter of the pentagrid, see [7]. We number the nodes
of the tree, starting from the root and going on, level by level and, on each level,
from the left to the right. Then, we represent each number in the basis defined by
the Fibonacci sequence with f1 = 1, f2 = 2, taking the maximal representation,
see[6, 7].
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Figure 1 On the left: the tiling; on the right: the underlying tree which spans the tiling.

From the left-hand side picture of figure 2, we can see that any tile can be located
by the indication of two numbers (i, ν), where i ∈ {1..5} numbers a quarter around
the central tile and ν is the number of the tile in the corresponding tree which we
call a Fibonacci tree as the number of tiles at distance n from the root of the tree
is f2n+1, see [8, 6, 7].
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Figure 2 On the left: five quarters around a central tile; on the right: the representations
of the numbers attached to the nodes of the Fibonacci tree.

Almost the same system of coordinates can be defined for the ternary hep-

tagrid which is obtained by tessellation from a regular heptagon with the interior

angle of
2π

3
, see figure 3.

Remind that the main reason of this system of coordinates is that from any cell,
we can find out the coordinates of its neighbours in linear time with respect to the
coordinate of the cell. Also in linear time from the coordinate of the cell, we can
compute the path which goes from the central cell to the cell.

M. Margenstern
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Figure 3 On the left: seven sectors around a central tile; on the right: the structure of a
sector, where a Fibonacci tree can easily be recognized.

Now, as the system coordinate is fixed, we can turn to the space of configurations.

3 Topology on the Space of All Possible Configurations

In the proof of Hedlund’s theorem, the space of configurations a cellular automaton
with Q as a set of states is represented by QZZ2

. Accordingly, each configuration
is viewed as a mapping from ZZ2 into Q. Now, as Q is a finite set, it is naturally
endowed with the discrete topology which can be defined by a distance: dist(q1, q2) =
1 if q1 6= q2 and dist(q1, q2) = 0 if q1 = q2. The space QZZ2

is endowed with the
product topology. It is the topology of the simple convergence, and it can also be
defined by a distance:

dist(x, y) =
∑

i∈ZZ2

dist(x(i), y(i))

4(2|i| + 1)
2−|i|,

where |(α, β)| = max(|α|, |β|). Note that 4(2n+1) is the length of a square centred
at (0,0), exactly containing the points (α, β) with |(α, β)| = n.

The translation to the case of the pentagrid or the heptagrid is immediate.
Again, let Q be the set of states of the cellular automaton. We define dist on Q as
previously. Now, we denote by F5 the set of five Fibonacci trees dispatched around a
central node. Similarly, we define F7 for the set of seven Fibonacci trees dispatched
in a similar way.

Then the distance on the set of all configurations is defined by

dist(x, y) =
∑

i∈Fα

dist(x(i), y(i))

α(f2|i|+1)
2−|i|,

where α ∈ {5, 7} and |i| is defined by the distance of i to the central cell. In other
terms, |i| is the index of the level of the tree on which i is. We note that αf2n+1 is
the number of nodes which are at distance n from the central cell.

It is not difficult to see that if x(i) = y(i) on a ball of radius n around the central
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cell, dist(x, y) ≤ 2−n. Conversely, if dist(x, y) ≤
1

f2n+12−n
, then x(i) = y(i) on a

ball of radius n−1 around the central cell.

As well known, the set of all configurations QFα endowed with the just defined
topology is a compact metric space.

It is plain that we have the following property:

Lemma 1 A cellular automaton on the pentagrid or on the heptagrid is continuous

on the set of all configurations with respect to the product topology.

Indeed, as long as two configurations are equal on the neighbourhood of a cell c

which corresponds to the local function of transition, the values given by the cellular
automaton at c are the same for both configurations.

It is possible to extend this result to any grid {p, q}.

Remind that the restriction of the tiling to an angular sector of angle
2π

q
can

be spanned by a tree Fpq, see [9]. Accordingly, the whole tiling can be generated

by p.(h−1) trees dispatched around a central tile, where h = ⌊
q

2
⌋. Then, there is a

bijection between the copies of the spanning trees and this tile with the tiling. Let
FFpq denote the new tree obtained by the central cell surrounded by the p.(h−1)
copies of Fpq. We can then consider that the set of configurations of a cellular
automaton A in the grid {p, q} is QFFpq , where Q is the set of states of A.

Then, the metric of this compact metric space is defined by:

dist(x, y) =
∑

i∈FFpq

dist(x(i), y(i))

α(ui)
2−|i|,

where ui is the number of nodes at distance i from the root of Fpq, and where
α = p(h−1), as there are p(h−1) copies of Fpq around the considered central cell.
Note that the case q = 3 has an exceptional status, see [7].

Now, the same arguments as above for the pentagrid and for the ternary hepta-
grid allows us to reformulate lemma 1 as:

Lemma 2 For all positive integers p and q with
1

p
+

1

q
<

1

2
, a cellular automaton

on the grid {p, q} of the hyperbolic plane is continuous on the set of all configurations

with respect to the product topology.

4 Generating the Shifts

First, if we analyze the proof of Hedlund’s theorem, we only need the commutation
with shifts to prove that a continuous mapping on the set of configurations is a
cellular automaton. It is not required that the shifts constitute a group. What is
needed is that for any cell c, there is a shift which transforms the origin (0, 0) into c.
Next, if the shifts we need can be generated by finitely many fixed in advance shits,
we are done, whether the shifts commute or not between themselves. If they do not
commute, the representation will be more complicate, but this aspect is not relevant
for our question.

M. Margenstern
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The second good news is that we can find two shifts for the generation of all the
shifts, both in the case of the pentagrid and of the ternary heptagrid. The proof is
rather simple for the pentagrid. It is a bit more complex for the ternary heptagrid.
It is a bit more difficult, also in the case of the grids {p, q}, when q is even. At last,
it requires some effort in the case of the grids {p, q}, when q is odd.

In all these studies, we shall make use of the following general property:

Lemma 3 Let τ1 and τ2 be two shifts along the lines ℓ1 and ℓ2 respectively. Then,

τ1◦τ2 ◦ τ−1
1 is a shift along the line τ1(ℓ2), with the same amplitude as τ2 and in the

same direction.

Although it is well known in the specialized literature, we provide the reader with
a proof of the lemma. It relies on the following well known features on shifts in the
hyperbolic plane:

(i) a shift has no fixed point in the hyperbolic plane,
(ii) there is a unique line of the hyperbolic plane, called the axis of the shift
which is globally invariant under the action of the shift,
(iii) a shift also leaves each half-plane, defined by the complement of its axis in
the plane, globally invariant,
(iv) a shift is an isometry, in particular it preserves lengths and it transforms
lines into lines.
A transformation of the hyperbolic plane into itself which satisfies these three

properties is a shift along its axis.

Proof of lemma 3. Consider two shifts τ1 and τ2, and let τ = τ1◦τ2◦τ
−1
1 . Let δ be the

axis of τ2 and let δ1 = τ1(δ). Take a point A on the line δ and define A1 = τ−1
1 (A).

Clearly, if τ2(A) = B, we have τ(A1) = τ1(B). Define B1 = τ1(B). Now, as δ is the
axis of τ2, B ∈ δ and so, A1, B1 ∈ δ1. Now, τ1(B1) = B, so that τ(B1) = τ1(C),
where C = τ2(B). As δ is the axis of τ2 and as B ∈ δ, we have also that C ∈ δ, so
that τ1(C) ∈ δ1. Now, τ1(C) = τ(B1), so that τ(B1) ∈ δ1. Accordingly, A1 and B1

belong to δ1 and A1 6= B1 as A 6= B = τ2(B) as τ2 has no fixed point. Consequently,
as τ is an isometry as a finite product of isometries, τ(δ1) ⊆ δ1. And so, δ1 is the axis
of τ . Also, τ has no fixed point. Indeed, if P were a fixed point of τ , τ−1

1 (P ) would
be a fixed point of τ2. Impossible, as τ2 is a shift. Accordingly, as τ is a product
of shifts which are positive isometries, τ is also a positive isometry: it necessarily
leaves the half-planes defined by δ1 globally invariant. And so, τ is a shift along δ1.
Now, A1B1 = τ−1

1 (AB) = AB, as τ1 is an isometry. And so the amplitude of τ ,
which is A1B1 = A1τ(A1), is AB = Aτ2(A), the amplitude of τ2. 2

Now, it is possible to state:

Lemma 4 The shifts leaving the pentagrid globally invariant are generated by two

shifts and their inverses. The same property holds for the ternary heptagrid.

We shall consider the cases of the pentagrid and of the heptagrid separately. We
shall make use of the traditional notation of τ1◦τ2◦τ

−1
1 by τ τ1

2 .
First, consider the case of the pentagrid, it is illustrated by the left-hand side

picture of figure 4.
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Fix a tile of the pentagrid, say Π0. Fix an edge of Π0 and let ℓ1 be the line
which supports this edge. Consider a contiguous edge, supported by the line ℓ2.
Both lines are lines of the pentagrid. Let A be the common point of ℓ1 and ℓ2: it is
a vertex of Π0. Let B be the other vertex of Π0 on ℓ1 and let C be the other vertex
of Π0 on ℓ2. Then, define τ1 to be the shift along ℓ1 which transforms A into B

and define τ2 to be the shift along ℓ2 which transforms A into C. Now, let us show
that τ1, τ2, τ−1

1 and τ−1
2 generate all the shifts which leave the pentagrid globally

invariant. It will be enough to show that if we take a tile P , there is a product of
τ1, τ2, τ−1

1 and τ−1
2 which is a shift and which transforms Π0 into P .

Π 0

Π 1

Π 5

Π 4

Π 3

Π 2
A

B C

D E

H0

H1

H2

H3

H4

H5H6

H7

A

B

C

D

Figure 4 Action on the shifts τ1, green, and τ2, blue. On the left-hand side, Πi, i ∈ {1..5}
denote the neighbour of Π0 sharing with it the edge i. Similarly, on the right-hand side, the
neighbours of H0 are denoted by Hi, i ∈ {1..7}. Also, note the mid-points A, B, C and D
which are used by table 1.

Number the edges of Π0 by 1 up to 5 and assume that the edge 1 is AB and that
the edge 2 is AC. Then, from lemma 3, τ τ1

2 is a shift along the edge 5, transforming B

into the other end of this edge. Similarly, τ τ2
1 is the shift along the edge 3 which

transforms C into the other end of this edge. Now, it is not difficult to see that

τ
τ

τ2

1

2 is a shift along the edge 4 transforming τ τ1
2 (B) into τ τ2

1 (C). Taking these shifts
and the inverses, we get shifts which transform Π0 in all its neighbouring tiles in
the sense of Moore. Now, it is not difficult to repeat this construction with any
neighbour of Π0: it shares an edge with Π0 and it has two other edges which are
supported by a line which also supports another edge of Π0. Accordingly, we get all
the tiles within a ball of radius 2 around Π0. Now, by an easy induction, we get all
the tiles of the pentagrid. Note, that for a given shift of the pentagrid, there is no
unique representation of this shift as a product of powers of τ1, τ2 and their inverses.

Now, let us look at the case of the ternary heptagrid which is illustrated by the
right-hand side picture of figure 4.

This time, we cannot take the lines which support the edges of a heptagon: due

to the angle
2π

3
, such a line supports edges but it also cuts heptagons for which they

are an axis of reflection. In [2, 7], I have indicated that mid-point lines play the
rôle of the expected shifts. This is what is performed in the right-hand side picture
of figure 4.

M. Margenstern
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Consider again τ τ1
2 , where τ1 and τ2 are shifts along two mid-point lines which

meet on an edge of the heptagon. By construction of the mid-point lines, the defini-
tion of τ1 and τ2 involves the neighbours of H0, the heptagon which we fix in order
to define the generators of the shifts. As shown in the right-hand side of figure 4, τ1

transforms H0, say into H1 while τ2 transforms H0 into H4: we number the edges
of H0 clockwise. Now τ τ1

2 transforms H1 into H2, and so, it transforms H0 into H3.
Similarly, we find that τ τ2

1 transforms H0 into H2.

For the convenience of the reader, we indicate the next shifts which transform
H0 into the remaining neighbours. Using the previous transformations, let us set
ξ1 = (τ τ1

2 )−1 and ξ2 = (τ τ2
1 )−1. Then, ξ1 transforms H0 into H7 while ξ2 trans-

forms H0 into H5. At last, ξ
ξ2
1 transforms H0 into H5.

Hi point shift1 shift2

H1 B τ1 τ τ1
2

H2 C τ τ2
1 ξ1

H3 C ξ1 ξ2

H4 D ξ2 τ2

H5 D τ−1
2 ξ2

H6 B τ−1
1 τ−1

2

H7 B τ−1
1 ξ1

Table 1 The shifts which, for each neighbour of H0 generate the transformations of Hi

into its neighbours. Note that there is no order in the pair of generating shifts.

In order to reproduce the same actions for the neighbours of H0, we just need
to define mid-points of edges which will allow us to define the shifts which will play
the rôle of τ1 and τ2 for each neighbour. The considered mid-points are indicated in
the right-hand side picture of figure 4. Table 1 indicates for each neighbour the mid-
point which is used and the shifts denoted in terms of the shifts which we already
defined.

This allows us to prove the statement of lemma 4 for the ternary heptagrid. 2

Before proving the same property of finite generation for any grid {p, q} of the
hyperbolic plane, the reader may wonder why we need two different techniques for
the pentagrid and for the heptagrid? The mid-point lines can also be defined in
the pentagrid and the same type of shifts, defined for the ternary heptagrid, can be
defined for the pentagrid. This is true but such shifts would not be interesting for
our purpose in the pentagrid. In the pentagrid, it is possible to colour the tiles with
black and white in order to get something which looks like a chessboard: any white
tile is surrounded by black ones and any black one is surrounded by white ones.
Now, it is not difficult to remark that the shifts based on mid-point lines transform
a tile of one colour into a tile of the same colour. Accordingly, we cannot get the
immediate neighbours of a cell with such shifts.

As announced in our introduction, now, we prove the same property of finite
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generation for any grid {p, q} of the hyperbolic plane. From the previous remark,
we may expect that the parity of q is important.

Indeed, the argument which we considered can be extended to any grid {p, q}
but, roughly speaking, the argument for the pentagrid extends to all grid {p, q},
when q is even. Similarly, the argument for the ternary heptagrid extends to all grid
{p, q}, when q is odd.

V

P Q

A

M i Mi +1

B

Figure 5 The mid-point figure around a vertex, when q is odd.

This is obvious for the grids {p, 4} and {p, 3}. For the other grids, it follows
from the following consideration. When q is bigger, number the p edges of the basic
polygon P0, e1, . . . , ep, by turning around P0, clockwise. Also number the vertices
V1, . . . , Vp with Vi+1 ∈ ei ∩ ei+1 for i ∈ {1..p−1} and V1 ∈ e1 ∩ ep. Denote by τi the
shift along the axis of ei which transforms Vi into Vi+1, considering that Vp+1 = V1.
Then, if we perform successively the shifts τ1, . . . , ep, the image of e1 is not e1 but

its image under a rotation of p.
2π

q
around V1. Repeating this tour, we get all the

tiles which are around V1. Now, from τ1, we go to a polygon P which is around V2.
With an appropriate number of rounds around P , we get the neighbour of P0 which
shares e2 with it. And then, we can repeat the construction with the other edges,
which provides us with all the shifts transforming P0 into its immediate neighbours.
Now, we notice that, for this construction, we need all the shifts defined by the
edges of P0. They are enough as the shifts around the sides of P are given by τ1

and τ τ1
2 , . . . , τ τ1

p .

For the case when q is odd, the situation is a bit more complex. In fact, we take
this time the mid-points of the edges of Q0, the basic polygon, into consideration.
Now, we consider also the mid-points of all edges of polygons which share a vertex
with Q0. Now, fix a vertex V1 of Q0. We consider all the mid-point of the edges
which have a vertex in common with Q0. All such mid-points which are around V1

constitute the mid-point figure around V1, see figure 5, where a partial view is
given.

Let us focus on this figure. Mi and Mi+1 are consecutive mid-points of edges
which share V . The mid-point line which joins Mi and Mi+1 also meets the line AP

in P and the line BQ in Q. The line AP is an edge of a copy Qb of Q0 which
shares V with Q0 and which is also determined by its other edge V P . Similarly,
the line BQ is also an edge of another copy Qa of Q0 which shares V with Q0 and
which is determined by its edge V Q. Now, the shift σi along the line MiMi+1 which

M. Margenstern
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transforms A into Mi+1 transforms Qb into Qa. The opposite shift, along the same
line, transforms Qa into Qb and, for instance, B into Mi.

By rotation around V , we determine the other shifts, constructed from two
consecutive mid-point edges around V . It is not difficult to note that by applying
these shifts consecutively in turning twice around the vertex, we obtain all the copies
of Q0 which are around V . Now, one of these shifts, say τ , transforms Q0 in another
neighbouring polygon Q. Note that all shifts, constructed around vertices in the
above indicated way, but corresponding to Q, are obtained from those, say t, which
are attached to Q0 as tτ . Accordingly, the shifts attached to Q0 by the above process
generate all the shifts which leave the tiling {p, q} invariant.

And so, we proved the following extension of lemma 4:

Lemma 5 For all positive integers p and q such that
1

p
+

1

q
<

1

2
, the shifts leaving

the grid {p, q} globally invariant are finitely generated. The number of generators is

at most p when q is even, and at most p.q when q is odd.

5 Commutation with Shits and Rotation Invariance

First of all, we have to define what is rotation invariance and then, we shall prove
that it is characterized by the commutation with shifts.

5.1 Rotation invariance

In the Euclidean plane, the definition of rotation invariant rules, a well known notion
in cellular automata, can easily be defined.

Consider the case of von Neumann neighbourhood. It is not difficult to see that
the rules of a cellular automaton can be represented as follows:

(r) sN , sE , sS , sW , sc → s′c,

sN , sE, sS and sW are the states of the neighbours of c which are on the North, the
East, the South and the West respectively. The state of c itself is sc at the moment
when the ruled is applied, and it becomes s′c after that, which is indicated by the
arrow in formula (r).

In the Euclidean case, a rotation invariant cellular automaton A is rotation

invariant if for all rules of A written in the form of (r), the rules obtained from (r)
by a circular permutation on the terms which are on the left-hand side of the arrow
are also rules of A and they all give the same new state s′c as in (r).

It is not difficult to see that such a syntactic rule can easily be transported to
the case of any grid {p, q} of the hyperbolic plane.

If we transpose the definition of the Euclidean plane to the hyperbolic one, we can
see that the notion of direction plays a key rôle. As mentioned in the introduction,
there is no such notion on the hyperbolic plane. The tools introduced in [6] provide
us with something which plays the rôle of the North pole in the hyperbolic plane.
As the basic structure of a tiling {p, q} of the hyperbolic plane is the existence of a
generating tree, for each cell, the central one excepted, the direction to the father is
a way to define a direction in a meaningful way. In the case of cellular automata in
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the Euclidean plane, the coordinates seems to be so an evident feature that almost
nobody pays attention to that. However, if we want to actually implement cellular
automaton for some simulation purpose, we are faced to the problem, even in this
trivial case. And we can see that there is a price to pay, although the coordinate
system seems to be for free. In a concrete implementation, cells have coordinates
which are numbers, and numbers take some room which cannot be neglected. It
could be answered that this is a hardware matter and that in a theoretical study,
we may ignore this constraint. OK, let us take that granted. In this case, we can
assume the same for the hyperbolic plane: fixing a central cell, the generating trees
and from that the coordinates of any cell is a hardware feature.

In the next section, we shall go back to this question. We shall see that the
question of direction can be, theoretically be handled in a pure cellular automata

approach.
Remember that the neighbourhood of a cell c is a part of a ball around c which

contains c itself. We require that the neighbourhoods Nc and Nd of two cells c

and d could be put into a one-to-one correspondence by a positive displacement δ

from Nc onto Nd such that δ(c) = d and δ(d) = f(d), where f(x) is the father of
the cell x. As we shall consider the question of rotation invariance, we assume that
the neighbourhood around a cell c is a ball around c of a fixed radius k depending
only on the cellular automaton. Now, as the father is known, we can number the
neighbours of c by associating 1 to the father and then, clockwise turning around
the cell, by associating the next numbers to the next cells at distance 1, then, in
the same rotation motion, to the cells at distance 2, and then, going on in this way
until we reach the last cell which is at the distance k of c. This allows us to define
the format of a rule as follows:

(R)
(

{(ηi)}i ∈ {1..αuk}
, η

)

→ η′

where ηi is the state of the neighbour i of c, uk is the number of cells in Fpq which
are at distance k−1 from the root of Fpq, and α is the number of such trees around
the central cell. Note that, in particular, η1 is the state of the father of c. Now, we
remark that 1, . . . , p are exactly the numbers of the neighbours which are distance 1
and that a rotation on the neighbourhood of c defines a circular permutation on
{1, ..p}.

Now, it is easy to notice that, conversely, a circular permutation on the numbers
of the cells which are at distance 1 of c can be extended into an isometry which
is nothing else than a rotation around c. If we consider a circular permutation π

on {1, ..p}, this defines a rotation on the neighbourhood of c. Now, this induces a
new numbering of the cells of the neighbourhood by applying the same algorithm to
number the cells at a greater distance than 1 as the one we have above described.
This new numbering will also be denoted by π, π(i) being the value defined by the
just defined algorithm when i > p. Accordingly, we can give the following definition:

Definition 1 Consider a cellular automaton A on a grid {p, q} of the hyperbolic

plane, and assume that the neighbourhood of any cell c is a ball around c of radius k,

where k is a constant. Say that A is rotation invariant if and only if for any rule

of its table which can be written in the form (R), all the rules:

(R′)
(

{(ηπ(i))}i ∈ {1..αuk}
, η

)

→ η′
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where π is a circular permutation on {1..p}, extended to {1..αuk} by the rotation

induce by π, also belong to the table of A.

5.2 Commutation with shifts

Consider a cellular automaton A on the grid {p, q} of the hyperbolic plane. Let us
denote by C the set of configurations on the grid. We define the global function FA

from C into C as usual: if x ∈ C, then for any cell c, we have FA(x)(c) = f(x(Nc), x(c)),
where Nc is the set of the neighbours of c, listed as {ci}i ∈ {1..αuk}

, according to

the numbering which we have above defined, and f is the table of the rules of A.

Definition 2 Let A be a cellular automaton on the grid {p, q} of the hyperbolic

plane. Let FA denote its global transition function. Then A is said to commute

with the shifts if and only if FA◦σ = σ◦FA for all shifts σ leaving the grid {p, q}
globally invariant.

The main result of this section is:

Theorem 2 A cellular automaton on the grid {p, q} of the hyperbolic plane com-

mutes with the shifts if and only if it is rotation invariant.

Before proving the theorem, let us remark that most cellular automata which are
devised for various theoretical computations are rotation invariant. This is the case
for many of them in the Euclidean plane. It is also the case of several of them,
among the few ones devised in the hyperbolic plane or in the 3D space.

Let us go back to the definition of the commutation of FA with a shift. This
means that: FA(σ(x)) = σ(FA(x)). Let d = σ(c), where c is a cell. Then, by
definition, FA(σ(x))(d) = f(σ(x(Nc)), sc), where f is the table of A, as σ gives in d

the state sc which we have in c. Now, σ(x(Nc)) clearly transports the states of the
cells in Nc onto a set of states on a rotated image of Nd with respect to the father
of d. And, a priori, the father of d is not the image of the father of c under σ. In
the next sub-section, we shall see that indeed, the shifts need not commute with the
operation which, to a cell, assigns its father.

Accordingly, if the cellular automaton commutes with the shifts, it is invariant
under this rotation, and conversely. Now, we know that all these rotations are
generated by shifts, as it easily follows from the proof of lemma 5. Consequently,
this gives us the result. 2

5.3 Rotation invariant cellular automata

In this section, we shall first see that a cellular automaton on a grid {p, q} need not
commute with shifts. Then, we shall prove the following result:

Theorem 3 For any cellular automaton A on the pentagrid or the ternary hepta-

grid, there is a cellular automaton B and a projection ξ of the states of B on state

of A such that B is rotation-invariant and, for any cell c, A(c) = ξ(B(c)). There

is also another cellular automaton C with a projection χ of its states on those of A

satisfying A(c) = χ(C(c)) and which is not rotation invariant.
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The proof of the theorem is obtained by constructing a product automaton with
a cellular automaton which we shall define. Then, from this product, we shall
construct a set of rules which is not rotation invariant and another one which is so.

The special factor of this product is a cellular automaton which propagates the
tree structure inside the grid, here the pentagrid or the ternary heptagrid.

For this purpose, we assign an extended status to each cell which is an ex-
tension of the notion of status of this cell as a node of the Fibonacci tree where it
stands. Remember that a node is black if it has two sons and that it is white if it
has three sons. Black and white defines the status of the node, see [6]. Now, we
define the extended status as follows, indicating them by symbols at the same
time. First, we proceed with black nodes and then with white ones.

Bb, Bw : black node, black, white father respectively; in figure 6, below, they
are represented by the colours dark and light blue, respectively.

Wwm, Wwr : white node, white father, middle, right-hand son, respectively;
in figure 6, they are represented by the colours yellow and green, respectively.

Wb : white node, black father, represented in orange in figure 6.

For each node, its immediate neighbours are given by the following tables, first
listing the father f of a cell c and then, clockwise turning around c, its neighbours
n2, . . . , nα, with α ∈ {5, 7}.

We can see that black nodes are always identified by the pattern Bb, Wb, Bw

in their immediate neighbourhood, while white nodes are identified by the pattern
Bw, Wwm, Wwr.

Now, the extended status can always be inferred from such a neighbourhood. In
nodes of extended status Bb and Bw, the identification comes from the neighbour n1

: it is white for Bb-nodes but Wwm nether occurs. For white nodes, the distinction
between the extended status Wwm and the others comes from the neighbour n4: it
is Bw for Wwm nodes and Bb for the others. Between Wmr and Wb nodes, the
difference comes from the father, of course.

Now, the rows of these tables can easily be transformed into conservation rules:
a row c, f, n2, . . . , nα induces the rule f, n2, . . . , nα, c → c.

It remains to see that we can define propagation rules for a cellular automaton.
Indeed, the initial configuration would assign a special state to the central cell and
the quiescent state to all the other cells. Then, the propagation rules would define
the extended status of the neighbouring cells, and defining the extended status of
all cells, ring by ring, where a ring is a set of cells at the same distance from the
central cell.

We give the propagation rules for such an automaton in the case of the pentagrid
in figure 6, where the explanation of the rules is shortly given in the caption of the
figure. We leave the propagating rules for the case of the ternary heptagrid as an
exercise for the reader.
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ν f n1 n2 n3 n4

Bb: Bb Wmr Bb Wb Bw

Bw Wb Bb Wb Bw

Bw Wmr Bb Wb Bw

Bw: Wwm Bw Bb Wb Bw

Wwr Wwm Bb Wb Bw

Wb Bb Bb Wb Bw

Wwm: Wwm Bw Wwm Wwr Bw

Wwr Bw Wwm Wwr Bw

Wb Bw Wwm Wwr Bw

Wwr: Wwm Bw Wwm Wwr Bb

Wwr Bw Wwm Wwr Bb

Wb Bw Wwm Wwr Bb

Wb: Bb Bw Wwm Wwr Bb

Bw Bw Wwm Wwr Bb

Table 2 Rules for the conservation of the structure of the Fibonacci tree, case of the pen-
tagrid.

Now, we are in the position to prove theorem 3.

Consider the automaton P whose table is defined by the rules of figure 6 and
table 2 in the case of the pentagrid. In the case of the ternary heptagrid, the
propagation rules are adapted from figure 6 and also taken from table 3.

Let A a cellular automaton. We first define the product A × P by the states
(η, π), where η runs over the states of A and π over those of P . We shall also say
that η is the A-state of (η, π) and that π is its P -states.

Before going further, let us note that the function which associates its father to
a cell does not necessarily commute with shifts.

This can easily be seen on figure 4. Consider its left-hand side picture, the case
of the pentagrid. Imagine that Π0 is a black node whose father is Π1. Then the
shift ED, which transforms E into D along the line passing through these points
transforms Π0 into its black son Π5. Now, the same shift does not transform Π1

into Π0, but in the reflection of Π1 in the line BD. On another hand, the shift BD

transforms Π1 into Π0 and Π0 into P4 whose father is indeed Π0. The same figure
shows that for each kind of node and each kind of son there is a shift which maps
the father onto the father in this situation and a shift which does not.

This allows us to prove the theorem. First, we notice that we can consider cells
at a time when their P -state is stable. Then, we note that the rules of A×B are of
the form:
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(R1) {(ηi, πi)}i ∈ {1..α}, (η, π) → (η′, π)

From the table 2 and 3, it is clear that rotating a rule does not entail contradic-
tions with already established rules: the distinction between the actual father and
the rotated one is always clear.

ν f n1 n2 n3 n4 n5 n6

Bb: Bb Wwr Wwr Bb Wb Bw Wb

Bw Wb Wwr Bb Wb Bw Wb

Bw Wwr Wwr Bb Wb Bw Wb

Bw: Wwm Bw Wb Bb Wb Bw Wwm

Wwr Wwm Wwr Bb Wb Bw Wwm

Wb Bb Wb Bb Wb Bw Wwm

Wwm: Wwm Bw Bw Wwm Wwr Bw Wwr

Wwr Bw Bw Wwm Wwr Bw Wmr

Wb Bw Bw Wwm Wwr Bw Wmr

Wwr: Wwm Wwm Bw Wwm Wwr Bb Bw

Wwr Wwm Bw Wwm Wwr Bb Bb

Wb Wwm Bw Wwm Wwr Bb Bb

Wb: Bb Bb Bw Wwm Wwr Bb Bw

Bw Bb Bw Wwm Wwr Bb Bw

Table 3 Rules for the conservation of the structure of the Fibonacci tree, case of the ternary
heptagrid.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23.

Figure 6 Rules for the propagation of the Fibonacci tree structure in the case of the pen-
tagrid.

Initially, the central cell O contains a red state. By the rule 1, it sends a dark red state
to each root of a Fibonacci tree. The rules 2 and 3 allow to determine the black and white
nodes of the first level of a tree which consists of the sons of the root. The rule 3 defines a
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black node and the rule 2 defines a white one. The same difference later occurs on the next
levels: a black node, up to now in a quiescent state, takes the state of its status when it sees
two non quiescent nodes on the previous levels, namely its father and its neighbour 2. This
is provided by the rules 6, 7, 9, 12 and 14. Note that when a quiescent node sees two non
quiescent nodes, it recognizes its father as the right-hand side one which allows to also fix its
extended status. In the other cases, the node is white, which is provided by the other rules.

The colours of the nodes represent their extended status which indicates the status of
the node and the status of its father. For white nodes, it also indicates the position of their
position in the list of the white sons when the father is white.

For white nodes, they know there status at the same speed as the black nodes: a node
knows as it is white as it can see only one neighbour, n1, in a non quiescent state. Now,
the propagation of the extended status requires an additional step for the white nodes. The
rules 22 and 23 introduce this delay. And so, the node remains pink while its future white
sons become pink. This is why in the rules 15 up to 20 the future white sons are pink while
the black sons are already installed.

Accordingly, we can decide, either to introduce all the following rotated rules:
(R′) {(ησ(i), πσ(i))}i ∈ {1..α}, (η, π) → (η′, 0P ),

where 0P is the quiescent state of P and σ does perform a rotation, or all the
following ones:

(R′) {(ησ(i), πσ(i))}i ∈ {1..α}, (η, π) → (η′, π).

In the first case, the new automaton is not rotation invariant. In the second
case, it is rotation invariant. 2

As a matter of case, for the cellular automaton P itself, the rules given by figure 6
are rotation invariant, while those given by tables 2 and 3 are not. The just produced
argument for the proof of theorem 3 allows us to extend the rules of tables 2 and 3
either to rotation invariant ones or to non rotation invariant ones.

6 Proving Hedlund’s Theorem

Now, the proof of the theorem goes as it does classically.
From lemmas 1 and 2, we know that cellular automata on grids {p, q} are con-

tinuous on the space of configurations. From lemma 3, we know that they commute
with any shift if and only if they are rotation invariant.

For the converse, we consider a mapping F on the space of configurations. We
assume that it is continuous with respect to the topology defined in section 3 and
that it commutes with the shifts. Then, again, the standard argument applies. The
compacity of the space with respect to the topology allows to consider the distance
between two sets {x | F (x)(c) = p} for different states p, as the configurations are
defined on QFFpq , Q being called the set of states which we assume to be finite, c

being a fixed cell. This minimal distance is positive and it allows to define a ball Bn

for some n such that the value of F (x) at c depends only on the values of x on the
ball Bn around c.

Next, as in the classical proofs, we transport this property to any cell thanks to
the commutation property of F with the shifts. 2

And so, we proved theorem 1. From this, we immediately get, as classically:

Theorem 4 A rotation invariant cellular automaton on a grid {p, q} of the hyper-

bolic plane is reversible if and only if it is bijective.
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At this point, let us note that the proof of theorem 1 is non-constructive. Mainly,
the proof that a continuous mapping which commutes with the shifts is a cellular
automaton is non-effective. The compactness argument indicating that the distance
between the two sets of configurations giving rise to the same state is not effective.
This does not allow to directly give an estimate on the size of the neighbourhood of
the inverse cellular automaton. However, in the one dimensional case, the converse
is obtained effectively, see [1]. Recent results, with a tight bound on the size of the
inverse neighbourhood, can be found in [3].

7 Conclusion

The question arises whether other classical theorems on cellular automata are also
true for hyperbolic cellular automata. As an example, we can take the theorems of
Moore and Myhill, see [10, 11], characterizing surjective global transition functions
as injective global transition functions restricted to finite configurations. In fact, it
seems difficult to adapt the classical proof in a straightforward way.

The reason is that the classical argument relies on the fact that the surface of a
big square in a square tiling of the Euclidean plane becomes negligible with respect
to its all area when the size of the square tends to infinity. In the hyperbolic plane,
this is no more true for a closed ball: the number of tiles on the border is more than
the half of the total of number of all the tiles in the ball.

And so, there is still some work ahead: either to find another argument, or to
find that Moore’s or Myhill’s theorem is no more true in the hyperbolic space.

Another example is the theorem about whether the reversibility of cellular au-
tomata in the hyperbolic plane is undecidable as it is in the case for the Euclidean
plane, see [5].

Accordingly, there is still much work to do in these directions.
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